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The study deals with the behavior of bolted joints between the wings and the fuselage of an airplane. To study this complex structure, we use a classical finite element code with a simplified model (called macromodel) to avoid a large number of degrees of freedom implied by a fine discretization of the local geometry and non-linearities (contact, friction). During previous studies, the macromodel was constructed by simple springs. The use of this type of macromodel in assembly simulations enables to define the most loaded bolt. However, these simple springs do not allow to take into account non-linearities such as contact with friction. To face this problem, a new macromodel is considered.

Introduction

The aim of this work is to solve mechanical problems including frictional contact in bolted joint using a macromodel. This macromodel should be implemented in an usual finite element code and used for each bolted joint in a complete structure simulation. The 2-nodes macromodel element can be characterized via parameters (a gap, a tangential stiffness, an axial stiffness, a friction ratio, and a pretension for example). Once the nature of the macromodel is established, an identification of the parameters is proceed. To this purpose, simulations on a 3D structure defined as a mesomodel can be used. This structure is composed of two aluminium plates, one composite plate and a bolt. To carry out the simulations, we use a dedicated software [CHA 95] based on the LATIN method [LAD 99], which enables us to handle frictional contact between the different parts of the assembly (see figure 2). In the next sections, mesomodel and macromodel are described. Finally, some results are presented.

Used strategy

The study deals with links between the wings and the fuselage of an airplane.

To study this complex structure, a classical finite element code is used with a simplified model, called macromodel, to avoid a large number of degrees of freedom implied by a fine discretization of the local geometry and nonlinearities (contact, friction).

During previous studies, the macromodel was constructed by simple springs. The use of this type of macromodel in assembly simulations enables to define the most loaded bolt. These simple springs do not allow to take into account non-linearities such as contact with friction. To face this problem, a new macromodel is considered. an example of this type of macromodel is shown figure (1). The parameters of this macromodel could be identified by the way of 3D numerical simulations of a bolted shell, called mesomodel (cf. figure 2). The 16 sub-structures 52 interfaces Fig. 2. mesomodel sample next figure (3) sum up, in a globally manner, our approach. At first, the mesomodel is set up using geometry, material properties already defined and a set of parameters (like a gap between the bolt and the holes of the plates, a friction ratio between the different parts, a pretension of the bolt, ...etc). Then, from the mesomodel's results, an evolution of the jump in displacement, between the two plates, function of the load is obtained. Those evolutions are used to realize the identification of the macromodel's parameters (stiffnesses in particular). Once the macromodel's parameters are defined, we can use it in a complete simulation of a shell assembly.

Mesomodel

Mesomodel employed

The aim of the mesomodel is to enable us to define the value of the macromodel's parameters using an identification process. In fact, the mesomodel's results define the reference solution for the identification of the macromodel's parameters.

A one-bolt mesomodel

The mesomodel is based on a test assembly which is composed of two aluminium plates, a composite plate, a screw (cf. figure 4) and a nut (cf. figure 5) made of titane. The symmetries implied by the geometry are used to define the model shown figure 7. The outer diameter of the nut and the shaft as well as the thicknesses are equal deducing medium values from initial dimensions. Besides, the length of the screw is equal to the total thickness of the joint.

The mesh contains 47 892 6-nodes prismatic elements and 29 930 nodes. The mesh of the frictional contact zone, between the plates, is fined for a better description of fricitonal contact phenomena. The material law used are linear elastic law and an orthotrope behavior is associated to the composite plate. The 

Conditions limites

As it is shown figure 8, the geometry used is the quarter of the joint, and symmetry conditions (in white) are applied following the planes (x, z) and (x, y) on the different parts of the joint. On one of the tips of the composite plate (in black), a zero-displacement condition is imposed for the x -direction. The quarter of the total load F is imposed on a face of the aluminium plate (in purple).

Finally, a pretension is imposed to the screw to ensure the clamping of the joint. This pretension is defined by the way of a negative gap between the shaft and the screw (in blue). The definition of the pretension is described, more in details, in the next section 3.3. 

Conditions aux interfaces

During the use of Cofast, parameters concerning the gaps, the pretension and the frictional contact zone are defined creating interfaces between the differents parts of the joint. As shown figure 8, frictional contact interfaces are identified in red, gap interface in blue and symmetries in white.

the pretension value is monitored getting back the effort at the interface between the shaft and the screw. First of all, the shaft is subjected to an elongation by the way of a negative gap between the shaft face and its respective screw face. This gap is linearly applied function of a time interval until a maximum gap. Then an evolution of the force function of the gap is obtained (cf. figure 9) and, for instance, the necessary gap to obtain a pretension of 21 kN is about -0.05 mm.

Numerical experiments

The Les résultats obtenus avec le méso-modèle sont présentés dans cette section. Ils ont été obtenus avec une charge de 40 kN, un jeu au diamètre de 0,04 mm entre le boulon et l'alésage des plaques, une précharge imposée par un jeu relatif entre la vis et le boulon de 0,05 mm (soit une valeur de précharge d'environ 21 kN et pour une valeur de coefficient de frottement de 0,3.

Les figures (10) et (11) présentent les déformées des deux plaques où on peut observer l'influence de la précharge sur les plaques engendrant une légère flex- La figure (18) présente l'évolution du saut de déplacement en fonction de la charge. Le saut de déplacement δU est défini par la valeur absolue de la différence entre un déplacement moyenné sur une zone (proche du boulon) dans l'épaisseur de la plaque composite et un déplacement moyenné sur une zone (proche du boulon) dans l'épaisseur de la plaque aluminium (cf. 19) tel Avant de décrire le comportement propre de l'élément définissant le macromodèle, la partie suivante traite de l'intégration de l'élément spécifique au sein de l'assemblage. Pour connecter les éléments plaque, l'élément spécifique est composé de 3 degrés de liberté en translation et 3 degrés de liberté en rotation (élément du même type que des éléments de jonction entre éléments plaque tels que ceux présentés dans les études développées dans [VAD 06] et [MAY 07]). On considère, dans ce macro-modèle, que le contact est pris en compte uniquement pour les mouvements de translation. Dans un premier temps, les relations entre les translations et rotations, au sein du système matriciel impliquant les raideurs, sont découplées. Par conséquent, la matrice de raideur du macro-modèle (K el ) est définie par : 
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{∆δU} = {∆δU e } + {∆δU g } (5)
où ∆δU, ∆δU e , ∆δU g sont respectivement, l'incrément en saut de déplacement total, l'incrément en saut de déplacement adhérent,, l'incrément en saut de déplacement glissant.

Par conséquent, les différentes relations entre incrément en effort et incrément en saut de déplacement peuvent être d'éfinies : pour l'état de glissement par la relation :

{∆F } = [K e ] {∆δU e } (6) 
pour l'état d'adhérence par la relation :

{∆F } = [K e ] {∆δU e } = [K g ] {∆δU g } = ([K g ] [K e ])([K g ] + [K e ]) -1 {∆δU} (7)
pour l'état de contact par la relation :

{∆F } = [K c ] {∆δU c } (8)
où K e , K g , K c et ∆δU e , ∆δU g , ∆δU c sont respectivement les raideurs et les incrément en saut de déplacementet pour les trois états, où ∆δU est l'incrément en saut de déplacement total et ∆F et l'incrément en effort. K g joue ici le rôle d'un terme de régularisation.

Concernant l'implémentation, les données accessibles de la sous-routine UEL d'Abaqus, utilisée pour définir le macromodèle, sont la matrice tangente (K T ) et le résidu (R). Dans notre cas, la matrice tangente est équivalente à la matrice de raideur de l'état d'adhérence K e et le résidu égal à la force induite par le comportement lors des trois états (F ).

L'algorithme suivant décrit le comportement de l'élément au niveau de son plan tangent et par conséquent a pour résultat de fournir l'effort dans le plan tangent. L'effort normal et les différents moments sont déduits de manière classique grâce du syst me matriciel 2 en utilisant la la matrice de raideur K el (cf. 3). Le point de départ de l'algorithme est d'évaluer le saut de déplacement tangentiel du macromodèle. La différence entre les déplacements des deux noeuds du macromodèle est tout d'abord évaluée puis normée tel que :

{δU(t)} = {U noeud2 el (t)} -{U noeud1 el (t)} (9) et δU t (t) = (δU y (t)) 2 + (δU z (t)) 2 (10) 
où δU t (t) est le saut de déplacement dans le plan tangent du macromodèle au temps t. Ensuite une force prédictive F p (t) est calculée telle que :

F p (t) = K e • (δU t (t) -δU g t (t -1)) (11) 
avec δU g t (t -1) la partie "glissante" du saut de déplacement dans le plan tangent au pas de temps précédent. Ensuite on calcule une force de glissement F g au pas de temps précédent telle que :

F g (t -1) = K g • δU g t (t -1) (12) 
Puis on en déduit la fonction seuil (Φ(t)) telle que : Compute yield function:

Φ(t) = |F p (t) -F g (t -1)| -G (13) 
Alors si Φ(t) < 0, c'est l'état d'adhérence et la force prédicitive correspond à la force au sein du macromodèle : F (t) = F p (t)), δU g t (t) = δU g t (t -1) et δU c t (t) = 0. Si Φ(t) ≥ 0, alors un multiplicateur (λ(t), équivalent à un multiplicateur plastique) est déduit de la valeur de la fonction seuil tel que :

λ(t) = Φ(t) (K e + K g ) (14) 
Ensuite, le signe de la fonction seuil est évaluée telle que :

sign(Φ(t)) = |F p (t) -F g (t -1)| F p (t) -F g (t -1) (15) 
et la partie glissement du saut de déplacement tel que :

δU g t (t) = δU g t (t -1) + λ(t) (16) 
Alors, si celui-ci est supérieur à la moitié du jeu, soit :

|δU g t (t)| > j 2 (17) 
il y a contact. Par conséquent le signe de la partie glissement du saut de déplacement est évaluée telle que :

sign(δU g t (t)) = |δU g t (t)| δU g t (t) (18) 
pour définir la partie contact du saut de déplacement tel que :

δU c t (t) = (δU g t (t) - j 2 ) • sign(δU g t (t)) (19) 
Enfin, la valeur du multiplicateur est réactualisée telle que : L'éprouvette sur laquelle s'appuie la définition de ce deuxième méso-modèle est constituée de deux plaques en aluminium, d'une plaque en composite, de quatre vis et de quatre 'un boulons en titane. Les symétries impliquées par la géométrie de l'assemblage sont utilisées afin de définir le modèle représenté sur la figure 29. Le diamètre extérieur de chaque tëte de vis et de chaque boulon ainsi que leur épaisseur respective sont identiques en prenant une valeur moyenne sur les diamètres initiaux. De plus, la longueur des tiges de vis est équivalente à l'épaisseur de l'assemblage. Le maillage contient 5 312 éléments prismatiques à 6 noeuds et 4 616 noeuds. Les lois matériaux utilisées sont les mêmes que pour le mésomodèle à une fixation.

λ(t) = λ(t) • 1 - |δU c t (t
Les paramètres du calcul sont décrits par le tableau 3 suivant : 3 Parameters of the 4-bolts mesomodel où µ représente le coefficient de frottement pour toutes les surfaces de contact, P n c la précharge imposée au boulon n , et j n le jeu au diamètre entre le boulon n et l'alésage lui correspondant. La charge appliquée est de 40 kN, et les conditions aux limites (symétrie et encastrement) sont les mêmes que pour le mésomodèle à une fixation. 
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 18 Fig. 18. Curve F-δu -tension/compression loading/unloading

  Fig. 22. macromodel sample

Fig. 23 .

 23 Fig. 23. Macromodel connecting two plates

KFig. 28 .

 28 Fig. 28. Résultats liaison à une fixation
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 29 Fig. 29. mesh used P 1 c (kN) P 2 c (kN) P 3 c (kN) P 4 c (kN) 21.3 26 17.5 13 µ j 1 (mm) j 2 (mm) j 3 (mm) j 4 (mm) 0.3 0.03 0.035 0.04 0.045 Table3Parameters of the 4-bolts mesomodel

Fig. 30 .

 30 Fig. 30. Warp (x20) of the plates Les figures (31), (32), (33), (34) suivantes présentent les contraintes au niveau des deux plaques dans deux directions (x et y).

Fig. 31 .

 31 Fig. 31. σ xx -plaque Aluminium Les figures (35) présentent les efforts à l'interface entre les plaques. Celles-ci permettent de visualiser l'effet local de la précharge en fonction de l'effort normal (F z ) et de mesurer les efforts qui peuvent être transmis par frottement (pour F x et F y : efforts dans le plan tangent).

Fig. 32 .

 32 Fig. 32. σ yy -Aluminium plate

Fig. 36 .Fig. 37 .

 3637 Fig. 35. Interface forces between the plates l'épaisseur de la plaque aluminium (cf. 37) tel que :

  table 1 sum up the material properties employed.

		E (MPA)		Young modulus E poisson ratio ν	
		aluminium	70 000		0.3		
		screw and nut	110 000	0.3		
	E, G (MPA)	E1	E2	E3	G12	G13	G23	ν12 ν13 ν23
	composite	90 740 37 700 37 700 18 190 18 190 13 860 0.35 0.35 0.35
	Table 1							
	Material properties						

  où k n est la raideur axiale, k t la raideur radiale et k r la raideur pour tous les mouvements de rotations. De plus, les valeurs des termes de la matrice de raideur du macro-modèle couplant les rotations sont choisies assez grandes pour imposer des rotations équivalentes aux deux noeuds du macro-modèle. Enfin, chacun des deux éléments plaque (connectés au macro-modèle), par l'intermédiaire de ces 4 noeuds, sont liés par un mouvement de corps rigide au noeud du macro-modèle leurs correspondant. En conclusion, en considérant un assemblage de plaques, l'ensemble constitué du macro-modèle et des deux éléments plaque qu'il relie peut être vu comme un corps rigide prenant en compte le contact en translation.
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		Fig. 24. Joint behavior	
							les plaques en
	aluminium glissent par rapport à la plaque composite. Enfin, les plaques en-
	trent en contact avec le boulon. Durant le déchargement, l'état de contact se Du point de vue du macromodèle (représenté figure 26), nous considérons
	maintient. Ensuite, lorsque l'effort au sein de la liaison devient inférieur á la trois états : adhérence, glissement et contact. Ce macromodèle comprend les
	force critique, l'état devient adhérent. La même séquence se répète lors de la paramètres suivants : trois raideurs dans le plan tangent pour les trois états
	compression. considérés (K e pour l'état d'adhérence, K g pour l'état de glissement et K c pour
	l'état de contact), une raideur normale (K n ), un jeu (j), et enfin, un coefficient Afin de représenter le comportement illustré par la figure 24, un algorithme de frottement (µ) et une précharge affectée au boulon (P c ) permettants de spécifique est utilisé. Celui-ci s'appuie sur l'algorithme développé dans [VAL 02], qui traite de problème de plasticité. Le comportement de contact avec frotte-déterminer le seui de glissement (G).
	ment est considéré d'un point de vue tangentiel, c'est à dire au niveau de la

4.3 Frictional contact behavior model

Pour les problèmes impliquant du contact avec frottement, nous considérons trois états : adhérence, glissement, contact. La figure (24) illustre le comportement de la liaison, durant ces différents états, lorsque celle-ci est soumise à une "traction-compression" durant des cycles de charge et de décharge successifs. Les cercles définis sur la figure 24 représentent une vue en coupe de la liaison au niveau de l'alésage. Tout d'abord, une traction est imposée. La précharge appliquée à la liaison permet l'adhérence entre les plaques. Celles-ci commencent par se déformer. Une fois la force critique (G) atteinte, surface de contact entre les plaques. Par conséquent, celui-ci s'applique aux déplacements tangentiels du macromodèle. Afin de représenter le frottement, une loi de Coulomb est utilisée telle que :

G = P c • µ

(

4) où G est le seuil de glissement (considéré constant dans cette étude), P c la précharge imposée au boulon et µ le coefficient de frottement entre les plaques. La loi est illustrée par la figure (25) où Ut est la vitesse de déplacement radial et F t la force radiale. Le comportement de la liaison lors des états d'adhérence et de glissement peut c Fig. 26. Macromodel employed être vu comme un comportement élasto-plastique cinématique. C'est pourquoi, durant la phase de glissement, l'incrément en saut de déplacement est divisé en une partie adhérente (élastique) et en une partie glissante (plastique) telle que :

  La figure 27 présente le cas traité. Il s'agit de soumettre une représentation de la liaison á un cycle de chargement (décrit sur la figure27) en traction compression. La liaison contient une plaque en aluminium, une plaque composite et le macromodèle. Les caratéristiques matériaux des plaques sont les même que pour le mésomodèle (cf. Tab 1).Le maillage contient 302 noeuds, 200 éléments plaque et le macromodèle. La charge appliquée est de XX kN. Les valeurs des paramètres du macromodèles sont présentés dans le tableau 2. Le nombre de pas de temps est : 128.

	Si la partie glissement du saut de déplacement est inférieure à la moitié du
	jeu, alors :			
	δU c t (t) = 0		(22)
	Enfin, la force au sein du macromodèle est calculée	
	F (t) = F p (t) -(λ(t) • (Ke • sign(Φ(t))) + ((Kc -Ke -Kg) • δU c t (t))(23)
	Remarque : ce comportement est basé sur un algorithme décrivant une plas-
	ticité cinématique dans le cas de la traction et de la compression. Par conséquent,
	lors d'une simulation avec ce macromodèle, la direction du chargement doit
	être constante mais le sens de chargement peut varier.	
	4.4 Macromodel parameters Identification	
	F			
				F
		loading	3
				2
			T	
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			Fig. 27. Problem data	
			)| t (t) -δU g |δU g t (t -1)|	(20)
	et on calcule la nouvelle valeur, au signe près, de la partie glissement du saut
	de déplacement.		
	δU g t (t) =	j 2	• sign(δU g t (t))	(21)

Results from macromodel
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