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Abstract— Noninvasive extraction of fetal electrocardiogram
(fECG) from multichannel maternal abdomen recordings is
an emerging technology used for fetal cardiac diagnosis. The
strongest interference for the fECG is the maternal ECG
(mECG), which is not totally removed through conventional
methods including blind source separation (BSS). In this work,
we address the problem of offline maternal cardiac signal removal
and introduce an online subspace denoising procedure for mECG
cancellation. The proposed method is a general online denoising
framework, which can be used for the extraction of the signal
subspace from noisy multichannel observations in low signal-
to-noise ratios, using suitable prior information of the signal or
noise. The method is fairly generic and may also be useful for the
separation of other signals and noise even in the cases that BSS
assumptions are not satisfied. The performance of the proposed
technique is evaluated on both real and synthetic data and has
shown significant outperformance as compared with the state of
the art methods.

Index Terms— Online subspace denoising; semi-blind source
separation; maternal ECG cancellation; noninvasive fetal ECG
extraction; online generalized eigenvalue decomposition.

I. INTRODUCTION

The fetal electrocardiogram (fECG) provides vital infor-
mation about the fetal cardiac status. Recent measurement
and processing technologies have enabled the extraction of
the fECG noninvasively, from an array of sensors placed
on the maternal abdomen [1]. One of the most challenging
issues in this context is to remove maternal cardiac (mECG)
interferences, without affecting the fECG. The mECG can be
up to two orders of magnitude stronger than the fECG [1].

Previous work in mECG removal include spatial filtering
[2], adaptive filtering [3]–[5], template subtraction techniques
[6], [7] and Kalman filtering [8]–[10]. Although adaptive and
Kalman filters can be used for multichannel data denoising,
previous research have mainly used them for single-channel
ECG denoising, i.e., have not incorporated the inter-channel
dependencies of the data. However, in some of the single-
channel mECG removal methods the fECG is removed with
the mECG during periods of mECG and fECG temporal
overlap [8]. This problem can be avoided by using multiple
channels. A well-known multichannel technique for extraction
of fECG is blind source separation (BSS) using independent
component analysis (ICA), which has been shown to be more
accurate and robust as compared to other approaches [11].
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However, a basic limitation in conventional ICA is that its
performance degrades in presence of full-rank Gaussian noise
[12], resulting in residual mECG within the fECG. It is
therefore better to remove the mECG before applying ICA
techniques [13].

In recent years, a deflation subspace decomposition pro-
cedure, which we call denoising by deflation (DEFL), was
proposed for signal subspace separation from full-rank noisy
multichannel observations [8], [13]–[15]. An interesting appli-
cation of this framework is for mECG removal from maternal
abdominal recordings [13]. The method has resulted in very
good fECG separation, especially in low signal-to-noise ratios
(SNR). Yet, a limiting factor of DEFL is its offline block-wise
procedure of generalized eigenvalue decomposition (GEVD),
as the core of this algorithm, which is a drawback for its
applicability in real-time online fECG extraction. In this work,
we introduce an online version of DEFL, called online denois-
ing by deflation (ODEFL), for eliminating the mECG from
maternal abdominal recordings using recent developments in
online GEVD [16]. As with the offline version, the proposed
method is fairly general and may be applied to various
applications depending on the prior knowledge about signal
and noise subspaces.

II. DATA MODEL

Electrical signals recorded from the abdomen of a pregnant
woman consist of mixtures of various signals including the
mECG, fECG, baseline wanders and muscle contractions
considered as noise. Biopotentials recorded at the body surface
are low frequency signals compared with the high propagation
velocity of the electrical signals and the sensor distances [17].
Therefore, the following linear instantaneous data model has
been shown to be rather realistic for modeling multichannel
maternal abdominal signals [13]:

x(t) = Hm(t)sm(t) + Hf (t)sf (t) + Hη(t)v(t) + n(t)
∆
= xm(t) + xf (t) + η(t) + n(t)

(1)

where sm(t), sf (t) and v(t) are, respectively, the maternal
ECG source, fetal ECG source and structured noises (such as
electrode movements and muscle contractions). n(t) is full-
rank measurement noise and Hm(t), Hf (t) and Hη(t) are
the transfer functions that model the propagation media onto
the body surface [18]. In a realistic model, the cardium (of
the mother and fetus) should be considered as a distributed
signal source. Therefore, sm(t) and sf (t) are generally full-
rank signals [8]; but the effective number of dimensions can
be less depending on the sensor positioning and SNR.
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Fig. 1. General block-wise deflation scheme (i : the number of iteration,
x0(t) = x(t))

The overall objective of noninvasive fECG extraction is to
extract xf (t) from this mixture. Among the different inter-
ferences and noises, the mECG is the dominant interference,
which cannot be fully separated from the fECG through
conventional ICA, due to its full-rank nature, high amplitude,
and background noise. This results in residual components
within the extracted fECG. The DEFL algorithm was proposed
to overcome this issue [13]. Before introducing its online
version, DEFL is explained in the following section.

III. BLOCK-WISE DENOISING BY DEFLATION

For multichannel noisy data x(t) ∈ RN , DEFL consists of
a sequence of linear decomposition, denoising and linear re-
composition (Fig. 1). In the linear decomposition stage, the
data is transformed to another subspace using a matrix W ∈
RN×N , obtained by applying GEVD on a pair of matrices
containing second or higher order statistics of the data. A
special case of GEVD, known as periodic component analysis,
is explained further in the next section. Here, W is a matrix
used as a feature enhancer, which transforms the data into a
linear mixture ranked from most to least resemblance to the
desired property. This enhancement is a result of maximizing
the Rayleigh quotient in the GEVD procedure (cf. Section IV).
Therefore, the SNR of the data is amplified within the first few
channels of the transform domain, allowing better signal/noise
separability. Next, the first L components (in the transform
domain) are passed through a denoising stage, which separates
their signal/noise contents. Finally, the residual signals and the
N −L unchanged channels are back-projected to the original
subspace. These three stages construct a single iteration of the
denoising algorithm, which can be summarized as follows:

y(t) = W−TG
(
WTx(t), L

)
(2)

where x(t) is the input and y(t) is the output of each iteration,
G(·, ·) is the denoising operator applied to the first L channels
of the input, and W is as defined above. The procedure is
repeated in multiple iterations over the output of the previous
iteration, until all the undesired components within the data
are eliminated. The number of iterations can be selected using
a stopping criterion that is application dependent and measures
the quality of the signal according to its characteristics. For
instance, the periodicity measure (PM) criterion that shall be
defined in Section VI-D can be used to indicate how much
the maternal ECG is removed in each of the channels. An
interesting property of this algorithm is that, unlike most
PCA and ICA denoising schemes, the data dimensionality is

preserved. Moreover, due to the denoising block between the
linear projection stages, in overall it is a nonlinear filtering
scheme, which can deal with full-rank and even non-additive
terms. Apparently, the method is only applicable when prior
information about the signal/noise subspaces is available. In
previous studies, this algorithm has been used for various
applications [13], [19], [20]. Despite its vast applications, the
block-wise nature of the algorithm has limited its application
to batch processing. In this work, an online extension of DEFL
is presented using recent developments in online GEVD.

IV. OFFLINE VERSUS ONLINE πCA

A. Offline πCA

Considering x(t) ∈ RN as multichannel ECG observations,
periodic component analysis (πCA) can be used to transform
x(t) into s(t) = wTx(t), such that s(t) maximizes a measure
of periodicity with the ECG heart rate period, while keeping
the signal energy bounded [21].

The objective function of πCA is as follows:

w∗ = argmax
w

Et{s(t)s(t+ τt)}
Et{s(t)2}

= argmax
w

wTCτw

wTCw
(3)

where C
∆
= Et

{
x(t)x(t)T

}
, Cτ

∆
= Et

{
x(t)x(t+ τt)

T
}

,
with the expectations taken over all the samples t, and τt
is a variable period calculated using the reference (here the
maternal) ECG R-wave peaks. Equation (3), is in the form
of the Rayleigh quotient, which is maximized by solving the
following GEVD problem for W:

WHCτW = Λ, WHCW = I (4)

where W = [w1, · · · ,wN ] is a matrix of generalized eigen-
vectors and Λ = diag(λ1, · · · , λN ) is a diagonal matrix con-
taining the generalized eigenvalues on its diagonal. It can be
shown that w∗ = w1, i.e., the eigenvector corresponding to the
largest generalized eigenvalue λ1 maximizes (3). Moreover, if
C and Cτ are symmetric matrices, λ1 ≥ λ2 ≥ · · · ≥ λN
are real and the components of s(t) = WTx(t) are ranked
according to their resemblance with the desired ECG [21].
πCA is a batch offline algorithm. In order to make it online
(as required in ODEFL), the covariance matrices should be
updated online.

B. Online Estimation of Covariance Matrices for πCA

For online applications, the signal statistics contained in C
and Cτ , can vary in time. In order to re-estimate them as the
signal evolves, the temporal averaging in the definitions of C
and Cτ can be replaced with a weighted sum as follows [22]:

C(t) =

t∑
i=0

βt−ixs(i)xs(i)
T

Cτ (t) =

t∑
i=0

γt−ixs(i)xs(i+ τi)
T

(5)

where we have assumed that the signal indexes start from
t = 0 and β ∈ [0, 1] and γ ∈ [0, 1] are forgetting factors.
This is an infinite impulse response-like formulation, in which
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(a) Block diagram for the whole data, y0(t) = x(t) (b) Block diagram for each sample

Fig. 2. General ODEFL scheme

all samples in the range 0 ≤ i ≤ t contribute in estimating
the covariance matrices; but with smaller weights to the
older samples. Alternatively, one might prefer a finite impulse
response form, in which the samples do not have any effect
beyond a finite window length.

The weighted sum in (5) can be replaced with the following
recursion formulas, in favor of computational and memory
efficiency:

C(t) = βC(t− 1) + x(t)x(t)T

Cτ (t) = γCτ (t− 1) + x(t)x(t+ τt)
T (6)

The forgetting factors adapt the tracking capability of the
algorithm in stationary or non-stationary environments. For
stationary data, selecting β = γ = 1 incorporates all the
samples with identical weights. For non-stationary data, the
value is chosen less than 1, which is similar to a growing
sliding window with the effective window length of 1/(1−β)
for t� 1 [22].

In order to guarantee the symmetry of C and Cτ (for
having real generalized eigenvalues extracted by GEVD), we
can make the following modification after each update:

C(t)← C(t) + C(t)T

2
, Cτ (t)← Cτ (t) + Cτ (t)T

2
(7)

C. Online πCA using online GEVD

In recent research several algorithms have been proposed
for online GEVD [16], [23]. These algorithms are commonly
based on online extensions of (3) or (4). The method that we
propose in this study is based on incremental common spatial
pattern (ICSP) [16]. In this method, the first generalized eigen-
vector corresponding to the largest generalized eigenvalue is
estimated first using the following recursion formula:

w1(t) =
wT

1 (t− 1)Cτ (t)w1(t− 1)

wT
1 (t− 1)C(t)w1(t− 1)

C−1
τ (t)C(t)w1(t− 1)

(8)
where w1(t) is the principal eigenvector at time index t. The
matrix C−1

τ (t) can be calculated recursively using the matrix

inversion lemma:
C−1
τ (t) = γC−1

τ (t− 1)

−γC−1
τ (t− 1)x(t)xT (t+ τt)C

−1
τ (t− 1)

γ−1 + xT (t)C−1
τ (t− 1)x(t+ τt)

(9)
The other minor eigenvectors are computed in a sequential (de-
flation) manner. For instance for the second generalized eigen-
vector, the new matrices Ĉτ = Cτ and Ĉ =

[
I− Cw1w

T
1

wT
1 Cw1

]
C

are used in (8).

V. ONLINE SUBSPACE DECOMPOSITION ALGORITHM FOR
MECG REMOVAL

Having developed the online version of πCA, DEFL can
now be made online. The overall procedure is similar to
the offline DEFL, except that the πCA projection, denoising
and back-projection stages are all updated sample by sample,
instead of block-wise. The general scheme of the ODEFL
algorithm is shown in Fig. 2, which can be summarized as
follows: In this algorithm, x(t) is the input multi-channel
data, yi(t) (1 ≤ i ≤ K) is the output of each iteration,
K is the number of iterations, T is the number of samples,
and Gi(·, L) is the denoising function for removing undesired
parts1, applied to the first L channels in iteration i.

We should note that since the online πCA algorithm requires
the R-peak locations for calculating Cτ (t), the update of this
matrix has a minimum delay of one ECG beat, which can be
fixed to the longest expected mECG beat gap. Therefore, the
ODEFL output has a fixed delay with its input. This fixed lag,
which is of order of a second, is acceptable for almost any
online application of ODEFL.

VI. BENCHMARK ALGORITHMS AND SYNTHETIC
DATASET

In this section, the benchmark ANC, Kalman filter and the
synthetic ECG generation procedure are presented.

1Note that the projection (and back-projection) algorithms and the denoising
scheme can generally be customized for each iterations. This generalization
has not been considered in this work.
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Algorithm 1 Online denoising by deflation (ODEFL)
1: y0(t)← x(t) . Initialize with the input data
2: for i = 1→ K do . The number of parallel stages of ODEFL
3: z(t)← yi−1(t) . In each stage, initialize with the previous iteration output
4: C(0)← I ; Cτ (0)← I
5: for t = 1→ T do . For all samples of the data
6: . Updating the covariance matrices
7: C(t)← βC(t− 1) + z(t)z(t)T

8: Cτ (t)← γCτ (t− 1) + z(t)z(t+ τt)
T

9: C(t)← (C(t) + C(t)T )/2
10: Cτ (t)← (Cτ (t) + Cτ (t)T )/2
11: C−1

τ (t)← γC−1
τ (t− 1)−

12:
γC−1

τ (t− 1)z(t)zT (t)C−1
τ (t− 1)

γ−1 + zT (t)C−1
τ (t− 1)z(t)

13: . Online GEVD (C(t),Cτ (t))T

14: Ĉ← C(t)
15: for j = 1→ N do . Iterate over the separating matrix channels

16: wj(t)←
wT
j (t− 1)Cτ (t)wj(t− 1)

wT
j (t− 1)Ĉ(t)wj(t− 1)

C−1
τ (t)Ĉ(t)wj(t− 1)

17: wj(t)← wj(t)/‖wj(t)‖

18: Ĉ←

[
I−

Ĉwjw
T
j

wT
j Ĉwj

]
Ĉ

19: end for
20: s(t)←WT (t)z(t)
21: Estimate L, the number of mECG dimensions
22: s′(t)← Gi(s(t), L)
23: yi(t)←W−T (t)s′(t)
24: end for
25: end for

A. Kalman Filter

The Kalman filter (KF) and its nonlinear version extended
Kalman filter (EKF) are methods for estimating hidden states
of a system, having its dynamics and a set of observations.
This filter was adapted by Sameni et al., for estimating ECG
signals from noisy measurements [8]–[10]. In summary, using
a polar extension of McSharry-Clifford’s ECG model [24], the
following state space and observation models were used as the
ECG dynamic model:

θk+1 = (θk + ωδ) mod 2π

zk+1 = zk −
∑
i δ

αiω
b2i

∆θi exp[−∆θ2
i

2b2i
] + η

(10)

{
sk = zk + vk
φk = θk + uk

(11)

where ∆θi = (θk − θi) mod 2π, δ is the sampling period, η
is an additive noise, and the summation is taken over finite
number of Gaussian signals used for modeling P, Q, R, S
and T waves with amplitude, center and width parameters
αi, θi and bi, respectively. The variable zk, the amplitude
of the noiseless ECG at time instant k, and θ (known as
the cardiac phase), are assumed as state variables for this
model. The parameters θi, ω, αi, bi and η are i.i.d Gaussian
random variables considered as process noise vectors. In the
observation equations, sk and φk are amplitude and phase of

the noisy observation ECG and vk and uk are observation
noise vectors of the ECG and its phase (cf. [9], [10] for
further details). Using an EKF the ECG signal zk can be
estimated from the background noise vk. For our application
of interest, zk is the maternal ECG, which should be estimated
and removed from the maternal abdominal sensors.

B. Adaptive Noise Cancellation

Adaptive noise cancellation (ANC) is a well-known method
for online signal denoising developed by Widrow et al. [3].
Standard ANC consists of a primary input that is the corrupted
signal and a reference input containing the noise that is
somehow correlated with the primary noise. The weights of the
filter adaptively change over time to retrieve an estimate of the
noise (the weight update algorithm depends on cost function).
Finally, by subtracting the filter output (noise estimate) from
the primary input, the primary signal is estimated and the
corrupted signal is denoised. For mECG cancellation, the
reference input is obtained by a mECG channel recorded
directly from the maternal chest. The primary input is obtained
by maternal abdomen recordings containing both maternal and
fetal ECG. For multichannel recordings, the ANC is applied
to each channel separately. As discussed in [10], the drawback
of conventional ANC for ECG denoising is that the reference
ECG should be morphologically similar to contaminating
ECG. However, since the ECG morphology highly depends on



5

the lead position, the mECG contaminated over the maternal
abdominal leads do not necessarily resemble the chest lead
ECG morphology. As a result, the performance of this method
widely defers from one channel to another, which leads into
a weak overall performance over the whole channels, as
compared to other methods. Nonetheless, the method remains
as a well-know benchmark for mECG cancellation. More
rigorously, considering n(t) as the mECG, s(t) as the non-
mECG (fECG plus background signals), d(t) = s(t) + n(t)
as the noisy observations and x(t) as the reference mECG,
and w = [w0, · · ·wp−1] as the weight coefficient of length p,
and using a least mean squares (LMS) algorithm, the output
of an ANC is obtained as follows: where T is the number

Algorithm 2 Adaptive noise cancelation (ANC) algorithm
1: for t = 1→ T do
2: x(t) = [x(t), x(t− 1), · · ·x(t− p+ 1)]T

3: n̂(t) = wTx(t)
4: ŝ(t) = d(t)− n̂(t)
5: w(t+ 1) = w(t) + 2µŝ(t)x(t)
6: end for

of data samples, n̂(t) and ŝ(t) are estimates of primary noise
and primary signal, respectively. The parameter µ is a step
size that controls the filter stability and convergence rate and
should be in the range [0, λmax], where λmax is the greatest
eigenvalue of the covariance matrix R = E

{
x(t)x(t)T

}
[25,

Ch. 9]. Recently, other extensions of the ANC have also been
introduced for fECG extraction. One of the extensions that is
used in this study for comparison is a multistage adaptive filter
[5]. The modified ANC consists of two sequential adaptive
filters, which enables the application of different kinds of
adaptive algorithms such as LMS, recursive least squares
(RLS) and normalized least mean square (NLMS) in one
filter. Another aspect of this method is that the primary and
reference inputs are applied to the algorithm after a sequence
of operations such as squaring and/or rescaling to increase
reliability of the algorithm to situations in which the maternal
ECG in the primary input is not quite similar to the reference
input.

C. ICA Based BSS and Denoising

ICA based BSS was first used in [11] for fECG extraction
from maternal abdominal sensors. This method exploits the
statistical independence and spatial diversity of the sources
(here the maternal and fetal heart signals plus noises) for
separating fECG from other signals. In classical ICA schemes,
it is assumed that the signals x(t) ∈ RN , observed from N
body sensors, are linear mixtures of N independent sources
s(t) ∈ RN :

x(t) = A(t)s(t) (12)

in which the mixing matrix A(t) ∈ RN×N models the
propagation media and s(t) contains the source signals. ICA
methods are then used to find the separating matrix B(t) such
that ŝ(t) = B(t)x(t) can be considered as an estimate of the
sources and Â(t) = B̂−1(t) as an estimate of mixing matrix.

Among the different ICA algorithms, the joint diagonalization
of eigenmatrices (JADE) is used in this work [26].

In fECG applications, due to multidimensional nature of the
sources, source signals are categorized into sets of multichan-
nel components including mECG, fECG and noise subspaces
as described in multidimensional ICA (MICA) [26] and blind
source subspace separation (BSSS) [27] methods. Suppose
that ŝf (t) = [ŝf1(t), · · · , ŝfM ] represents M -dimensional fetal
components and the reminding components of ŝ(t) include
mECG and noises. Accordingly, the corresponding columns of
the mixing matrix are stored in Âf (t) = [âf1, · · · , âfM ]. As
a result, the contribution of the fetal signals in the observation
signals can be obtained by:

x̂f (t) = Âf (t)̂sf (t) (13)

in which x̂f (t) is the extracted fECG signal in the original
domain. A known drawback of conventional ICA is that they
cannot preserve the order, sign and amplitude of the sources
[28]. Therefore, for automatic applications, reliable source
type detection and block-wise sign/amplitude correction is
required to identify and correct the fECG sources among the
other extracted components. In practice, due to the rather
structured morphology of the ECG, the significant amplitude
of the mECG compared to the fECG and accessible of prior
information about the mECG, it is easier to identify mECG
rather than fECG. Therefore, in this work, we detect mECG
signals using some channel assessment criteria.

D. Synthetic ECG Generation

For quantitative analysis, maternal and fetal ECG mixtures
are generated using a realistic model adopted from the open-
source electrophysiological toolbox (OSET) [18], [29]:

x(t) = Hm(t)sm(t) + Hf (t)sf (t) + Hη(t)v(t) + n(t)
∆
= xm(t) + xf (t) + η(t) + n(t)

(14)
This model is based on the single dipole model of the heart,
which assumes three geometrically orthogonal lead pairs,
known as the Frank lead electrodes (or the vectorcardiogram
(VCG) ), and a linear propagation media for the body vol-
ume conductor to map the three dimensions to body-surface
potentials, using a Dower-like transformation [30]. Although
the single dipole model is only an approximation of the true
cardiac activity [31], the model was found to be accurate
enough for the hereby presented study.

Based on this model, we generated a three dimensional
sm(t) and sf (t) representing the ECG signal of maternal
and fetus heart, using a 3D VCG. The ECG sources are
then mapped to 12 body surface channels using the Hm(t)
and Hf (t) matrices, which model the propagation media.
As a result, both maternal and fetal ECG are distributed
in all the body surface ECG channels, but with only three
underlying dimensions. A realistic full rank noise with desired
SNR is also added to the signal using the idea proposed in
[18]. Accordingly, 10000 samples of twelve lead synthetic
maternal/fetal ECG mixtures were generated with a sampling
rate of 500Hz. Following (1), consider x(t) as the noisy input
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(a) Blanking DEFL (b) DEFL using wavelet

(c) DEFL using Template subtraction (d) DEFL using Kalman

Fig. 3. Sensitivity of the SIR improvement versus K and L parameters in four denoising strategies

observations, xf (t) as the fECG signal, xm(t) as interference
and η(t) + n(t) as noise for the fECG. The overall signal to
interference plus noise ratio (SINR), defined in [13], can be
used to quantify the data quality before denoising:

SINR ∆
=

Et,i
{
xfi(t)

2
}

Et,i

{
[xmi

(t) + ηi(t) + ni(t)]
2
} (15)

where xfi(t), xmi
(t), ηi(t), and ni(t) are the i-th element

of the vectors, xf (t), xm(t), η(t), and n(t), respectively.
For synthetic data, the SINR can be set to arbitrary ratios
by scaling the mixing matrices Hm(t), Hf (t), Hη(t) and
the noise variances in (1) by appropriate factors (cf. [13]
for further details). After applying the denoising procedure,
in order to evaluate the effectiveness of mECG cancellation
algorithm, the signal-to-interference ratio (SIR), similarity

measure (SM) and periodicity measure (PM) [13] are used:

SIR ∆
= 10 log

(
E
{
xs(t)

2
}

E {x̂m(t)2}

)

PM ∆
=

∣∣∣∣∣ tr
(
E
{
y(t)y(t+ τt)

T
})

tr (E {y(t)y(t)T })

∣∣∣∣∣× 100

SM ∆
=

|E
{
y(t)xs(t)

T
}
|√

E {y(t)2}E {xs(t)2}

(16)

where tr(·) represents matrix trace and xs(t)
∆
= xf (t) +

η(t) + n(t), is the summation of all non-mECG components,
which we call the mECG complement and is produced during
synthetic signal generation. y(t) denotes the denoised signal
and x̂m(t) denotes the mECG (noise) residue in the output.
Since the aim of this method is to remove mECG, y(t) should
be equal to xs(t), in an ideal mECG canceller. Therefore, the
residual mECG artifact within the signal is:

x̂m(t) = y(t)− xs(t) (17)

In the later presented results, SIR improvement is defined as
the output SIR minus the input SIR in dB. Therefore, SIR
improvement is a measure of mECG cancellation in dB. The
PM, measures the amount of periodicity of denoised data
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Fig. 4. SIR improvement versus SINR in four denoising strategies

according to the period of the reference mECG. By definition,
0 ≤ PM ≤ 100 (PM = 0 for fully aperiodic signals and
PM = 100 for a fully periodic signal). This measure indicates
the amount of mECG components that still exists in the output.
It should be noted that the reduction of PM is only a necessary
(but not sufficient) measure for the algorithm success, since the
PM might decrease due to an increase of noise or at a cost of
losing the fECG. Therefore, a compliment measure is required,
which assures the fidelity of the remaining components. For
this, we measure the correlation coefficient (SM) between the
denoised data and the original signal components, xs(t), by
definition 0 ≤ SM ≤ 1. A SM value close to 1 indicates
that the algorithm has preserved the non-mECG components
(including the fECG) in its output.

VII. PARAMETER ESTIMATION

All algorithms used for comparison have parameters that
require optimization, which is described in this section.

A. Extended Kalman Filter Parameters

For estimating the parameters of the Gaussian kernels used
in the extended Kalman filter, the ensemble average of the
mECG are extracted as a single beat average template. Next,
the parameters are estimated by applying a nonlinear least
squares error algorithm to fit the ECG template, using the

open-source packages of OSET [29]. The other parameters
and covariance matrices are initialized following the methods
developed in [10].

B. ANC Parameters

The standard and the more recent multi-stage ANC are
implemented using a 5-tap FIR filter (20ms window length
at a 250Hz sampling frequency) with a step size equal to
µ = 1e−6. Both parameters were found as the optimal values,
by searching over a grid of possible values in varying SINR.
The maternal ECG reference, required for ANC, is selected
directly from xm(t) in equation (14) during the generation of
synthetic data. Since xm(t) is a pure mECG without other
noise and interferences, each of its channels can play the role
of the chest lead ECG required as reference.

C. Wavelet Parameter Estimation

Following the results in [10], the Coiflets3 mother wavelet
with 6 levels of decomposition, using the Stein’s unbiased
risk estimate (SURE) shrinkage rule, single level rescaling
and a soft thresholding strategy were used as the optimal
denoising setup of the wavelet-based ECG denoiser (cf. [10]
for a detailed discussion).

D. DEFL and ODEFL Parameters

The optimum number of iterations, K, the number of chan-
nels to be denoised in each iteration, L, and the strategy used
for denoising are critical (and application-dependent) issues
that highly influence the performance of DEFL and ODEFL.
The parameter K, provides the capability of eliminating full-
rank and possibly nonlinearly superposed noise, which is
beyond the capabilities of conventional ICA techniques. The
parameter L, may be considered as the effective number of
dimensions of the signal and noise subspaces. The denoising
function G(·, ·), used for signal and noise subspace separation,
also influences the overall performance of both DEFL and
ODEFL. In practice, all of these parameters should be tuned
according to the application. In this work, a Monte Carlo
simulation was carried out to investigate the sensitivity of
DEFL and ODEFL algorithms, with respect to the denoising
function and the values of L and K. The performance was
investigated using 700 simulated data, generated according
to the scheme in Section VI-D, in different input SINRs,
in the range of -35dB to -5dB in 5dB steps. Fig. 3 shows
the average SIR improvements versus K and L using four
denoising strategies G(·, ·). In the first strategy, which we call
blanking DEFL, the first L channels of s(t) are simply set to
zero (similar to hard-thresholding in the wavelet denoising). In
the second strategy, wavelet denoising was used as the denoiser
using the optimal parameters explained in Section VII-C. In
the third strategy, the single-channel extended Kalman filtering
scheme proposed in [9], [10] is used as the denoiser. In
the fourth strategy, the single-channel template subtraction
technique proposed in [7] is used as the denoiser.

The results of optimizing the parameters of all methods are
shown in Fig. 4 from different viewpoints. In Fig. 4(a), the
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Fig. 5. A sample of synthetic ECG with −20db SINR and 20sec length (a) before and (b) after mECG removal. The peaks remaining after mECG removal
are the fECG plus background noise.

SIR improvement versus different SINRs is calculated for the
best values of K and L parameters. In Fig. 4(b), the average
SIR improvement over the average of the whole values of K
and L in the range of studied parameters is calculated versus
different SINRs.

According to Figs. 3 and 4(a), by setting appropriate values
for L and K, blanking DEFL has better performance as com-
pared to wavelet, template subtraction and Kalman denoising
strategies, which is due to the fact that when the signal space
dimensions are obtained, the algorithm completely removes all
the noise space dimensions preserving the signal unchanged.
In practice, the appropriate value of K can be estimated
using some stopping criterion such as the PM criterion. The
suitable value of L can also be calculated using related
methods for estimating the signal/noise dimensionality [32],
[33]. For nonstationary data, K and L can also be updated in
time2. According to Fig. 4, although blanking DEFL performs
best for the suitable parameters, it is sensitive to the proper
choice of K and L and its performance highly degrades for
inappropriate parameters. On the other hand, the wavelet,
template subtraction and Kalman denoising strategies are more
robust to the choice of parameters, since increasing K and
L beyond their optimal values does not significantly degrade
the SIR improvements. As a result, using denoising methods
such as wavelet, template subtraction or Kalman filter in
DEFL, instead of banking DEFL are more appropriate in
practice. From Fig. 4 it is also seen that the Kalman filter
outperforms the template subtraction and wavelet denoiser
in SIR improvement and robustness to its parameters. This
result was anticipated, as the Kalman filter is a model-based
approach, which benefits from prior knowledge of the signal.
Besides, as compared to the template subtraction method, the
Kalman filter performance relies on both the model and the
observation, which makes it effectively adaptive to different

2According to our empirical results, for ECG signals, the update should be
done over long temporal windows (tens of seconds) rather than short windows,
otherwise the performance degrades.

SNR scenarios. The necessity of a signal model is at the same
time a limitation of this method in practice as compared to the
non model-based methods. Yet, for simplicity, in what follows
the first denoising strategy (blanking the first L components)
with K = 1 and L = 3 are used for evaluation of both DEFL
and ODEFL algorithms. The other parameters of ODEFL are
the forgetting factors β and γ. These factors should be chosen
according to the degree of data (non-)stationary within the
range [0, 1]. In the studied database, the ECG signal and noise
were both stationary. Hence, we chose β = γ = 1, i.e., the
algorithm does not forget the old samples.

E. ICA Denoising Parameters

The free parameter in ICA denoising is the number of
mECG components (effective mECG dimension) that should
be removed after the source separation stage. For synthetic
data, according to our prior knowledge about generating three
dimensional sm(t) for the maternal heart, we choose L = 3.
For real data, it is also chosen as L = 3 that is experimentally
found as the best parameter for this dataset and eliminates
the most dominant components of the mECG. In general,
the number of mECG channels can be adaptively obtained
during the denoising process by morphological similarity, or
by using the notion of effective number of dimensions [34]. In
this work, the mECG identification for both real and synthetic
data is accomplished by computing the correlation coefficient
defined in (16) between the maternal reference signal (chest
lead ECG) and the different source channels extracted by ICA.
The top L channels with the highest correlations are selected
as the mECG components. These channels are set to zero
and the remaining channels are back-projected to the original
subspace. This strategy is rather similar to a single stage of
the DEFL algorithm.

VIII. RESULTS AND EVALUATION

The proposed algorithm has been evaluated on both real
and synthetic data and compared with the block-wise DEFL
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[13], single-channel ECG Kalman Filter [8]–[10], standard
ANC [3], the modified ANC [5], template subtraction [7],
ICA denoising [11] and the wavelet denoiser applied to each
channel separately. The detailed results are discussed in this
section.
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Fig. 6. (Top) SIR improvement, (Middle) PM and (Bottom) SM versus input
SINRs. The PM and SM of DEFL and ODEFL have overlapped.

A. Simulated Data

The simulated data mode was discussed in Section VI-D.
For visual inspection, a typical 20s length synthetic ECG with
SINR of -20dB, along with the corresponding denoised output
is shown in Fig. 5. One can see that the maternal ECG is
distributed in all the simulated channels. The denoised output
indicates that the maternal ECG is removed in almost all
channels without affecting the fetal ECG.

For a quantitative evaluation, the proposed algorithm was
compared with other benchmark methods using 1000 different
ensembles of simulated data and noise, in different input

SINRs. The average and standard deviation of SIR improve-
ments, PM, and SM are shown in Fig. 6.

Accordingly, DEFL outperforms all methods and is only
slightly better than the ODEFL. The outperformance of DEFL
as compared to ODEFL is reasonable due to the offline
and exact calculation of the covariance matrices used in
DEFL. However, the difference is negligible as compared
to the advantages of ODEFL for online and nonstationary
applications. As shown, DEFL and ODEFL, which are based
on prior knowledge of the ECG periodicity have outperformed
ICA. This is due to the fact that DEFL and ODEFL can deal
with situation that ICA assumptions are not satisfied. In fact,
ICA algorithms despite their vast and effective applications
have some intrinsic ambiguities according to their simplified
assumptions. Typically, it is assumed that the number of
independent sources is fixed and equal to the number of
sensors. The signal mixture is considered instantaneous and
time-invariant. However, these assumptions are not always
satisfied in practice. As a result, the performance of ICA
degrades in presence of full-rank Gaussian noise, correlated
and/or distributed sources [15], resulting in residual mECG
within the fECG. Moreover, the ranking property of DEFL and
ODEFL, in comparison to permutation ambiguity of the ICA,
helps the reliable and automatic detection of fECG/mECG
signal in long recordings [15], while for ICA it is necessary to
have robust source type identification methods that recognize
the mECG components among others. Therefore, ICA denois-
ing is very sensitive to the correct identification of mECG
in the projected domain. Overall, DEFL, ODEFL and ICA
denoising outperform all other methods in both low and high
SNR scenarios. This can be due to the fact that the ANC,
wavelet, template subtraction and Kalman filtering schemes
are all single-channel, while DEFL, ODEFL and ICA benefit
from the spatial information within multiple channels to obtain
higher SNR.

Among the single-channel methods, the performance of
Kalman filter and template subtraction is similar in low SNR
scenarios and outperforms other single-channel methods, while
in high SNR Kalman filter has superior performance. The
reason is that the Kalman filter relies on both the observation
and dynamic model, depending on the signal quality. When the
data is too noisy, the Kalman filter tracks the prior dynamic
model rather than relying on the observation. Therefore, in
low SNR, Kalman filter performance is identical to template
subtraction. However, in high SNR the Kalman filter benefits
from the information within the observations, making it better
than template subtraction. The low performance of ANC, as
mentioned before, can be explained due to the fact that the
reference signal used in ANC (here the chest lead mECG)
does not necessarily resemble the morphology of the mECG
superposed over the abdominal leads, which significantly
downgrades ANC’s performance.

B. Real Data

The proposed algorithm was also applied to the widely used
DaISy fECG dataset, shown in Fig. 7 [35]. This dataset con-
sists of five abdominal and three thoracic channels, recorded
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(a) DaISy dataset (b) After mECG removal

Fig. 7. DaISy dataset (a) before and (b) after mECG removal. The peaks remaining after mECG removal are the fECG plus background noise. Due to the
sequential structure of ODEFL, the algorithm converges slower in the last channels.
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Fig. 8. A typical data segment before (gray plots) and after (black plots) mECG cancellation. It is observed that the mECG is completely removed in DEFL
and ODEFL methods with minimal effect on the fECG.

from the abdomen and chest of a pregnant woman, with a
sampling rate of 250Hz. Due to the rather stationary nature of
the dataset we selected β = γ = 1. The results of ODEFL on
this dataset are shown in Fig. 7. It is seen that after about 40
samples (160ms), the algorithm has converged and the mECG
is almost completely removed in the first channel; but it takes
up to 500 samples (2s) for all channels to converge. This is
due to the sequential nature of the proposed ODEFL algorithm.
Fig. 8 shows a closer view of the results over two ECG beats.

It is seen that DEFL and ODEFL outperformed the ANC,
template subtraction, Kalman filter and ICA denoising. While
DEFL and ODEFL have effectively removed the mECG, other
methods have left some residual mECG or removed parts of
the fECG. For numerical evaluation of the proposed method
on real data, we altered the real DaISy abdominal signals as
follows [13]:

x(t) = G[x0(t) + Λv(t)] (18)
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where x0(t) is the original real data in Fig. 7, v(t) is Gaussian
white noise, Λ = diag(λ1, · · · , λN ) is a diagonal matrix
which controls the SNR per channel, G ∈ RN×N is an
arbitrary random matrix and x(t) is the new noisy signal. x(t)
is generated in three different input SNR of 30dB, 20dB and
10dB by changing the entries of Λ. The proposed methods
are then applied to x(t) by selecting L = 3 and K = 2. The
algorithm is repeated over 1000 trials using different instances
of v(t) and G in each trial. The PM was defined in (16) as a
measure of algorithm performance in mECG cancellation. But
we noted that it should be studied together with fECG preserv-
ing indeces, to assert the overall algorithm performance. For
this we define the overall periodicity measure (OPM):

OPM = fPM−mPM (19)

where mPM and fPM are maternal and fetal PM, respectively.
Accordingly, −100 ≤ OPM ≤ 100, where higher values of
OPM are indication of algorithm success in simultaneously
removing the mECG and preserving the fECG. The average
and standard deviation of the mPM and OPM are shown in
Fig. 9 for the proposed and benchmark methods. We can
see that the results on real data follow the same trend and
order as the synthetic data results. The only exception is the
ICA denoiser, which has inferior results for real data. This
might be due to the fact that for real noisy data, mECG
identification and estimation of L is difficult, resulting in
degrading performance.

IX. CONCLUSION

In this paper, an online version of an iterative subspace
denoising procedure was presented for removing maternal
ECG from biosignals recorded from the abdomen of a pregnant
woman. The proposed method is rather generic and may be
applied to other blind and semi-blind source separation appli-
cations, in which the signal and noise mixtures are full-rank. It
was shown that the proposed method outperforms the state of
the art single channel denoising techniques, while it marginally
performs as good as its offline version. Interestingly, it was
shown that DEFL and ODEFL algorithms which is obtained by

GEVD of only two second-order matrices, outperformed the
classical ICA that uses more than two matrices containing the
higher-order statistics of the observations. The outperformance
can be related to the fact that DEFL and ODEFL can deal
with situation in which the underlying assumptions of ICA
are not satisfied. Moreover, DEFL and ODEFL benefit from
the ranking property of the GEVD for mECG detection, while
ICA suffers from permutation and sign ambiguities, which
require the utilization of a robust source type identification
method for mECG recognition in conjunction with the basic
ICA. As a result, the proposed method is less complicated and
more reliable for long datasets, as compared with batch ICA
techniques.

The performance of ODEFL was investigated with different
set of parameters using different denoising strategies including
simple blanking, wavelet denoising, template subtraction and
Kalman denoising.

According to these results and the experiments carried out in
[10], we conclude that for single channel data the Kalman filter
outperforms other ECG denoising schemes in different SINR
scenarios, while the DEFL and ODEFL algorithms are better
for multichannel data as they use the inter-channel correlations
without requiring the mixing matrix of the data. Therefore, in
future studies, the combination of the Kalman denoiser and
ODEFL may result in superior results. Introducing an online
method for automatic calculation of the algorithm parameters
L, K, β and γ is also an interesting extension to the current
work, which was partially studied in [34].

The performance of ODEFL is influenced by several aspects
including the method used for online GEVD. In future studies,
other online GEVD algorithms can be compared with the in-
cremental common spatial pattern used in this work. Moreover,
theoretical aspects of online GEVD and the convergence of
DEFL and ODEFL should also be considered. A symmetric
extension of the method for avoiding the problems of sequen-
tial source separation and error propagation is also interesting
for practical applications.
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