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For a connected graph G = (V, E) of order p, a set

has no isolated vertices. The minimum cardinality of a restrained Steiner set of G is the restrained Steiner number of G, and is denoted by s r (G). The restrained Steiner number of certain classes of graphs are determined. Connected graphs of order p with restrained Steiner number 2 are characterized. Various necessary conditions for the restrained Steiner number of a graph to be p are given. It is shown that, for integers a, b and p with 4 ≤ a ≤ b ≤ p, there exists a connected graph G of order p such that s(G) = a and s r (G) = b. It is also proved that for every pair of integers a, b with a ≥ 3 and b ≥ 3, there exists a connected graph G with s r (G) = a and g r (G) = b.

Introduction

By a graph G = (V, E), we mean a finite undirected graph without loops or multiple edges. The order and size of G are denoted by p and q respectively. 1 For every vertex v ∈ V , the open neighborhood N (v) is the set {u ∈ V /uv ∈ E} and the closed neighborhood of v is the set

N [v] = N (v) ∪ {v}. The degree of a vertex v ∈ V is deg G (v) = deg(v) = |N (v)|.
The minimum and maximum degrees of a graph G are denoted by δ = δ(G) and ∆ = ∆(G), respectively. The distance d(u, v) between two vertices u and v in a connected graph G is the length of a shortest u -v path in G. An u -v path of length d(u, v) is called an u -v geodesic. It is known that this distance is a metric on the vertex set V (G). For basic graph theoretic terminology we refer to [START_REF] Harary | Graph Theory[END_REF][START_REF] Buckley | Distance in Graphs, Addition-Wesley[END_REF]. For a vertex v of G, the eccentricity e(v) is the distance between v and a vertex farthest from v. The minimum eccentricity among the vertices of G is the radius, radG and the maximum eccentricity is its diameter, diamG of G. Two vertices x and y are antipodal if d(x, y) = diamG. A vertex v is an extreme vertex of a graph G if the subgraph induced by its neighbors is complete. If e = {u, v} is an edge of a graph G with d(u) = 1 and d(v) > 1, then we call e a pendant edge, u a leaf or end vertex and v a support. A geodetic set of G is a set S ⊆ V (G) such that every vertex of G is contained in a geodesic joining some pair of vertices in S. The geodetic number g(G) of G is the minimum cardinality of its geodetic sets and any geodetic set of cardinality g(G) is a minimum geodetic set. The geodetic number was introduced in [START_REF] Harary | The geodetic number of a graph[END_REF] and further studied in [START_REF] Chartrand | On the geodetic number of a graph[END_REF][START_REF] Hernando | On the Steiner, geodetic and hull number of graphs[END_REF]. A set of vertices S in a graph G is a restrained geodetic set if S is a geodetic set and the subgraph G[V -S] induced by V -S has no isolated vertices. The minimum cardinality of a restrained geodetic set, denoted by g r (G), is called the restrained geodetic number of G. A g r (G) -set is a restrained geodetic set of cardinality g r (G). The restrained geodetic number of a graph was introduced in [START_REF] Abdollahzadeh Ahangar | The restrained geodetic number of a graph[END_REF].

For a nonempty set W of vertices in a connected graph G, the Steiner distance d(W ) of W is the minimum size of a connected subgraph of G containing W . Necessarily, each subgraph is a tree and is called a Steiner tree with respect to W or a Steiner W -tree. S(W ) denotes the set of all vertices that lie on Steiner W -trees. A set W ⊆ V (G) is called a Steiner set of G if every vertex of G lies on some Steiner W -tree or if S(W ) = V (G). A Steiner set of minimum cardinality is a minimum Steiner set or simply a sset and this cardinality is the Steiner number s(G) of G. The Steiner number of a graph was introduced in [START_REF] Chartrand | The Steiner Number of a Graph[END_REF] and further studied in [START_REF] Hernando | On the Steiner, geodetic and hull number of graphs[END_REF][START_REF] Pelayo | Comment on "The Steiner number of a graph[END_REF][START_REF] Santhakumaran | The Edge Steiner Number of a Graph[END_REF][START_REF] Santhakumaran | The Upper Steiner Number of a Graph, Graph Theory Notes of New York LIX[END_REF][START_REF] Santhakumaran | The forcing Steiner number of a graph[END_REF][START_REF] Santhakumaran | The Forcing Geodetic and the Forcing Steiner Numbers of a Graph[END_REF].

The following theorems are used in the sequel. 

s(G) =      2 if m = n = 1 n if n ≥ 2, m = 1 min{m, n} if m, n ≥ 2 Theorem 1.3. ([1]) Let G be a connected graph of order n ≥ 3. Then g r (G) = 2 if and only if g(G) = 2 and diamG ≥ 3 or G = K 2 ∨ H, where δ(H) ≥ 1.
1 v 2 v 3 v 4 v 5 v 6 G Figure 2.1 Example 2.2.
For the graph G given in Figure 2.1, it is clear that W = {v 1 , v 3 , v 5 } is a s -set of G and so s(G) = 3, and 

W 1 = {v 1 , v 3 , v 4 , v 5 } is a s r -set so that s r (G) = 4.
(G) ≤ s r (G). Also, since V (G) is a restrained Steiner set, it is clear that s r (G) ≤ p.
Remark 2.7. The bounds in Theorem 2.6 are sharp. For any non trivial path P p (p ≥ 2), the set of two end vertices is the unique Steiner set so that s(P p ) = 2. For the cycle C 3 , s(C 3 ) = s r (C 3 ). For the complete graph K p , s r (K p ) = p. Also the inequalities are strict. For the graph G given in Theorem 2.9. There is no graph of order p with s r (G) = p -1.

Proof. Since every restrained Steiner set of G is a Steiner set of G and the complement of each restrained Steiner set has cardinality different from one, we have s r (G) = p -1.

Theorem 2.10. Let G be a non trivial tree which is not a star. Then s r (G) is equal to the set of all end vertices of G.

Proof. Let W be the set of all end vertices of G.

Then W ia a restrained Steiner set of G. By Theorem 2.4, s r (G) ≤ |W |. Since G = K 1 , p-1 , the subgraph G[V -W ] has no isolated vertices. Therefore W is a restrained Steiner set of G so that s r (G) = |W |.
Corollary 2.11. For any tree T with p ≥ 3 vertices, s r (T ) = p if and only if T is a star. Corollary 2.12. For any tree T with p ≥ 4 vertices, s r (T ) = p -2 if and only if T is a double star.

Theorem 2.13. For the cycle G = C p (p ≥ 3), s r (G) =     
p for p ∈ {3, 4, 5} 2 for p ≥ 6 and p is even 3 for p ≥ 7 and p is odd Proof. It is clear that s r (C p ) = p for p ∈ {3, 4, 5}. Let p ≥ 6. Let p be even and W = {u, v} be a set of antipodal vertices of C p . Then W is a Steiner set of G. Since the subgraph G[V -W ] has no isolated vertices, W is a restrained Steiner set of G so that s r (C p ) = 2. Let p be odd. It is clearly verified that no two element subset of C p is a Steiner set of G and so s r (G) ≥ 3. For any vertex u, let v and w be the two antipodal vertices. Let

W 1 = {u, v, w}. Then W 1 is a Steiner set of G. Since p ≥ 7, the subgraph G[V -W 1 ] has no isolated vertices. Then W 1 is a restrained Steiner set of G so that s r (C p ) = 3. Theorem 2.14. For the complete bipartite graph K m,n (m, n ≥ 2), s r (K m,n ) = m + n. Proof. Let G = K m,n (2 ≤ m ≤ n). Let X and Y be the bipartite sets of G, where X = {x 1 , x 2 , ...., x m } and Y = {y 1 , y 2 , ...., y n }. Let 2 ≤ m < n. By Theorem 1.2, W = X is a s -set of G. Since the subgraph G[V -W ] has isolated vertices, W is not a restrained Steiner set of G and so s r (G) ≥ m+1. Let W be a restrained Steiner set of G with |W | ≥ m+1. Then either W ⊆ Y or W X ∪Y . If W ⊆ Y , then W = Y is the only Steiner set of G. Since the subgraph G[V -W ] has isolated vertices, W is not a restrained Steiner set of G, which is a contradiction. If W X ∪Y , then < W > is connected. Then the Steiner W -tree contains elements of W only. Therefore W is not a restrained Steiner set of G. Hence W = X ∪Y . This implies s r (G) = m+n. Similarly if m = n, we can prove that s r (G) = m + n.
Theorem 2.15. For the wheel

W p = K 1 + C p-1 , (p ≥ 5), s r (W p ) = p -3. Proof. Let v be the vertex of K 1 and let v 1 , v 2 , ...., v p-1 , v 1 be the cycle of C p-1 . For p = 5, let W = {v 1 , v 3 } . Then W is a Steiner set of G. Since the subgraph G[V -W ] has no isolated vertices, W is a restrained Steiner set of G so that s r (W p ) = 2 = p -3. Let p ≥ 6. Let W be a Steiner set of G. If v ∈ W , then < W > is connected. Then the Steiner W -tree contains elements of W only. Therefore v / ∈ W . Hence W ⊆ V (C P -1 ). Let W = {v 1 , v 3 , v 4 , ...., v p-2 }. Then W is a restrained Steiner set of G and so s r (G) ≤ p -3. We prove that s r (G) = p -3. If not let W be a restrained Steiner set of G with |W | ≤ p -4. Then v / ∈ W . Therefore there exists at least one v i / ∈ W (1 ≤ i ≤ p -1). Then v i (1 ≤ i ≤ p -1)
does not lie on any Steiner W -tree of G and so W is not a restrained Steiner set of G, which is a contradiction. Hence s r (G) = p -3.

Theorem 2.16. Let G be a connected graph of order p ≥ 2. Then s r (G) = 2 if and only if g r (G) = 2. Proof. Let g r (G) = 2. By Theorem 1.3, g(G) = 2 and diamG ≥ 3 or G = K 2 ∨ H, where δ(H) ≥ 1. Then it follows that s r (G) = 2. Conversly let s r (G) = 2. Let W = {u, v} be a s r -set of G. Since every Steiner W -tree is a u -v geodesic and the subgraph G[V -W ] has no isolated vertices, W is a restrained geodetic set of G so that g r (G) = 2.
Corollary 2.17. For the hyper cube

Q n (n ≥ 3), s r (Q n ) = 2.
Proof. Q n has 2 n vertices, which may be labeled (a 1 a 2 a 3 ...a n ), where each

a i (1 ≤ i ≤ n) is either 0 or 1. It is easily seen that {(0, 0, 0, ... ,0), (1, 1, 1, ...,1)} is a s r (Q n ) set for n ≥ 3. Hence s r (Q n ) = 2.
Theorem 2.18. Let G be a connected graph of order p with exactly one vertex of degree p -1 which is not a cut vertex. Then s r (G) ≤ p -2.

Proof. Let x be the vertex of degree p-1 which is not a cut vertex of G. Since < N (x) > is non complete, there exist at least two non adjacent vertices say y and z such that y and z belong to < N (x) > . Let x 1 be a vertex in y -z geodesic. Then 

W = V -{x, z} is a Steiner set of G. Since the subgraph G[V -W ] has no isolated vertices, W is a restrained Steiner set of G so that s r (G) ≤ p -2. v 1 v 2 v 3 v 4 x G Figure 2.2
W = {v 1 , v 3 , v 4 } is a restrained Steiner set of G so that s r (G) = 3 = p -2.
Theorem 2.20. Let G be a connected graph which contains a cut vertex of degree p -1. Then s r (G) = p. Proof. Let X = {x 1 , x 2 } and Y = {y 1 , y 2 , ...., y p-3 } be the bipartite sets of K 2,p-3 . Without loss of generality we subdivide the edge x 1 y 1 by the vertex x. If W = {x 1 , x 2 }, then the vertices x and y 1 do not lie on any Steiner W -tree of G and so W is not a restrained Steiner set of G. If W = {y 1 , y 2 , ...., y p-3 }, then the vertices x and x 1 do not lie on any Steiner W -tree of G. 

Proof. Let x be a cut vertex of degree p -1. Let W be a Steiner set of G. If x ∈ W , then W = V is the only restrained Steiner set of G. If x / ∈ W , then W = V -{x} is the only restrained Steiner set of G and so s r (G) ≥ p -1. Since s r (G) = p -1, s r (G) = p. v 1 v 2 v 3 v 4 v 5 v 6 v 7 G Figure 2.3
If W ⊂ Y or W ⊂ X ∪ Y , then it is easily verified that W is not a restrained Steiner set of G. If W ⊂ Y ∪ {x}, then W is not a restrained Steiner set of G. Similarly if W ⊂ X ∪ {x}, then W is not a restrained Steiner set of G. Therefore W ⊂ X ∪ Y ∪ {x}. If W X ∪ Y ∪ {x}
x l-2 x l-3 x 2 x 1 u 1 u 2 u 3 u 4 u 2r u 2r-1 . . . . . . G Figure 2.4
It is easily verified that the eccentricity of each vertex of G is r so that radG = diamG = r. Let X = {x 1 , x 2 , ...., x l-2 } be the set of all extreme vertices of G with |X| = l -2. By Theorem 2.4, X is a subset of every restrained Steiner set of G. It is clear that X is not a restrained Steiner set of G so that s r (G) ≥ l -1. It is easily observed that X ∪ {v}, where v / ∈ X is not a restrained Steiner set of G so that s r (G) ≥ l. Let y and z be the two antipodal vertices of

x i (1 ≤ i ≤ l -2). Then W = X ∪ {y, z} is a restrained Steiner set of G and so s r (G) = l -2 + 2 = l.
Case 2. r < d. Let C 2r : v 1 , v 2 , ...., v 2r , v 1 be a cycle of order 2r and let P d-r+1 : u 0 , u 1 , u 2 , ...., u d-r be a path of order d -r + 1 and length d -r. Let H be the graph obtained from C 2r and P d-r+1 by identifying v 1 in C 2r and u 0 in P d-r+1 . Then add l -2 new vertices w 1 , w 2 , ...., w l-2 to H and join each vertex w i , (1 ≤ i ≤ l -2) to the vertex u d-r-1 and obtain the graph G of Figure 2.5. Proof. Case 1. a = b. Let P p-a+1 : u 1 , u 2 , ...., u p-a+1 be a path of order p-a+1. Let G be the graph obtained from the path P p-a+1 and the complete graph K a-1 by joining each vertex of K a-1 to the vertex u p-a+1 . The graph G is shown in Figure 2.6 and its order is p.

v r+1 v 2r v 1 u 0 v 2 u 1 u d-r-1 u d-r
Now W = V (K a-1 ) ∪ {u 1 }. By Theorem 1.1, W is a subset of every Steiner set of G and so s(G) ≥ a. Since S(W ) = V , W is a Steiner set of G and so s(G) = a. Since the subgraph G[V -W ] has no isolated vertices, W is a restrained Steiner set of G. Thus s r (G) = a. u 1 u 2 u p-a+1 K a-1 . . . G Figure 2.6 Case 2. 4 < a < b = p. Let G = K a,
p-a be the complete bipartite graph with partite sets X = {x 1 , x 2 , ...., x a } and Y = {y 1 , y 2 , ...., y p-a }. By Theorems 1.2 and 2.14, we have s(G) = a and s r (G) = b.

Case 3. 4 < a < b < p. Let G 1 = K 2,
b-a be the complete bipartite graph with partite sets X = {x 1 , x 2 } and Y = {y 1 , y 2 , ...., y b-a } and let P : v 1 , v 2 , ...., v p-b+1 be a path of order p -b + 1. Let H be the graph obtained from G 1 and P by identifying the vertex x 2 in G 1 with the vertex v 1 in P and subdividing the edge x 1 y 1 of G 1 by the vertex x. Add a -3 new vertices {z 1 , z 2 , ...., z a-3 } to H and join each vertex z i (1 ≤ i ≤ a -3) with the vertex v 2 and obtain the graph G of order p as shown in Figure 2.7.

y 1 y 2 y b-a x 1 x 2 v 1 x v 2 v 3 v p-b+1 z 1 z 2 z a-3 . . . . . . . . . G Figure 2.7
Let Z = {z 1 , z 2 , ...., z a-3 , v p-b+1 } be the set of all end vertices of G. First we show that s ( G) = a. By Theorem 1.1, Z is a subset of every Steiner set of G and so s(G) ≥ a -2. Since S(Z) = V , Z is not a Steiner set of G and so s(G) ≥ a -1. It is easily verified that Z ∪ {u} where u / ∈ Z is not a Steiner set of G and so s(G) ≥ a. Case 1. 3 ≤ a < b. Let P : z 1 , z 2 , z 3 , z 4 , z 5 , z 6 , z 7 be a path of order 7. Let P i : u i , v i , w i (1 ≤ i ≤ b -a) be a copy of path of order 3. Let H be the graph obtained from the paths P and P i (1 ≤ i ≤ b -a) by joining the vertex z 4 with each u i (1 ≤ i ≤ b -a) and joining the vertices z 1 and z 7 with each w i (1 ≤ i ≤ b -a). Let G be the graph obtained from H by adding a -2 new vertices x 1 , x 2 , ...., x a-2 and joining z 4 with each

However W = Z ∪ {x 1 , y 1 } is a Steiner set of G so that s(G) = a. Next we show that s r (G) = b. Since the subgraph G[V -W ] contains an isolated vertex, W is not a restrained Steiner set of G. By Theorem 2.4, Z is a subset of every restrained Steiner set of G. Let W 1 = Z ∪ Y . It is easily seen that W 1 is not a restrained Steiner set of G and so s r (G) ≥ b -1. It is easily observed that W 1 ∪ {v} where v / ∈ W 1 is not a restrained Steiner set of G and so s r (G) ≥ b. However W 2 = W 1 ∪ {x, x 1 } is a restrained
x i (1 ≤ i ≤ a -2). The graph G is shown in Figure 3.3. z 4 z 3 z 2 z 1 w 1 z 7 z 6 z 5 x 1 x 2 x a-2 v 1 u 1 u 2 v 2 w 2 u b-a v b-a w b-a . . . . . . . . . . . . G Figure 3.3
First we show that s r (G) = a. Let X = {x 1 , x 2 , ...., x a-2 } be the set of all end vertices of G. By Theorem 2.4, X is a subset of every restrained Steiner set of G. It is clear that X is not a restrained Steiner set of G so that s r (G) ≥ a -1. It is easily observed that X ∪ {u}, where u / ∈ X is not a restrained Steiner set of G and so s r (G) ≥ a.

However W = X ∪ {z 1 , z 7 } is a restrained Steiner set of G so that s r (G) = a. Next we show that g r (G) = b. Since the vertices u i (1 ≤ i ≤ b -a) and v i (1 ≤ i ≤ b -a)
do not lie on any geodesic joining a pair of vertices in W , W is not a restrained geodetic set of G. Let S be any restrained geodetic set of G. By Theorem 1.1, X ⊆ S. Since the vertices u Let X = {x 1 , x 2 , ...., x b-2 } be the set of all end vertices of G. Since X is a subset of every restrained geodetic set, g r (G) ≥ b-2. It is clear that X is not a restrained geodetic set of G and so g r (G) ≥ b -1. It is easily verified that X ∪ {v}, where v / ∈ X is not a restrained geodetic set of G and so g r (G) ≥ b. However S = X ∪ {u 1 , u 4 } is a restrained geodetic set of G so that g r (G) = b. Next we show that s r (G) = b + 1. By Theorem 2.4, each x i (1 ≤ i ≤ b -2) belongs to every restrained Steiner set of G and so s r (G) ≥ b -2. It is clear that X is not a restrained Steiner set of G and so s r (G) ≥ b -1. Also it is easily seen that neither X ∪{v} nor X ∪{u, v}, where u, v / ∈ X is a restrained Steiner set of G. However W = X ∪ {u 1 , u 3 , u 4 } is a restrained Steiner set of G so that s r (G) = b -2 + 3 = b + 1. Hence the proof.

i (1 ≤ i ≤ b -a) and v i (1 ≤ i ≤ b -a) lie on the w i -x j (1 ≤ i ≤ b -a, 1 ≤ j ≤ a -2) geodesics, each w i (1 ≤ i ≤ b -a) belongs to S and so g r (G) ≥ a -2 + b -a = b -2. Since the vertices z 2 , z 3 lie on z 1 -x i (1 ≤ i ≤ a -2)

Theorem 1 . 1 .

 11 ([5, 6]) Each extreme vertex of a graph G belongs to every geodetic set of G as well as every Steiner set of G . Theorem 1.2. ([6]) For the complete bipartite graph G = K m,n ,

Theorem 1 . 4 .

 14 ([1]) For any tree T different from star, g r (T ) = |L(T )|, where L(T ) is the set of all leaves of T . Moreover, g r (K 1,r ) = r + 1.Throughout the following G denotes a connected graph with at least two vertices.2 The Restrained Steiner Number of a GraphDefinition 2.1. A set W of vertices of a graph G is a restrained Steiner set if W is a Steiner set, and if either W = V or the subgraph G[V -W ] induced by V -W has no isolated vertices. The minimum cardinality of a restrained Steiner set of G is the restrained Steiner number of G, and is denoted by s r (G). A restrained Steiner set of minimum cardinality is called the s r -set of G.
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Figure 2 . 1 ,

 21 s(G) = 3, s r (G) = 4 and p = 6. Remark 2.8. If s(G) = p or p -1, then s r (G) = p. The converse is not true. For the cycle C 4 , s(G) = 2 = p -2 and s r (G) = 4 = p.

Remark 2 . 19 .

 219 The bound in Theorem 2.18 is sharp. For the graph G given in Figure2.2,

Remark 2 . 21 .

 221 The converse of Theorem 2.20 need not be true. For the graph G given in Figure2.3 s r (G) = 7 = p. But G has no cut vertex of degree p -1.Theorem 2.22. Let G be the graph obtained from K 2,p-3 , p ≥ 4 by subdividing an edge once. Then s r (G) = p.

  such that W contains at least one vertex in X and W contains at least one vertex in Y , then the Steiner W -tree contains the vertices adjacent to x and the elements of W only and henceS(W ) = V . Then it follows that W is not a restrained Steiner set of G. Therefore W = X ∪ Y ∪ {x}. Hence s r (G) = p. If G is C 4 or C 5 or K m,n or a connected graph which contains a cut vertex of degree p -1 or the graph obtained from K 2,p-3 , p ≥ 4 by subdividing an edge once or the graph given in Figure 2.3, then s r (G) = p. So we have the following open problem. Problem 2.23. Characterize graphs for which s r (G) = p. Theorem 2.24. For positive integers r, d and l ≥ 2 with r ≤ d ≤ 2r, there exists a connected graph G with radG = r, diamG = d and s r (G) = l. Proof. When r = 1, then d = 1 or d = 2. If d = 1, then G = K l has the desired properties. If d = 2, then G = K 1,l-1 has the desired properties. If r = d = 2, then G = K 2,l-2 has the desired properties. Now, let r ≥ 3. Construct a graph G with the desired properties as follows: Case 1. r = d. Let C 2r : u 1 , u 2 , ...., u 2r , u 1 be a cycle of order 2r. Let G be the graph obtained from C 2r by adding l -2 new vertices x 1 , x 2 , ...., x l-2 and joining each x i (1 ≤ i ≤ l -2) with the vertices u 1 and u 2 of C 2r . The graph G is shown in Figure 2.4.

w 1 w 2 w l- 2 .Then

 2 radG = r and diamG = d. Let W = {w 1 , w 2 , ...., w l-2 , u d-r } be the set of all end vertices of G. By Theorem 2.4, W is a subset of every restrained Steiner set of G. Since no vertex on the cycle C 2r lies on the Steiner W -tree, we see that W is not a restrained Steiner set of G.Let W = W ∪ {v r+1 }, where v r+1 is the antipodal vertex of u d-r in G. Then it is clear that W is a restrained Steiner set of G. Hence s r (G) = l.In view of Theorem 2.6, we have the following realization result. Theorem 2.25. Let a, b and p be integers such that 4 ≤ a ≤ b ≤ p. Then there exists a connected graph G of order p with s(G) = a and s r (G) = b.

3 . 1 . 10 G 3 . 1 Example 3 . 2 .

 31103132 Steiner set of G and so s r (G) = b. 3 The restrained Steiner and the restrained geodetic numbers of a graph Example For the graph G given in Figure 3.1, W = {v 1 , v 4 , v 6 } is a restrained Steiner set of G so that s r (G) = 3. Since the vertices v 9 and v 10 do not lie on a geodesic joining any pair of vertices of W , W is not a restrained geodetic set of G and so g r (G) ≥ 4. However W = {v 1 , v 4 , v 5 , v 6 } is a restrained geodetic set of G so that g r (G) = 4. Figure For the graph G given in Figure 3.2, W = {v 1 , v 3 , v 5 } is a restrained geodetic set of G so that g r (G) = 3. Since v 4 is a cut vertex of degree 4 = p -1, by Theorem 2.20 we have s r (G) = 5.

5 G 3 . 2 FromTheorem 3 . 3 .

 53233 Figure Examples 3.1 and 3.2, we see that there is no relation between s r (G) and g r (G). So we have the following realization result. For every pair of integers a, b with a ≥ 3 and b ≥ 3, there exists a connected graph G with s r (G) = a and g r (G) = b. Proof. For a = b, let G be K 1,a-1 . Then by Corollary 2.11 and Theorem 1.4, s r (G) = a and g r (G) = a.

  geodesic and, the vertices z 5 , z 6 lie on z 7 -x i (1 ≤ i ≤ a -2) geodesic, z 1 and z 7 belong to S and so g r(G) ≥ b -2 + 2 = b. Let S = W ∪ {w 1 , w 2 , ...., w b-a }. Then S is a restrained geodetic set of G so that g r (G) = a + b -a = b.Case 2. b < a and a = b + 1. Let P : x, y, z be a path of order 3. Add b -2 new vertices y 1 , y 2 , ...., y b-2 to the path P and join each vertex y i (1 ≤ i ≤ b -2) with the vertex y and obtain the graph H. Let G be the graph obtained from H by adding a -b -1 new vertices h 1 , h 2 , ...., h a-b-1 and joining each vertex h i (1 ≤ i ≤ a -b -1) with the vertices x, y and z. The graph G is shown in Figure 3.4.

First

  we show that g r (G) = b. Let Y = {y 1 , y 2 , ...., y b-2 } be the set of all end vertices of G. Since Y is a subset of every restrained geodetic set,g r (G) ≥ b -2. It is easily seen that Y is not a restrained geodetic set of G and so g r (G) ≥ b -1. It is easily verified that Y ∪ {v}, where v / ∈ Y is not a restrained geodetic set of G and so g r (G) ≥ b. However W = Y ∪ {x, z} is a restrained geodetic set of G so that g r (G) = b. Next we show that s r (G) = a.Since the vertices h i (1 ≤ i ≤ a -b -1) do not lie on any Steiner W -tree, W is not a restrained Steiner set of G. Since y is a full degree cut vertex of G, it follows from Therorem 2.20 that s r (G) = a. Case 3. a = b + 1. Let C : u 1 , u 2 , u 3 , u 4 , u 5 , u 6 be a cycle of order 6. Let H be the graph obtained by joining the vertices u 2 and u 6 of the cycle C. Add b -2 new vertices x 1 , x 2 , ...., x b-2 to H and join each vertex x i (1 ≤ i ≤ b -2 with the vertex u 6 and obtain the graph G as shown in Figure 3.5.

  Thus the Steiner number and the restrained Steiner number of a graph are different. Every restrained Steiner set is a Steiner set, and the converse is not true. For the graph G given in Figure 2.1, W is a Steiner set of G, however it is not a restrained Steiner set of G. Also every restrained Steiner set of G is a Steiner set of G. For the complete graph K p (p ≥ 3), s r (K p ) = p. Theorem 2.6. For any connected graph G, 2 ≤ s(G) ≤ s r (G) ≤ p. Proof. Any Steiner set needs at least two vertices and so s(G) ≥ 2. Since every restrained Steiner set is a Steiner set, it follows that s
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