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Abstract Noninvasive extraction of the fetal electro-

cardiogram (fECG) from multichannel maternal ab-

domen recordings is an emerging technology used for fe-
tal cardiac monitoring and diagnosis. The strongest in-

terference for the fECG is the maternal ECG (mECG),

which is not always removed through conventional
methods including blind source separation (BSS), es-

pecially for low-rank abdominal recordings.

In this work, we address the problem of maternal

cardiac signal removal and introduce an online sub-

space denoising procedure customized for mECG can-
cellation. The proposed method is a general online de-

noising framework, which can be used for the extraction

of a signal subspace from noisy multichannel observa-

tions in low signal-to-noise ratios, using suitable prior
information of the signal and/or noise. The method is

fairly generic and may also be useful for the separation

of other signals and noises. The performance of the pro-
posed technique is evaluated on both real and synthetic

data and benchmarked versus state-of-the-art methods.
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1 Introduction

The fetal electrocardiogram (fECG) provides vital in-

formation about the fetal cardiac status. Recent mea-

surement and processing technologies have enabled the
noninvasive extraction of the fECG, from an array of

sensors placed on the maternal abdomen [1]. One of

the most challenging issues in this context is to remove

maternal cardiac (mECG) interferences, without affect-
ing the fECG. The mECG can be up to two orders of

magnitude stronger than the fECG [1].

To date, various methods have been developed for

mECG removal, including spatial filtering [2], adaptive

filtering [3–5], template subtraction techniques [6,7] and

Kalman filtering [8–10].

Although adaptive and Kalman filters have been

very effective for single channel ECG denoising, they
have two major limitations for fECG extraction: (1)

the inter-channel correlation of the ECG is not used,

(2) the fECG is removed with the mECG during pe-

riods of mECG and fECG temporal overlap [8]. Both
issues can be avoided by using multiple channels.

A well-known multichannel technique for extraction
of fECG is blind source separation (BSS) using indepen-

dent component analysis (ICA), which has been shown

to be more accurate and robust as compared to similar

approaches [11]. However, a basic limitation in conven-
tional ICA is that the performance highly degrades in

presence of full-rank Gaussian noise [12], resulting in

residual mECG within the fECG. It is therefore more
effective to remove the mECG before applying ICA

techniques [13].

More recently, a deflation subspace decomposi-
tion procedure, which we call denoising by deflation

(DEFL), was proposed for signal subspace separation

from full-rank noisy multichannel observations [8, 13–
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15]. An interesting application of this framework is for

mECG removal from maternal abdominal recordings
[13]. The method has resulted in very good fECG sep-

aration, especially in low signal-to-noise ratios (SNR).

Yet, a limiting factor of DEFL is the offline block-wise
procedure required for generalized eigenvalue decom-

position (GEVD), as the core of this algorithm. This

issue has been the major obstacle in using DEFL for
real-time online fECG extraction.

In this work, using recent developments in online

GEVD [16], an online extension of DEFL— called on-

line denoising by deflation (ODEFL)— is introduced
for eliminating the mECG from noninvasive maternal

abdominal recordings . As with the offline version, the

proposed method is fairly general and applicable to var-
ious scenarios depending on the prior knowledge regard-

ing the signal and noise subspaces.

2 Problem definition

Electrical signals recorded from the abdomen of a

pregnant woman consist of mixtures of various sig-

nals including the mECG, fECG, baseline wanders and
muscle contractions considered as noise. Bio-potentials

recorded at the body surface are low frequency signals

compared with the high propagation velocity of the
electrical signals and the sensor distances [17]. There-

fore, the following linear instantaneous data model has

been shown to be rather realistic for modeling multi-
channel maternal abdominal signals [13]:

x(t) = Hm(t)sm(t) + Hf (t)sf (t) + Hη(t)v(t) + n(t)

∆
= xm(t) + xf (t) + η(t) + n(t)

(1)

where sm(t) is the maternal ECG source, sf (t) is the
fetal ECG source and v(t) represents structured noises,

such as electrode movements and muscle contractions.

n(t) is full-rank measurement noise and Hm(t), Hf (t)

and Hη(t) are the transfer functions that model the
propagation media from the corresponding source sig-

nals onto the body surface [18]. In a realistic model,

the cardium (of the mother and fetus) should be con-
sidered as a distributed source. Therefore, sm(t) and

sf (t) are generally full-rank [8]; but the effective num-

ber of dimensions can be relatively small (typically be-
low six [19]), depending on the sensor positioning and

SNR.

The overall objective of noninvasive fECG extrac-

tion is to extract xf (t) from this mixture. Among
the different interferences and noises, the mECG is

the dominant interference, which cannot be fully sepa-

rated from the fECG through conventional ICA, due to
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Fig. 1 Block-wise deflation scheme, adapted from [13]

its full-rank nature, high amplitude, and background
noise. This results in residual components within the

extracted fECG. The DEFL algorithm was proposed to

overcome this issue [13]. Before introducing its online
version, DEFL is reviewed in the following section.

3 Background

3.1 Denoising by deflation

The DEFL algorithm is a subspace denoising method,

which removes the undesired parts of a multichannel

noisy data using a sequence of linear decomposition, de-

noising and linear re-composition, in a block-wise man-

ner. As shown in Fig. 1, a block of multichannel noisy

data X = [x(1), . . . , x(T )] ∈ R
N×T is given as input to

the DEFL algorithm and a denoised block of the same

dimension, namely Y = [y(1), . . . , y(T )] ∈ R
N×T is ob-

tained.

The first stage of DEFL consists of finding a suitable

invertible spatial filter W ∈ R
N×N , which works as a

feature enhancer for transforming X to a space in which
the data is ranked from the most to least resemblance

to the “desired property”. In other words, in the trans-

formed space, the SNR is improved within the first few
channels, allowing better signal/noise separability for

the first few channels. At the second stage, the signal

and noise contents of the first L channels are separated

using a suitable denoising method, which is customized
per-application, according to the nature of the signals

and noises. In the last stage, the residual signals and

the N − L unchanged channels are back-projected to
the original space. These three stages make the first

iteration of the DEFL algorithm. This procedure is re-

peated in multiple iterations, each time over the output
of the previous iteration, until all the undesired com-

ponents within the data are eliminated. The number of

iterations can be selected using a termination criterion

that is application-dependent and measures the qual-
ity of the signal according to a desired characteristics.

For instance, the periodicity measure (PM) defined in

Section 6.2 can be used to indicate the portion of the
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maternal ECG that is removed (or retained) after each

iteration, in each channel.

Each iteration of DEFL can be summarized as fol-

lows:

Y = W−T G
(

WT X, L
)

(2)

where X is the input data block, Y is output data block,
G(·, ·) is the denoising operator applied to the first L

channels of the input, and W is the spatial filter, as

defined above.

The matrix W is application-dependent . As pro-

posed in [13], it can be obtained by maximizing a

Rayleigh quotient in a GEVD procedure. For the appli-
cation of interest, periodic component analysis (πCA)

[20] is used for estimating W.

For multichannel ECG observations x(t) ∈ R
N ,

πCA consists of finding w ∈ R
N in s(t) = wT x(t), such

that the following objective function is maximized.

w∗ = argmax
w

Et{s(t)s(t + τt)}

Et{s(t)2}
= argmax

w

wT Cτ w

wT Cw
(3)

Et{·} denotes averaging over time; C
∆
= Et{x(t)xT (t)}

and Cτ
∆
= Et{x(t)xT (t + τt)} are the covariance and

lagged covariance matrices, respectively; τt is a variable

period calculated using the reference (here the mater-

nal) ECG R-wave peaks, as defined in [20]. Estimating
the matrix W in equation (3) is equivalent to solving

the following GEVD problem for W ∈ R
N×N :

WHCτ W = Λ, WHCW = IN (4)

where W = [w1, . . . , wN ] is a matrix of generalized
eigenvectors, IN is an N × N identity matrix and

Λ = diag(λ1, . . . , λN ) is a diagonal matrix containing

the generalized eigenvalues on its diagonal. It can be
shown that w∗ = w1, i.e., the eigenvector correspond-

ing to the largest generalized eigenvalue λ1 maximizes

(3). Moreover, if C and Cτ are symmetric matrices,

λ1 ≥ λ2 ≥ · · · ≥ λN are real and the components of
s(t) = WT x(t) are ranked according to their resem-

blance with the desired (the maternal) ECG [20].

An interesting property of the DEFL algorithm is
that unlike most PCA and ICA denoising schemes, the

data dimensionality is preserved. Moreover, due to the

denoising block between the linear projection stages, it
overall performs as a nonlinear filtering scheme, which

can deal with full-rank and even non-additive mix-

tures. Apparently, the method is only applicable when

prior information about the signal/noise subspaces is
available and the maternal ECG is normal (pseudo-

periodic). In previous studies, this algorithm has been

used for various applications [13,21–23]. Despite its vast

range of applications, the block-wise nature of the al-

gorithm has limited its application to batch processing.
In this work, an online extension of DEFL is presented.

3.2 Incremental common spatial pattern

Common spatial pattern (CSP) has found vast appli-

cations in machine learning and signal processing in
the recent decade. It has been widely used in biomed-

ical applications such as brain computer interface [24].

From an algebraic viewpoint, CSP consists of finding a
matrix W, which jointly diagonalizes two matrices (Rl

and Rc) using GEVD.

An online extension of CSP, known as incremental

common spatial pattern (ICSP), has also been devel-

oped for time-varying matrices Rl(t) and Rc(t) [16]. In
ICSP, the sample-wise update of the first spatial pat-

tern is as follows:

w1(t) =
wT

1 (t− 1)Rc(t)w1(t− 1)

wT
1 (t− 1)Rl(t)w1(t− 1)

R−1
c (t)Rl(t)w1(t−1)

(5)

The minor patterns are found by repeating (5), after

applying a deflation procedure on Rl:

Rl ←

[

IN −
Rlw1wT

1

wT
1 Rlw1

]

Rl (6)

In Section 4, this recursive update algorithm is inte-

grated in the πCA algorithm to develop an online ex-
tension of DEFL.

4 Method

Herein, an online extension of DEFL, which we coin

as online denoising by deflation (ODEFL) is proposed

for mECG cancellation. The overall block-diagram of
ODEFL is summarized in Algorithm 1. In this al-

gorithm, x(t) is the input multi-channel data, yi(t)

(1 ≤ i ≤ K) is the output of each iteration, K is the
number of iterations, T is the number of samples, and

Gi(·, L) is the denoising function for removing the un-

desired parts1, applied to the first L channels in itera-
tion i.

In Algorithm 1, unlike DEFL, which works on a
block of data, ODEFL proceeds sample-by-sample in

parallel units corresponding to the successive iterations

1 Note that for mixtures of signals with different origins and
temporal characteristics, the projection (and back-projection)
algorithms and the denoising scheme can generally be cus-
tomized for each iterations, which is beyond the scope of the
current study.
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of the deflation algorithm. In ODEFL, the matrix W

is recursively updated from one sample to another and
all stages of DEFL are repeated on a sample-wise basis

in each iteration. The major stages of Algorithm 1 are

detailed below.

4.1 Online estimation of covariance matrices for πCA

For an online formulation, the signal statistics con-

tained in C and Cτ , should be tracked in time. In order

to re-estimate them as the signal evolves, the temporal
averaging in the definitions of C and Cτ can be replaced

with a weighted sum as follows [25]:

C(t) =

t−1
∑

i=0

βix(t− i)xT (t− i)

Cτ (t) =
t−1
∑

i=0

γix(t− i)xT (t− i + τt−i)

(7)

where β ∈ [0, 1] and γ ∈ [0, 1] are forgetting factors.
This is an infinite impulse response (IIR) formulation,

in which all samples in the range 1 ≤ i ≤ t contribute

in estimating the covariance matrices; but with smaller
weights to the older samples2.

The weighted sum in (7) can be replaced with the

following recursion formulas, in favor of computational
and memory efficiency:

C(t) = βC(t− 1) + x(t)xT (t)

Cτ (t) = γCτ (t− 1) + x(t)xT (t + τt)
(8)

The forgetting factors enable the adaptation of the algo-

rithm in stationary and non-stationary environments.
For stationary data, selecting β = γ = 1 incorpo-

rates all the samples with identical weights. For non-

stationary data, the value is chosen less than 1, which
for t� 1 is similar to using a sliding window with the

effective window length of 1/(1− β) [25].

In order to guarantee the symmetry of C and Cτ (to
have real generalized eigenvalues extracted by GEVD),

the following update is applied after re-estimation of

the second order statistics.

C(t)←
C(t) + CT (t)

2
, Cτ (t)←

Cτ (t) + CT
τ (t)

2
(9)

4.2 Online demixing matrix update

In order to obtain an online solution for the GEVD
problem in (3) and (4), the time-varying covariance

2 For other applications, one might prefer a finite impulse
response (FIR) form, in which the samples do not have any
effect beyond a finite window length.

matrix updates are integrated into the online update

formula (5) as follows.

w1(t) =
wT

1 (t− 1)Cτ (t)w1(t− 1)

wT
1 (t− 1)C(t)w1(t− 1)

C−1
τ (t)C(t)w1(t−1)

(10)

where w1(t) is the the first generalized eigenvector cor-

responding to the largest generalized eigenvalue at time

index t. As noted in Section 3.2, the other minor eigen-
vectors are computed in a sequential (deflation) man-

ner [16].

As shown in Step 11 of Algorithm 1, in order to

reduce the computational complexity of the matrix in-

version required in (10), C−1
τ (t) is recursively calculated

by applying the matrix inversion lemma to the sample-

wise covariance matrix update in (8).

It should be noted that since the online πCA al-

gorithm requires the R-peak locations for calculating

Cτ (t), the update of this matrix has a minimum de-
lay of one ECG beat, which can be fixed to the longest

expected mECG beat gap (e.g., 1.2 s). Therefore, the

ODEFL output has a fixed delay with its input (of the
order of a second), which is acceptable for fECG ex-

traction.

4.3 Real-time implementation

The parallel structure of Algorithm 1 is specifically ap-

pealing for real-time applications. The algorithm can

be efficiently implemented using reconfigurable hard-
ware architectures, such as field-programmable gate ar-

rays (FPGA), or using real-time processors, embedded

systems or graphics processing units (GPU). For FPGA
implementations, the iteration over K is converted into

K parallel units (known as modules). For software im-

plementations (e.g. using GPU), parallelization tech-

niques such as loop unrolling can be used to implement
the algorithm concurrently on K parallel processors.

In either case, the iteration over time (t) is performed

sample-by-sample as the data flows into the processor
in real-time, with a single sample dependency to sample

t− 1.

As later noted in Section 7.4, for real-time imple-

mentations (either on FPGA, embedded systems or

GPU), the number of iterations K and the number of
denoised channels L can be fixed to predefined values

to obtain clock-wise accuracy and a constant processing

load over time and processing units.
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Algorithm 1 Online denoising by deflation (ODEFL)

1: x1(t)← x(t) . Initialize with the input data
2: for i = 1, . . . , K do . In each of the parallel stages of ODEFL
3: Ci(0)← IN . Initialize with identity (or random unitary) matrices
4: Cτ,i(0)← IN

5: Wi(0) = [wi1(0), . . . , wiN (0)]← IN

6: for t = 1, . . . , T do . Repeat for all samples of the data
7: Ci(t)← βCi(t− 1) + xi(t)xi(t)

T . Covariance matrix update

8: Cτ,i(t)← γCτ,i(t− 1) + xi(t)xi(t + τt)
T . Lagged covariance matrix update

9: Ci(t)← [Ci(t) + Ci(t)
T ]/2 . Covariance matrix symmetrization

10: Cτ,i(t)← [Cτ,i(t) + Cτ,i(t)
T ]/2 . Lagged covariance matrix symmetrization

11: C
−1

τ,i (t)← γ−1
C

−1

τ,i (t− 1)−
γ−1C−1

τ,i (t− 1)xi(t)xi(t + τt)
T C−1

τ,i (t− 1)

γ + xi(t)T C−1

τ,i (t− 1)xi(t + τt)
. Matrix inversion lemma

12: C̃← Ci(t)
13: for j = 1, . . . , N do . Perform Online GEVD of (C̃, Cτ (t)) over all channels

14: wij(t)←
wT

ij(t− 1)Cτ,i(t)wij(t− 1)

wT
ij(t− 1)C̃wij(t− 1)

C
−1

τ,i (t)C̃wij(t− 1) . Incremental CSP update

15: wij(t)← wij(t)/‖wij(t)‖ . Normalization

16: C̃←

[

IN −
C̃wijwT

ij

wT
ijC̃wij

]

C̃ . Deflation procedure

17: end for

18: Wi(t) = [wi1(t), . . . , wiN (t)]

19: s(t)←W
T
i (t)xi(t) . Go to transform space

20: Estimate L . The number of effective mECG dimensions
21: s̃(t)← Gi(s(t), L) . Apply denoising operator over the first L channels

22: yi(t)←W
−T
i (t)s̃(t) . Return to original space

23: xi+1(t)← yi(t) . Use output as input for next stage
24: end for

25: end for

5 Benchmark algorithms

The proposed algorithm has been evaluated on both
real and synthetic data and compared with the block-

wise DEFL [13], single-channel ECG Kalman Filter

[8–10], standard ANC [3], a modified multistage ANC
[5], template subtraction [7], ICA denoising [11] and a

single-channel wavelet denoiser. In this section, the de-

tails of the benchmark methods used for evaluation are
reviewed.

5.1 Kalman filter

The Kalman filter (KF) and its nonlinear version, the

extended Kalman filter (EKF), are methods for esti-
mating hidden states of a system, having its dynamics

and a set of observations. In the past decade, this fil-

ter has been adapted for estimating ECG signals from

noisy measurements and other applications [8–10]. In
summary, using a polar extension of the morphological

ECG model proposed by McSharry et al. [26], the fol-

lowing state space and observation models have been

used as the ECG dynamic model [8–10]:











θk+1 = (θk + ωδ) mod 2π

zk+1 = zk −
∑

i

δ
αiω

b2
i

∆θi exp[−
∆θ2

i

2b2
i

] + η (11)

{

sk = zk + vk

φk = θk + uk
(12)

where ∆θi = (θk − θi) mod 2π, δ is the sampling pe-
riod, η is an additive noise, and the summation is taken

over finite number of Gaussian waveforms used for mod-

eling P, Q, R, S and T waves with amplitude, center and

width parameters αi, θi and bi, respectively. The vari-
able zk, the amplitude of the noiseless ECG at time

instant k, and θ (known as the cardiac phase), are as-

sumed as state variables for this model. The parameters
θi, ω, αi, bi and η are i.i.d Gaussian random variables

considered as process noise vectors. In the observation

equations, sk and φk are amplitude and phase of the
noisy observation ECG and vk and uk are observation

noise vectors of the ECG and its phase.

Using an EKF, the ECG signal zk can be estimated
from the background noise vk [9,10]. For our application

of interest, zk is the maternal ECG, which should be

estimated and removed from the maternal abdominal
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sensors. Further details can be found at [9, 10]. The

required source codes are online available at [27].

5.2 Adaptive noise cancellation

Adaptive noise cancellation (ANC) is a well-known
method for online signal denoising developed by

Widrow et al. [3]. Standard ANC consists of a primary

input that is the corrupted signal and a reference input

containing the noise that is correlated with the primary

noise. The weights of the filter adaptively change over

time to retrieve an estimate of the noise and the weight

update algorithm depends on the defined cost function.
By subtracting the filter output (noise estimate) from

the primary input, the primary signal is estimated and

the corrupted signal is denoised.
For mECG cancellation, the reference input is ob-

tained by a mECG channel recorded directly from the

maternal chest. The primary input is obtained by ma-
ternal abdomen recordings containing both maternal

and fetal ECG.

For multichannel recordings, the ANC is applied to

each channel separately. As discussed in [10], the draw-
back of conventional ANC for ECG denoising is that the

reference ECG should be morphologically similar to the

contaminating ECG. However, since the ECG morphol-
ogy highly depends on the lead position, the mECG

contaminating the maternal abdominal leads do not

necessarily resemble the chest lead ECG morphology.
As a result, the performance of this method widely dif-

fers from one channel to another, which leads to a weak

overall performance over all channels, as compared to

other methods. Nonetheless, the method remains as a
well-know benchmark for mECG cancellation.

More rigorously, considering n(t) as the mECG, s(t)

as the non-mECG (fECG plus background signals),
d(t) = s(t) + n(t) as the noisy observations, x(t) as

the reference mECG, and w = [w0, . . . , wp−1]T as the

weight coefficient of length p, using a least mean squares

(LMS) algorithm, the output of an ANC is obtained

from Algorithm 2.

Algorithm 2 Adaptive noise cancelation (ANC) algo-

rithm
1: for t = 1→ T do

2: x(t) = [x(t), x(t− 1), . . . , x(t− p + 1)]T

3: n̂(t) = wT x(t)
4: ŝ(t) = d(t)− n̂(t)
5: w(t + 1) = w(t) + 2µŝ(t)x(t)
6: end for

In Algorithm 2, T is the number of data samples,

n̂(t) and ŝ(t) are estimates of primary noise and pri-

mary signal, respectively. The parameter µ is a step

size that controls the filter stability and convergence
rate and should be in the range [0, λmax], where λmax

is the greatest eigenvalue of the covariance matrix R =

E
{

x(t)x(t)T
}

[28, Ch. 9].

More recently, other extensions of the ANC have

also been introduced for fECG extraction. One of the

extensions that is used in this study for comparison is
a multistage ANC [5]. The modified ANC consists of

two sequential adaptive filters, which enables the ap-

plication of different adaptive algorithms such as LMS,
recursive least squares (RLS) and normalized least mean

square (NLMS) in a single filter. Another aspect of this

method is that the primary and reference inputs are
applied to the algorithm after a sequence of operations

such as squaring and/or rescaling to increase reliabil-

ity of the algorithm to situations in which the maternal

ECG in the primary input is not quite similar to the
reference input. Further details regarding this filtering

scheme can be followed from [5].

5.3 ICA-based BSS and denoising

ICA-based BSS was first used in [11] for fECG extrac-

tion from maternal abdominal sensors. This method ex-

ploits the statistical independence and spatial diversity
of the sources (here the maternal and fetal heart sig-

nals plus noises), for separating fECG from other sig-

nals. In classical ICA, it is assumed that the observed

signals x(t) ∈ R
N are linear mixtures of N independent

sources s(t) ∈ R
N :

x(t) = A(t)s(t) (13)

in which the mixing matrix A(t) ∈ R
N×N models the

propagation media and s(t) contains the source signals.
ICA methods are used to find the separating matrix

B(t) such that ŝ(t) = B(t)x(t) is an estimate of the

sources and Â(t) = B−1(t) is an estimate of the mixing
matrix. Among the different ICA algorithms, the joint

diagonalization of eigenmatrices (JADE) [29], is used

in this work as a benchmark.

In fECG applications, due to the multidimensional

nature of the sources, source signals are categorized

into sets of multichannel components including mECG,
fECG and noise subspaces as described in multidi-

mensional ICA (MICA) [29] and blind source sub-

space separation (BSSS) [30] schemes. Suppose that

ŝf (t) = [ŝf1
(t), . . . , ŝfM

(t)] represents M -dimensional
fetal components and the remaining components of

ŝ(t) include mECG and noises. Accordingly, the cor-

responding columns of the mixing matrix are stored in
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Âf (t) = [âf1
, . . . , âfM

] ∈ R
N×M . As a result, the con-

tribution of the fetal signals in the observation signals
is obtained as follows:

x̂f (t) = Âf (t)̂sf (t) (14)

in which x̂f (t) is the extracted fECG signal in the orig-

inal domain. A known drawback of conventional ICA

is that they cannot preserve the order, sign and ampli-
tude of the sources [31]. Therefore, for automatic appli-

cations, reliable source type detection and block-wise

sign/amplitude correction is required to identify and

correct the fECG sources among the other extracted
components. In practice, due to the rather structured

morphology of the ECG, the significant amplitude of

the mECG compared to the fECG and accessible of
prior information about the mECG (from maternal

chest leads), the mECG signals can be systematically

identified in the transformed space. In this work, we de-
tect mECG signals using a channel assessment criteria

based on maternal R-peaks.

6 Evaluation

Both synthetic and real data are used for qualitative
and quantitative evaluation of the proposed method.

The details of both datasets are presented in this sec-

tion.

6.1 Real data

The widely used DaISy fECG dataset, shown in
Fig. 6(a) is used for evaluation [32]. This dataset con-

sists of five abdominal and three thoracic channels,

recorded from the abdomen and chest of a pregnant
woman, with a sampling rate of 250 Hz.

6.2 Synthetic ECG generation

Synthetic maternal and fetal ECG mixtures are gen-

erated using a realistic model adopted from the open-

source electrophysiological toolbox (OSET) [18,27]:

x(t) = Hm(t)sm(t) + Hf (t)sf (t) + Hη(t)v(t) + n(t)

∆
= xm(t) + xf (t) + η(t) + n(t)

(15)

This model is based on the single dipole model of the

heart, which assumes three geometrically orthogonal

lead pairs, known as the Frank lead electrodes, or the

vectorcardiogram (VCG), and a linear propagation me-

dia for the body volume conductor to map the three di-
mensions to body-surface potentials, using a Dower-like

transformation [33]. Although the single dipole model is

only an approximation of the true cardiac activity [19],
the model was found to be accurate enough for the

hereby presented study, as it has all the required spatio-

temporal features of the ECG.
Based on this model, we generate three-dimensional

sm(t) and sf (t), representing the ECG signal of ma-

ternal and fetus hearts respectively, using a three-

dimensional VCG. The ECG sources are then mapped
to twelve body surface channels using the Hm(t) and

Hf (t) matrices, which model the propagation media. As

a result, both maternal and fetal ECG are distributed
in all body surface ECG channels; but with only three

underlying dimensions. A realistic full-rank noise with

a desired SNR is also added to the signal using the idea
proposed in [18]. Using this model, 10000 samples (20 s)

of twelve lead synthetic maternal/fetal ECG mixtures

were generated at a sampling rate of 500 Hz, for evalu-

ation.

6.3 Quantitative measures

After applying the denoising procedure, various mea-

sures can be used to evaluate the effectiveness of mECG
cancellation algorithm, which we detail below.

6.3.1 Signal-to-noise and signal-to-interference ratios

Following (1), consider x(t) as the noisy input obser-

vations, xf (t) as the fECG signal, xm(t) as maternal
interference and η(t) + n(t) as noise for the fECG. The

total interference plus noise for the fECG is

I(t) = xm(t) + η(t) + n(t) (16)

and the overall fetal signal-to-interference-plus-noise

ratio (SINR) is defined [13]:

SINR
∆
= 10 log





tr
(

E{xf (t)xT
f (t)}

)

tr (E{I(t)IT (t)})



 (17)

SINR can be used to quantify the data quality before

denoising. For synthetic data, the SINR can be set to
arbitrary ratios by scaling the mixing matrices Hm(t),

Hf (t), Hη(t) and the noise variances in (1) by appro-

priate factors (cf. [13] for further details).

In order to assess the mECG cancellation quality, we
additionally define the signal-plus-noise-to-interference

ratio (SIR)

SIR
∆
= 10 log

(

tr
(

E{xs(t)xT
s (t)}

)

tr (E{x̂m(t)x̂T
m(t)})

)

(18)
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where xs(t)
∆
= xf (t) + η(t) + n(t) is the summation of

all non-mECG components, which we call the mECG

complement. x̂m(t) is the mECG (noise) residue in the
mECG canceler’s output:

x̂m(t) = y(t)− xs(t) (19)

and y(t) denotes the denoised signal. Since the objective
of the proposed method is to remove mECG, in an ideal

mECG canceler, y(t) should be equal to xs(t). In the

later presented results, SIR improvement is defined as
the output SIR minus the input SIR in dB. Therefore,

SIR improvement is a measure of mECG cancellation

in dB.

6.3.2 Periodicity measure

The most dominant characteristic of the ECG is its

pseudo-periodicity. We define the ECG periodicity mea-

sure (PM) as follows

PM
∆
=

∣

∣

∣

∣

∣

tr
(

E{y(t)yT (t + τt)}
)

tr (E{y(t)yT (t)})

∣

∣

∣

∣

∣

× 100 (20)

The PM, measures the amount of periodicity of de-

noised data according to the period of a reference ECG.

By definition, 0 ≤ PM ≤ 100 (PM = 0 for fully ape-
riodic signals and PM = 100 for a fully periodic sig-

nal). By computing the PM for mECG, it indicates the

amount of mECG components that still exists in the

output of the denoiser. It should be noted that the re-
duction of PM is only a necessary— but not sufficient—

measure for the algorithm success; since the PM might

decrease due to an increase of noise or at a cost of losing
the fECG. Therefore, a compliment measure is required,

which assures the fidelity of the remaining components.

This measure is proposed in what follows.

6.3.3 Similarity measure

The similarity measure (SM) is defined as a comple-

ment for the PM:

SM
∆
=

∣

∣tr
(

E{y(t)xT
s (t)}

)∣

∣

√

tr (E{y(t)yT (t)}) tr (E{xs(t)xT
s (t)})

(21)

SM is the correlation coefficient between the denoised

data and the original signal components, xs(t). By def-
inition 0 ≤ SM ≤ 1. A SM value close to 1 indicates

that the algorithm has preserved the non-mECG com-

ponents (including the fECG) in its output.

7 Parameter selection

All the algorithms used for comparison have parameters

that require optimization. The details of the parameter

selection is studied in this section.

7.1 Extended Kalman filter parameters

For estimating the parameters of the Gaussian kernels
used in the extended Kalman filter, the ensemble aver-

age of the mECG are extracted as a single beat average

template. Next, the parameters are estimated by apply-
ing a nonlinear least squares error algorithm to fit the

ECG template, using open-source packages available in

OSET [27]. The other parameters and covariance ma-

trices are initialized following the methods developed
in [10].

7.2 ANC parameters

The standard ANC and the modified multistage ANC

are implemented using a 5-tap FIR filter (20 ms window

length at a 250 Hz sampling frequency) with a step
size equal to µ = 10−6. Both parameters were found as

the optimal values, by searching over a grid of possible

values in varying SINR. The maternal ECG reference,
required for the ANC is selected directly from xm(t) in

equation (15) during the generation of synthetic data.

Since xm(t) is a pure mECG without other noise and

interferences, each of its channels can play the role of
the chest lead ECG required as reference.

7.3 Wavelet parameters

In [10, 34], a comprehensive study has been reported

on more than 7000 combinations of wavelet parame-

ters for ECG denoising. Herein, based on these studies,
the Coiflets3 mother wavelet with six levels of signal

decomposition, using the Stein’s unbiased risk estimate

(SURE) shrinkage rule, single level rescaling and a soft
thresholding strategy is used as the optimal denoising

setup for the wavelet-based ECG denoiser (cf. [10, 34]

for a detailed discussion).

7.4 DEFL and ODEFL parameters

The optimum number of iterations, K, the number of

channels to be denoised in each iteration, L, and the
strategy used for denoising are critical (and application-

dependent) issues that highly influence the performance

of DEFL and ODEFL. The parameter K, provides the
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capability of eliminating full-rank and possibly nonlin-

early superposed noise, which is beyond the capabilities
of conventional ICA techniques. The parameter L, may

be considered as the effective number of dimensions of

the signal and noise subspaces.

For typical software-based implementations, the pa-

rameters K and L can be dynamically optimized using

signal-dependent measures calculated online. This re-
sults in variable values for these parameters depending

on the signal quality and the ECG channels used dur-

ing data collection. On the other hand, for clock-wise

accurate software implementations (e.g. real-time em-
bedded systems) or parallel hardware implementations

(e.g. using FPGA), fixed values of K and L are pre-

ferred.

The denoising function G(·, ·), used for signal and

noise subspace separation, also influences the overall

performance of both DEFL and ODEFL. In practice,
all of these parameters should be tuned according to

the application.

Herein, a Monte Carlo simulation was carried out to

investigate the sensitivity of DEFL and ODEFL algo-
rithms, with respect to the denoising function and the

values of L and K. The performance was investigated

using 700 simulated data, generated according to the
scheme in Section 6.2, in different input SINRs, in the

range of –35 dB to –5 dB in 5 dB steps. Fig. 2 shows

the average SIR improvements versus K and L using
four denoising strategies G(·, ·). In the first strategy,

which we call blanking DEFL, the first L channels of

s(t) are simply set to zero (similar to hard-thresholding

in wavelet denoising). In the second strategy, wavelet
denoising was used as the denoiser using the optimal pa-

rameters explained in Section 7.3. In the third strategy,

the single-channel extended Kalman filtering scheme
proposed in [9,10] is used as the denoiser. In the fourth

strategy, the single-channel template subtraction tech-

nique proposed in [7] is used as the denoiser.

The results of optimizing the parameters of all
methods are shown in Fig. 3. In Fig. 3(a), the SIR im-

provement versus different SINRs is calculated for the

best values of K and L parameters. In Fig. 3(b), the av-
erage SIR improvement over the average of the whole

values of K and L in the range of studied parameters

is calculated versus different SINRs.

According to Figs. 2 and 3(a), by setting appro-

priate values for L and K, blanking DEFL has better

performance as compared to wavelet, template subtrac-

tion and Kalman denoising strategies, which is due to
the fact that when the signal space dimensions are ob-

tained, the algorithm completely removes all the noise

space dimensions while it leaves the signal unchanged.
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Fig. 3 SIR improvement versus SINR using four denoising
strategies

In practice, the appropriate value of K can be esti-

mated using some termination criterion such as the PM

criterion. The optimal value of L can also be calculated
using related methods for estimating the signal/noise

dimensionality [35,36]. For non-stationary data, K and

L can also be updated in time3. According to Fig. 3,

although blanking DEFL performs best for the suitable
parameters, it is sensitive to the proper choice of K

and L and its performance highly degrades in case of

inappropriate parameters. On the other hand, wavelet
denoiser, template subtraction and Kalman denoising

strategies are more robust to the choice of parameters;

since increasing K and L beyond their optimal values
does not significantly degrade the SIR improvements.

As a result, using denoising methods such as wavelets,

template subtraction or Kalman filter in DEFL, instead

of banking DEFL are more appropriate in practice.

From Fig. 3 it is also seen that the Kalman filter out-

performs template subtraction and wavelet denoiser in

3 According to our empirical results, for ECG signals, the
update should be done over long temporal windows (tens of
seconds and above) rather than short windows; otherwise the
performance degrades.
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(a) Blanking DEFL (b) DEFL using wavelet

(c) DEFL using template subtraction (d) DEFL using Kalman

Fig. 2 Sensitivity of the SIR improvement versus K and L parameters in four denoising schemes

terms of SIR improvement and robustness to its param-

eters. This result was anticipated, as the Kalman filter
is a model-based approach, which benefits from prior

knowledge of the signal. Besides, as compared to tem-

plate subtraction, the Kalman filter performance relies
on both the model and the observation, which makes it

effectively adaptive to different SNR scenarios. Never-

theless, the necessity of a signal model is a limitation of
this method in practice as compared to the non model-

based methods. In what follows, for simplicity, the first

denoising strategy (blanking the first L components)

with K=1 and L=3 are used for evaluation of both
DEFL and ODEFL algorithms.

The other parameters of ODEFL are the forgetting

factors β and γ. These factors should be chosen accord-
ing to the degree of data (non-)stationarity within the

range [0,1]. In the studied database, the ECG signal and

noise were both stationary. Hence, we chose β = γ=1,
i.e., the algorithm does not forget the old samples.

7.5 ICA denoising parameters

The free parameter in ICA denoising is the number of

mECG components (effective number of mECG dimen-

sions) that should be removed after the source separa-

tion stage. For synthetic data, according to our prior
knowledge, sm(t) is three-dimensional. Therefore, we

set L=3. For real data, this choice was also empirically

found to be the optimal value for the studied dataset,
in order to eliminate the most dominant components of

the mECG. In general, the number of mECG channels

can be adaptively obtained during the denoising process
by morphological similarity (the PM measure defined in

20), or by using the notion of effective number of dimen-

sions [23]. In this work, the mECG identification for

both real and synthetic data is accomplished by com-
puting the similarity measure defined in (21) between

the maternal reference signal (chest lead ECG) and the

different source channels extracted by ICA. The top L
channels having the highest correlations are selected as

the mECG components. These channels are set to zero

and the remaining channels are back-projected to the
original subspace. This strategy is rather similar to a

single stage of the DEFL algorithm.
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8 Results

8.1 Simulated data

The simulated data generation procedure was discussed

in Section 6.2. For visual inspection, a typical 20 s

length synthetic ECG with SINR of –20 dB, along with
the corresponding denoised output (mECG removal) is

shown in Fig. 4. It can be seen that the mECG is dis-

tributed in all the simulated channels. The denoised

output indicates that the maternal ECG is removed in
almost all channels without affecting the fetal ECG.

The first 500 samples (1 s) of the denoised data, show

the transient effect of the filter. The filter has reached
steady state after this period.

For a quantitative evaluation, the proposed algo-

rithm was compared with the benchmark methods us-

ing 1000 different ensembles of simulated data and
noise, in different input SINRs. The average and stan-

dard deviation of SIR improvements, PM, and SM are

shown in Fig. 5. Accordingly, DEFL outperforms all

methods and is only slightly better than the ODEFL.
The outperformance of DEFL as compared to ODEFL

is reasonable, due to the offline (non-causal) and exact

calculation of the covariance matrices used in DEFL.
However, the difference is negligible as compared to

the advantages of ODEFL for online and nonstation-

ary applications. As shown, DEFL and ODEFL, which
are based on prior knowledge of the ECG periodicity

have outperformed ICA. This is due to the fact that

DEFL and ODEFL can deal with situations that ICA

assumptions are not satisfied. In fact, ICA algorithms
despite their vast and effective applications have some

intrinsic ambiguities due to their simplified assump-

tions. Typically, it is assumed that the number of in-
dependent sources is fixed and equal to the number of

sensors. The signal mixture is considered instantaneous

and time-invariant. However, these assumptions are not
necessarily satisfied in practice. As a result, the perfor-

mance of ICA degrades in presence of full-rank Gaus-

sian noise and correlated/distributed sources [15], re-

sulting in residual mECG within the fECG. Moreover,
the ranking property of DEFL and ODEFL (contrary

to the permutation ambiguity of ICA) helps the reli-

able and automatic detection of fECG/mECG signals
in long recordings [15]; while for ICA it is necessary to

have robust source identification methods, which iden-

tify the mECG among others components.

Overall, DEFL, ODEFL and ICA denoising outper-

form the other benchmarks, in both low and high SNR
scenarios. This can be due to the fact that the ANC,

wavelet, template subtraction and Kalman filtering

schemes are all single-channel, while DEFL, ODEFL
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Fig. 5 (Top) SIR improvement, (middle) PM and (bottom)
SM versus input SINRs. The PM and SM of DEFL and ODEFL
have overlapped.

and ICA benefit from the spatial information within

multiple channels to obtain higher SNR.

Among the single-channel methods, the perfor-
mance of Kalman filter and template subtraction is sim-

ilar in low SNR and outperforms other single-channel

methods; while in high SNR the Kalman filter has su-
perior performance. The reason is that depending on

the signal quality, the Kalman filter dynamically tends

towards the observations or the system’s prior dynam-
ics; i.e., when the data is too noisy, the Kalman filter

tracks the prior dynamic model rather than relying on

the observation. Therefore, in low SNR, the Kalman fil-

ter performance is identical to template subtraction. On
the other hand, in high SNR the Kalman filter benefits

from the information within the observations, making

it better than template subtraction.
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Fig. 4 A sample of synthetic ECG with -20 dB SINR and 20 s length (a) before and (b) after mECG removal. The peaks remaining
after mECG removal are the fECG plus background noise.
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Fig. 6 DaISy dataset (a) before and (b) after mECG removal. The peaks remaining after mECG removal are the fECG plus
background noise. Due to the sequential structure of ODEFL, the algorithm converges slower in the last channels.

The low performance of ANC, as mentioned be-

fore, can be related to the fact that the reference sig-

nal used in ANC (here the chest lead mECG) does not

necessarily resemble the morphology of the mECG su-
perposed over the abdominal leads, which significantly

downgrades its performance.

8.2 Real data

The results of ODEFL on the DaIsy dataset are shown

in Fig. 6. It is seen that after about 4 samples (160 ms),

the algorithm has converged and the mECG is almost

completely removed in the first channel; but it takes
up to 500 samples (2 s) for all channels to converge.

This is due to the sequential nature of the proposed

ODEFL algorithm. Fig. 7 shows a closer view of the

results over two successive ECG beats. It is seen that

DEFL and ODEFL outperform the ANC, template sub-

traction, Kalman filter and ICA denoising. While DEFL

and ODEFL have effectively removed the mECG, other
methods have left some residual mECG or removed

parts of the fECG.

For numerical evaluation of the proposed method on

real data, we synthetically manipulate the real DaISy

abdominal signals as follows [13]:

x(t) = G[x0(t) + Λv(t)] (22)

where x0(t) is the original real data in Fig. 6, v(t) is

Gaussian white noise, Λ = diag(λ1, . . . , λN ) is a di-
agonal matrix, which controls the per channel SNR,

G ∈ R
N×N is an arbitrary non-singular random ma-

trix and x(t) is the new noisy signal. The signal x(t) is
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Fig. 7 A typical data segment before (gray plots) and after (black plots) mECG cancellation. It is observed that the mECG is
completely removed in DEFL and ODEFL methods with minimal effect on the fECG.
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Fig. 8 Output maternal PM and overall PM versus SNR in presence of additive noise

generated in three different input SNR: 30 dB, 20 dB

and 10 dB, by changing the entries of Λ. The proposed
method is then applied to x(t) by selecting L=3 and

K=2. The algorithm is repeated over 1000 trials us-

ing different instances of v(t) and G in each trial. The

PM was defined in (20) as a measure of algorithm per-
formance in mECG cancellation. But as noted before,

the PM should be studied together with the fECG pre-

serving indexes, to assert the overall algorithm perfor-
mance. For this we define the overall periodicity mea-

sure (OPM):

OPM
∆
= fPM−mPM (23)

where mPM and fPM are maternal and fetal PM, re-
spectively. Accordingly, −100 ≤ OPM ≤ 100, where

higher values of OPM are an indication of algorithm

success in simultaneously removing the mECG and pre-

serving the fECG. The average and standard deviation
of the mPM and OPM are shown in Fig. 8 for the pro-

posed and benchmark methods. We can see that the

results on real data follow the same trend and order
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as the synthetic data results. The only exception is the

ICA denoiser, which has inferior results for real data.
This might be due to the fact that for real noisy data,

mECG identification and estimation of L is difficult,

resulting in a degraded performance.

9 Conclusion

In this paper, an online version of an iterative subspace
denoising procedure proposed in [13] was presented

for removing maternal ECG from noninvasive signals

recorded from the abdomen of a pregnant woman. The
proposed method is rather generic and may be ap-

plied to other blind and semi-blind source separation

applications, in which the signal and noise mixtures

are not separable using conventional source separation
and denoising techniques. It was shown that the pro-

posed method outperforms the state of the art single

channel denoising techniques, while it marginally per-
forms as good as its offline version. It was further shown

that DEFL and ODEFL algorithms which are based

on the GEVD of only two second-order matrices, out-
perform classical ICA, which use more than two ma-

trices containing the higher-order statistics of the ob-

servations. The outperformance can be related to the

fact that DEFL and ODEFL can deal with situations
in which some of the underlying assumptions of ICA

are not satisfied. Moreover, DEFL and ODEFL bene-

fit from the ranking property of GEVD for mECG de-
tection; while ICA suffers from permutation and sign

ambiguities, which require the utilization of a robust

mECG identifier. As a result, the proposed method is
less complicated and more reliable for long datasets, as

compared with batch ICA techniques.

The performance of ODEFL was investigated with

different sets of parameters using different denoising

strategies including simple blanking, wavelet denoising,
template subtraction and Kalman denoising.

According to the hereby presented results and the
former experiments reported in [10], we conclude that

for single channel data, the Kalman filter outperforms

other ECG denoising schemes in different SINR sce-
narios, while the DEFL and ODEFL algorithms are

better for multichannel data as they use inter-channel

correlations, without having the mixing matrix of the
data. Therefore, in future studies, the combination of

the Kalman denoiser and ODEFL may result in supe-

rior results. Introducing an online method for automatic

calculation of the algorithm parameters L, K, β and
γ is also an interesting extension to the current work,

which was partially studied in [23]; but requires further

investigation in future studies.

The performance of ODEFL is influenced by sev-

eral parameters including the method used for online
GEVD. In future studies, other online GEVD algo-

rithms can be compared with incremental common spa-

tial pattern, used in this work. Moreover, theoretical
aspects of online GEVD and the convergence of DEFL

and ODEFL should also be considered. A symmetric

extension of the method for avoiding the problems of
sequential source separation and error propagation is

also interesting for practical applications.

In recent studies, the problem of fetal motion track-

ing using noninvasive ECG recordings has found signif-
icant interests [37]. In future studies, the hereby pro-

posed techniques can be combined with these devel-

opments to obtain a unified fetal ECG extraction and
motion tracking algorithm.

References

1. R. Sameni and G. D. Clifford, “A Review of Fetal ECG Sig-
nal Processing; Issues and Promising Directions,” The Open
Pacing, Electrophysiology & Therapy Journal (TOPETJ),
vol. 3, pp. 4–20, November 2010.

2. P. Bergveld and W. J. H. Meijer, “A New Technique for
the Suppression of the MECG,” Biomedical Engineering,
IEEE Transactions on, vol. BME-28, no. 4, pp. 348–354,
April 1981.

3. B. Widrow, J. Glover, J. McCool, J. Kaunitz, C. Williams,
H. Hearn, J. Zeidler, E. Dong, and R. Goodlin, “Adap-
tive Noise Cancelling: Principles and Applications,” Proc.
IEEE, vol. 63, no. 12, pp. 1692–1716, 1975.

4. P. Strobach, K. Abraham-Fuchs, and W. Harer, “Event-
synchronous cancellation of the heart interference in
biomedical signals,” Biomedical Engineering, IEEE Trans-
actions on, vol. 41, no. 4, pp. 343 –350, april 1994.

5. R. Swarnalath and D. V. Prasad, “A Novel Technique for
Extraction of FECG using Multi Stage Adaptive Filtering
,” Journal of Applied Sciences, vol. 10, no. 4, pp. 319–324,
2010.

6. M. Ungureanu and W. Wolf, “Basic aspects concerning the
event-synchronous interference canceller,” Biomedical En-
gineering, IEEE Transactions on, vol. 53, no. 11, pp. 2240
–2247, nov. 2006.

7. S. M. M. Martens, C. Rabotti, M. Mischi, and R. J. Slui-
jter, “A robust fetal ECG detection method for abdominal
recordings,” Physiol Meas, vol. 28, no. 4, pp. 373–388, Apr
2007.

8. R. Sameni, “Extraction of Fetal Cardiac Signals from an
Array of Maternal Abdominal Recordings,” Ph.D. disser-
tation, Sharif University of Technology – Institut National
Polytechnique de Grenoble, July 2008.

9. R. Sameni, M. B. Shamsollahi, and C. Jutten, “Model-
based Bayesian filtering of cardiac contaminants from
biomedical recordings,” Physiological Measurement, vol. 29,
no. 5, pp. 595–613, May 2008.

10. R. Sameni, M. B. Shamsollahi, C. Jutten, and G. D. Clif-
ford, “A Nonlinear Bayesian Filtering Framework for ECG
Denoising,” IEEE Trans. Biomed. Eng., vol. 54, no. 12, pp.
2172–2185, December 2007.

11. V. Zarzoso and A. Nandi, “Noninvasive fetal electrocar-
diogram extraction: blind separation versus adaptive noise



Online Subspace Denoising Algorithm for Maternal ECG Removal 15

cancellation,” Biomedical Engineering, IEEE Transactions
on, vol. 48, no. 1, pp. 12–18, January 2001.

12. D. Graupe, Y. Zhong, and M. H. Graupe, “Extracting fe-
tal from maternal ecg for early diagnosis: theoretical prob-
lems and solutions - baf and ica,” in Proceedings of the fifth
IASTED International Conference: biomedical engineering,
ser. BIEN ’07. Anaheim, CA, USA: ACTA Press, 2007,
pp. 352–356.

13. R. Sameni, C. Jutten, and M. B. Shamsollahi, “A Deflation
Procedure for Subspace Decomposition,” IEEE Transac-
tions on Signal Processing, vol. 58, no. 4, pp. 2363–2374,
April 2010.

14. R. Sameni, C. Jutten, M. Shamsollahi, and G. Clifford,
“Extraction of Fetal Cardiac Signals,” U.S. Patent US
2010/0 137 727 A1, June 3, 2010.

15. M. Fatemi, M. Niknazar, and R. Sameni, “A robust frame-
work for noninvasive extraction of fetal electrocardiogram
signals,” Computing in Cardiology Conference (CinC),
2013, pp. 201–204, Sept 2013.

16. Q. Zhao, L. Zhang, A. Cichocki, and J. Li, “Incremen-
tal Common Spatial Pattern algorithm for BCI,” in Neu-
ral Networks, 2008. IJCNN 2008. (IEEE World Congress
on Computational Intelligence). IEEE International Joint
Conference on, june 2008, pp. 2656 –2659.

17. D. B. Geselowitz, “On the Theory of the Electrocardio-
gram,” Proc. IEEE, vol. 77, pp. 857–876, Jun. 1989.

18. R. Sameni, G. D. Clifford, C. Jutten, and M. B. Sham-
sollahi, “Multichannel ECG and Noise Modeling: Appli-
cation to Maternal and Fetal ECG Signals,” EURASIP
Journal on Advances in Signal Processing, vol. 2007,
pp. Article ID 43 407, 14 pages, 2007, ISSN 1687-6172,
doi:10.1155/2007/43407.

19. R. Sameni, C. Jutten, and M. B. Shamsollahi, “What ICA
Provides for ECG Processing: Application to Noninvasive
Fetal ECG Extraction,” in Proc. of the International Sym-
posium on Signal Processing and Information Technology
(ISSPIT’06), Vancouver, Canada, August 2006, pp. 656–
661.

20. ——, “Multichannel Electrocardiogram Decomposition us-
ing Periodic Component Analysis,” IEEE Trans. Biomed.
Eng., vol. 55, no. 8, pp. 1935–1940, Aug 2008.

21. L. Amini, R. Sameni, C. Jutten, G. Hossein-Zadeh, and
H. Soltanian-Zadeh, “MR Artifact Reduction in the Si-
multaneous Acquisition of EEG and fMRI of Epileptic Pa-
tients,” in EUSIPCO2008 - 16th European Signal Process-
ing Conf., Lausanne, Switzerland, August 25-29 2008.

22. C. Gouy-Pailler, R. Sameni, M. Congedo, and C. Jutten,
“Iterative Subspace Decomposition for Ocular Artifact Re-
moval from EEG Recordings,” in Proc. of the 8th Intl. Conf.
on Independent Component (ICA 2009), Paraty, Brazil,
2009, pp. 419–426.

23. R. Sameni and C. Gouy-Pailler, “An Iterative Subspace
Denoising Algorithm for Removing Electroencephalogram
Ocular Artifacts,” Journal of Neuroscience Methods, vol.
225, no. 3, pp. 97–105, March 2014.

24. H. Ramoser, J. Muller-Gerking, and G. Pfurtscheller, “Op-
timal spatial filtering of single trial EEG during imagined
hand movement,” Rehabilitation Engineering, IEEE Trans-
actions on, vol. 8, no. 4, pp. 441–446, 2000.

25. B. Yang, “Projection approximation subspace tracking,”
Signal Processing, IEEE Transactions on, vol. 43, no. 1,
pp. 95 –107, jan 1995.

26. P. E. McSharry, G. D. Clifford, L. Tarassenko, and
L. A. Smith, “A Dynamic Model for Generating Synthetic
Electrocardiogram Signals,” IEEE Trans. Biomed. Eng.,
vol. 50, pp. 289–294, mar 2003.

27. R. Sameni, The Open-Source Electrophysiological Tool-
box (OSET), version 2.1, 2010. [Online]. Available:
http://www.oset.ir

28. S. Haykin, Adaptive filter theory, ser. Prentice-Hall infor-
mation and system sciences series. Prentice Hall, 1996.

29. J.-F. Cardoso, “Multidimensional independent component
analysis,” in Proceedings of the IEEE International Confer-
ence on Acoustics, Speech, and Signal Processing (ICASSP
’98), vol. 4, May 1998, pp. 1941–1944.

30. L. de Lathauwer, B. de Moor, and J. Vandewalle, “Fetal
electrocardiogram extraction by blind source subspace sep-
aration,” Biomedical Engineering, IEEE Transactions on,
vol. 47, no. 5, pp. 567 –572, may 2000.

31. A. Hyvärinen, J. Karhunen, and E. Oja, Independent Com-
ponent Analysis. Wiley-Interscience, 2001.

32. B. De Moor, Database for the Identifica-
tion of Systems (DaISy). [Online]. Available:
http://homes.esat.kuleuven.be/∼smc/daisy/

33. L. Edenbrandt and O. Pahlm, “Vectorcardiogram synthe-
sized from a 12-lead ECG: Superiority of the inverse Dower
matrix,” J. Electrocardiol., vol. 21, p. 361, 1988.

34. R. Sameni, “Online filtering using piecewise smoothness
priors: Application to normal and abnormal electrocardio-
gram denoising,” Signal Processing, vol. 133, pp. 52 – 63,
2017.

35. R. Nadakuditi and A. Edelman, “Sample eigenvalue based
detection of high-dimensional signals in white noise using
relatively few samples,” Signal Processing, IEEE Transac-
tions on, vol. 56, no. 7, pp. 2625 –2638, july 2008.

36. J. A. Lee and M. Verleysen, Nonlinear Dimensionality Re-
duction. Springer Science, 2007.

37. H. Biglari and R. Sameni, “Fetal motion estimation from
noninvasive cardiac signal recordings,” Physiological Mea-
surement, vol. 37, no. 11, pp. 2003–2023, November 2016.

http://www.oset.ir
http://homes.esat.kuleuven.be/~smc/daisy/

	Introduction
	Problem definition
	Background
	Method
	Benchmark algorithms
	Evaluation
	Parameter selection
	Results
	Conclusion

