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Nonlinear Modal Analysis of a Full-Scale Aircraft

G. Kerschen,* M. Peeters,” and J. C. Golinval*
University of Liege, 4000 Liege, Belgium

and

C. Stéphan*
ONERA The French Aerospace Lab, 92320 Chatillon, France

Nonlinear normal modes, which are defined as a nonlinear extension of the concept of linear normal modes, are a
rigorous tool for nonlinear modal analysis. The objective of this paper is to demonstrate that the computation of
nonlinear normal modes and of their oscillation frequencies can now be achieved for complex, real-world aerospace
structures. The application considered in this study is the airframe of the Morane—Saulnier Paris aircraft. Ground
vibration tests of this aircraft exhibited softening nonlinearities in the connection between the external fuel tanks and
the wing tips. The nonlinear normal modes of this aircraft are computed from a reduced-order nonlinear finite
element model using a numerical algorithm combining shooting and pseudo-arclength continuation. Several
nonlinear normal modes, involving, e.g., wing bending, wing torsion, and tail bending, are presented, which highlights
that the aircraft can exhibit very interesting nonlinear phenomena. Specifically, it is shown that modes with distinct
linear frequencies can interact and generate additional nonlinear modes with no linear counterpart.

Nomenclature
F = augmented two pointboundary value problem, mandm/s
f, = restoring force vector, N
fre = restoring force at wing side, N
g = vector field, m/s and N/kg
H = shooting function, m and m/s
h = phase condition
I = identity matrix, 1/s
K = stiffness matrix, N/m
k = linear cubic spring, N/m
ky; = nonlinear cubic spring, N/m?
M = mass matrix, kg
m., = mass at wing side, kg
n = number of degrees of freedom
p = tangent vector, m; m/s; and s
T = motion period, s
T = prediction of the motion period, s
X = displacement vector, m
X = velocity vector, m/s
X = acceleration vector, m/s’
Xe = acceleration at wing side, m/s?
Xrel relative displacement across the nonlinear connection, m
Yo linear mode shape of the full size finite element model
Yo = linear mode shape of the reduced finite element model
z = state space vector, m and m/s
Z = prediction of the next state space vector, m and m/s
Z = initial state space vector, m and m/s

I.

URING the development of a new aircraft, testing plays a key
role for flutter qualification. Before flight flutter tests, ground
vibration testing (GVT) is performed on the full scale aircraft. For
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small aircraft for which no finite element (FE) model is developed,
GVT is thus the only means of providing a modal basis. This basis is
used to form a mathematical model of the structural dynamic
behavior that is used for flutter predictions. For larger aircraft, the
main GVT objective is to update and validate the finite element model
of the aircraft, which, in turn, will be used for making reliable flutter
predictions.

Aircraft GVT has now become standard industrial practice [1,2].
However, nonlinearity is frequently encountered during these tests
and represents a significant challenge for aerospace engineers [3,4].
Forinstance, besides the nonlinear fluid structure interaction, typical
nonlinearities include backlash and friction in control surfaces and
joints, hardening nonlinearities in engine to pylon connections, and
saturation effects in hydraulic actuators. Although there has been
some recent progress in nonlinearity detection and characterization in
aerospace structures [5,6], further developments for accounting for
nonlinear dynamic phenomena during aircraft certification are still
needed [7]. They would clearly improve the confidence practicing
engineers have in both aircraft testing and modeling.

In this context, the nonlinear normal mode (NNM) theory offers a
solid theoretical tool for interpreting a wide class of nonlinear
dynamical phenomena, yet NNMs have a clear conceptual relation to
the linear normal modes (LNMs) [8,9]. However, most engineers still
view NNMs as a concept that is foreign to them. One reason suppor
ting this statement is that most existing constructive techniques for
computing NNMs are based on asymptotic approaches [10,11].
Because these techniques rely on fairly involved mathematical
developments, they are usually limited to the analysis of systems with
low dimensionality.

There have been few attempts to compute NNMs using numerical
methods [12 15]. The objective of this paper is to demonstrate that
the computation of NNMs of complex, real world structures is now
within reach and that it can be of great help for understanding and
interpreting experimental observations. Specifically, the algorithm
proposed in [16] is used in the present study to compute the NNMs of
the airframe of the Morane Saulnier Paris aircraft, for which the
ground vibration tests have exhibited some nonlinear structural
behaviors. Very interesting nonlinear dynamics, including nonlinear
modal interactions, will be revealed.

The paper is organized as follows. Section II briefly reviews the
two main definitions of an NNM. Section III describes the algorithm
used for NNM computation. Section IV introduces the mathematical
modeling of the considered aircraft and discusses carefully the results
of nonlinear modal analysis. The conclusions of the present study are
summarized in Sec. V.



II. Brief Review of Nonlinear Normal Modes

A detailed description of NNMs and of their fundamental
properties (e.g., frequency energy dependence, bifurcations, and
stability) is given in [8,9]. For completeness, the two main definitions
of an NNM are briefly reviewed in this section.

The free response of discrete conservative mechanical systems
with n degrees of freedom (DOFs) is considered, assuming that
continuous systems (e.g., beams, shells, or plates) have been spatially
discretized using the finite element method. The governing equations
of motion are

Mx(t) + Kx(t) + f,{x(1)} =0 €))

where M and K are the mass and stiffness matrices, respectively, X ()
and X (¢) are the displacement and acceleration vectors, respectively,
and f; is the nonlinear restoring force vector.

There exist two main definitions of an NNM in the literature due to
Rosenberg [17] and Shaw and Pierre [18]:

1) Targeting a straightforward nonlinear extension of the LNM
concept, Rosenberg defined an NNM motion as a vibration in unison
of the system (i.e., a synchronous periodic oscillation).

2) To provide an extension of the NNM concept to damped
systems, Shaw and Pierre defined an NNM as a two dimensional
(2 D) invariant manifold in phase space. Such a manifold is invariant
under the flow (i.e., orbits that start out in the manifold remain in it for
all time), which generalizes the invariance property of LNMs to
nonlinear systems.

At first glance, Rosenberg’s definition may appear restrictive in
two cases. First, it cannot be easily extended to nonconservative
systems. However, the damped dynamics can often be interpreted
based on the topological structure of the NNMs of the underlying
conservative system [9]. Second, in the presence of internal
resonances, the NNM motion is no longer synchronous, but it is still
periodic.

In the present study, an NNM motion is therefore defined as a
(nonnecessarily synchronous) periodic motion of the conservative
mechanical system (1). As we will show, this extended definition is
particularly attractive when targeting a numerical computation of the
NNMs. It enables the nonlinear modes to be effectively computed
using algorithms for the continuation of periodic solutions.

For illustration, the NNMs of the two DOF system

jC‘l + (2X1 —Xz) + 05)616 = 0 .56.2 + (2X2 - xl) = 0 (2)

are depicted in Fig. 1. Because of the frequency energy dependence
of nonlinear oscillations, an appropriate graphical depiction is to
represent NNMs in a frequency energy plot (FEP). An NNM is
represented by a point, which is drawn at a frequency corresponding
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Fig. 1 Frequency—energy plot of the two-DOF system.

to the minimal period of the periodic motion and at an energy equal to
the conserved total energy during the motion (i.e., the sum of kinetic
and potential energies). A branch, represented by a solid line, is a
family of NNM motions possessing the same qualitative features.
The backbone of the plot is therefore formed by two branches, which
representin phase (S11+) and out of phase (S11—) NNMs. The FEP
clearly shows that the nonlinear modal parameters have a strong
dependence on the total energy in the system based on the following:

1) The frequency of both the in phase and out of phase NNMs
increases with the energy level, which reveals the hardening
characteristic of the system.

2) The modal curves change for increasing energies. The in phase
NNM tends to localize to the second DOF (i.e., it resembles a vertical
curve), whereas the out of phase NNM localizes to the first DOF
(i.e., it resembles a horizontal curve).
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Fig. 2 Algorithm for NNM computation.

Fig. 3 Morane-Saulnier Paris aircraft.



Table 1 Aircraft properties

Length, m  Wingspan, m Height, m Wing area, m> Weight, kg
10.4 10.1 2.6 18 1945

Such a plot gives a very clear indication of the effects of
nonlinearity on modal parameters.

III. Numerical Computation of NNMs

The numerical method proposed here for the NNM computation
relies on two main techniques, namely, shooting and pseudo
arclength continuation. A detailed description of the algorithm is
given in [16].

A. Shooting Method

The equations of motion of system (1) can be recast into state space
form:

z=2g(2) (©)

where z = [x*X*]* is the 2n dimensional state vector and star
denotes the transpose operation, and

X
g(z) = (_M-I[Kx + f(x, X)l) @

is the vector field. The solution of this dynamical system for initial
conditions z(0) = z, = [xjx{]* is written as z(¢) = z(t, zy) in order
to exhibit the dependence on the initial conditions, z(0, zg) = zy. A
solution z,, (%, z,) is a periodic solution of the autonomous system
(3)ifz,(t,z,0) = z,(t + T,z,), where T is the minimal period.

The NNM computation is carried out by finding the periodic
solutions of the governing nonlinear equations of motion (3). In this
context, the shooting method is probably the most popular numerical
technique. It solves numerically the two point boundary value
problem defined by the periodicity condition

H(z,0,T)=2,(T,2y0) —2p0 =0 5)

H(zg,T) = z(T,z9) — zo is called the shooting function and
represents the difference between the initial conditions and the
system response at time 7.

The shooting method consists of finding, in an iterative way, the
initial conditions z,, and the period T that realize a periodic motion.

Starting from some assumed initial conditions zi,oo) , the motion
2V (. zgg) at the assumed period T(”) can be obtained by numerical
time integration methods (e.g., Runge Kutta or Newmark schemes).
A Newton Raphson iteration scheme is therefore used to correct the
initial guess and to converge to the actual solution.

The phase of the periodic solutions is not fixed. If z(¢) is a solution
of the autonomous system (3), then z(¢ 4+ Ar) is geometrically the
same solution in state space for any Az Hence, an additional
condition, termed the phase condition, has to be specified in order to
remove the arbitrariness of the initial conditions. An isolated NNM is
therefore computed by solving the augmented two point boundary
value problem defined by

H(z,,.T) =0

F(zp0v T) = { h(ZpO) =0 (6)

where /(z,) = 0 is the phase condition.

B. Continuation of Periodic Solutions

Because of the frequency energy dependence, the modal
parameters of an NNM vary with the total energy. An NNM family,
governed by Eqgs. (6), therefore traces a curve, termed an NNM
branch, in the (2n 4 1) dimensional space of initial conditions and
period (2, T). Starting from the corresponding LNM at low energy,
the computation is carried out by finding successive points (2, T) of
the NNM branch using methods for the numerical continuation of
periodic motions [19,20]. The so called pseudo arclength continu
ation method is used herein.

Starting from a known solution (z, (;), 7(;)), the next periodic
solution (z,g (j+1y.T(j+1)) on the branch is computed using a
predictor step and a corrector step.

1. Predictor Step

At step J, a p{ediction (Zpo,(j+1)» T(j+1)) of the next solution
(Zp0,(j+1)» Tj+1)) is generated along the tangent vector to the branch
at the current point z, (;):

Zpo (j+1>} [Zpo,o)] [Pz 0 }
J - T s %)
|:T(j+1) T D pr.

where s(; is the predictor stepsize. The tangent vector p(; =
[P} ;) Pr.()]" to the branch defined by (6) is solution of the system

c)
Fig.4 a) Connection between external fuel tank and wing tip (top view). Close-up of b) front- and c¢) rear-bolted attachments.



Fig. 5 Finite element model of the Morane-Saulnier Paris aircraft.
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with the condition [[p; || = 1.

2. Corrector Step

The prediction is corrected by a shooting procedure in order to
solve Eq. (6) in which the variations of the initial conditions and the
period are forced to(lI::;cr 1(;rtho gor}g to the predi%tor step. At iter&ti(f? k,
th&) correctl(()]gs Zyo(j+1) = 2 O’UHf + Apo,(j+l) and. T(j+_1) =
T(i41y + AT (., are compute by solving the overdetermined linear
system using the Moore Penrose matrix inverse:

SH " " ﬂ| ® *)
P o TGy T o Ten) ®
ﬂ*| 0 po,(H—l)
0z, (Z%,om) ATgirl)
PI() Pr.(j)
*) (k)
~H(z,0 1) Tj4n)
= ®
—h(Z0,11)
0

Table2 Natural frequencies of the linear finite element model

Mode Frequency, Modal shape
number Hz
1 0.0936 Rigid body mode
2 0.7260 Rigid body mode
3 0.9606 Rigid body mode
4 1.2118 Rigid body mode
5 1.2153 Rigid body mode
6 1.7951 Rigid body mode
7 2.1072 Rigid body mode
8 2.5157 Rigid body mode
9 3.5736 Rigid body mode

10 8.1913 Two node wing bending

11 9.8644 Fin bending

12 16.1790 Fin torsion

13 21.2193 First T tail symmetric bending

14 22.7619 Front fuselage torsion

15 23.6525 T tail torsion

16 25.8667 Antielevator torsion

17 28.2679 Two node vertical fuselage bending

18 29.3309 Three mode wing bending

19 31.0847 Symmetric wing torsion

20 349151 Antisymmetric wing torsion

21 39.5169 x (fore and aft) symmetric wing bending

22 40.8516 Antisymmetric wing torsion + front
fuselage

23 47.3547 Three node vertical fuselage bending

24 52.1404 Three node T tail bending

)

Fig. 6 a) First wing bending mode, b) first wing torsional mode, and
¢) second wing torsional mode.

Wing side

Fig.7 Instrumentation of the rear attachment of the right wing.

where the prediction is used as initial guess. This iterative process is
carried out until convergence is achieved. The convergence test is
based on the relative error of the periodicity condition, i.e.,
IH(z,0, T)|I/1Zoll < € where € is usually set to 1076,

An important technical remark is that the method requires the
evaluation of the 2n X 2n Jacobian matrix:

0z(t, zy)

-1 (10)
0zy |,.—r

oH
o (20, T) =
Zo

where [ is the 2n X 2n identity matrix. The classical finite difference
approach requires us to perturb successively each of the 2n initial
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conditions and integrate the nonlinear governing equations of
motion. This is extremely computational intensive for large scale
finite element models such as the one considered in this study.
Targeting a substantial reduction of the computational cost,
sensitivity analysis is exploited for determining 0z(t,zg)/0z,. It
amounts to differentiating the equations of motion (3) with respect to
the initial conditions z,, which leads to

d [oz(1, 2o) _ 0g(z) 0z(t, 2¢) an
dr| oz 9 |y4.)L 9%
with
62(0, Zo) -7 (12)
0z

because z(0, z)) = z,. Hence, the matrix 0z(t, () /0z, at t = T can
be obtained by numerically integrating over T the initial value
problem defined by linear ordinary differential equations (11) with
initial conditions (12).

The complete algorithm is shown in Fig. 2.

IV. Nonlinear Modal Analysis of the Morane-Saulnier
Paris Aircraft

The numerical computation of the NNM:s of a complex, real world
structure is addressed in this section. The structure is the airframe of
the Morane Saulnier Paris aircraft, represented in Fig. 3. This French
jet aircraft was built during the 1950s and was used as a trainer and

liaison aircraft. The structural configuration under consideration
corresponds to the aircraft without its jet engines and standing on the
ground through its three landing gears with deflated tires. General
characteristics of the aircraft are listed in Table 1. A specimen of this
airplane is present in ONERA’s laboratory. It is used for training
engineers and technicians for GVT and for research purposes.
Ground vibration tests exhibited nonlinear behavior in the connection
between the wings and external fuel tanks located at the wing tip.
Figure 4 shows that this connection consists of bolted attachments.

A. Aircraft Structural Model

1. Finite Element Model of the Underlying Linear Structure

The FE model of the linear part of the full scale aircraft, illustrated
inFig. 5, was elaborated from drawings at ONERA. The wings, T tail,
and fuselage are modeled by means of 2 D elements such as beams
and shells. Three dimensional (3 D) spring elements, which take into
account the structural flexibility of the tires and landing gears, are
used as boundary conditions of the aircraft. At each wing tip, the front
and rear connections between the wings and the fuel tanks are
modeled using beam elements. The FE model, originally created in
NASTRAN, was converted into the SAMCEF FE software. The
complete FE model has more than 80,000 DOFs.

The natural frequencies of the underlying linear system in the
[0 50 Hz] frequency range are given in Table 2. The first nine modes
correspond to aircraft rigid body modes, i.e., six modes are landing
gear suspension modes, whereas three modes involve rigid body
motions of the control surfaces. The frequency range of the
rigid body modes is comprised between 0.09 and 3.57 Hz, i.e.,
noticeably lower than the first elastic mode located at 8.19 Hz. The
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Fig.10 FEP of an NNM involving wing bending (linear frequency = 8.19 Hz). NNMs at energy levels marked in the FEP are inset; they are given in terms
of the initial displacements (m) that realize the periodic motion (with zero initial velocities assumed).



modal shapes of different elastic normal modes of vibrations are
depicted in Fig. 6. Figure 6a represents the first wing bending mode.
The first and second wing torsional modes are depicted in Figs. 6b
and 6¢ and correspond to symmetric and antisymmetric wing
motions, respectively. These latter modes are of particular interest
because there is a significant deformation of the nonlinear connec
tions between the wings and fuel tanks. The other modes concern the
aircraft tail and are consequently almost unaffected by the nonlinear
connections.

2. Reduced Order Modeling

Because the nonlinearities are spatially localized, condensation
of the linear components of the model can be achieved using the
Craig Bampton reduction technique [21]. This will lead to a
substantial decrease in the computational burden without degrading
the computational accuracy, at least in the frequency range of interest.
We stress that many practical applications possess spatially localized
nonlinearities, and so the procedure developed herein is of wide
applicability.

The Craig Bampton method expresses the complete set of initial
DOFs in terms of retained DOFs and internal vibration modes of the
primary structure clamped on the retained nodes. To introduce the
nonlinear behavior of the connections between the wings and the
tanks, the reduced order model of the aircraft is constructed by
keeping one node on both sides of the attachments. For each wing,
four nodes are retained, namely, two nodes for the front attachment
and two nodes for the rear attachment. In total, eight nodes of the
initial FE model possessing, each 6 DOFs and 500 internal modes of
vibrations, are kept in the reduced model; the FE model is thus
reduced to 548 DOFs.

To assess the accuracy of the reduced model, its LNMs are
compared to those predicted by the initial FE model. The comparison

31.2

is performed in the space of the initial model after projecting the
reduced modes back into the original space. The deviation between
the mode shapes of the original y,) and reduced y, models is
determined using the modal assurance criterion (MAC):

MAC = M (13)

Y)Y ¥ (Yo
MAC values range from 0 in the absence of correlation to 1 for a
complete correspondence. In the [0 100 Hz] range, MAC values
between modes shapes are all greater than 0.999, and the maximum
relative error on the natural frequencies is 0.2%. The accuracy of this
linear reduced model is therefore excellent. We note that much less
than 500 internal modes are sufficient to build a good reduced model
in the [0 100 Hz] frequency range. However, a larger number of
modes was deliberately chosen for two main reasons. On the one
hand, it serves to illustrate that our NNM algorithm can deal with
systems of relatively high dimensionality. On the other hand, due to
the presence of harmonics, nonlinear modal interactions may occur
between a mode in the frequency range of interest and another mode
outside this range. More internal modes are therefore necessary to
guarantee the accuracy of the reduced model in nonlinear regimes of
motion.

3. Aircraft Nonlinearities

The existence of a softening nonlinear behavior was evidenced
during ground vibration tests conducted at ONERA. In particular,
frequency response function measurements revealed a decrease in
resonant frequencies when the excitation level was increased. The
connections between the wings and fuel tanks were assumed to cause
this observed nonlinear effect. To confirm this hypothesis, the front
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Fig.11 FEP of an NNM involving symmetric wing torsion (linear frequency = 31.08 Hz). NNM:s at energy levels marked in the FEP are inset; they are
given in terms of the initial displacements (m) that realize the periodic motion (with zero initial velocities assumed).



and rear connections of each wing were instrumented, and measure
ments dedicated to nonlinearity characterization were carried out.
Specifically, accelerometers were positioned on both the wing and
tank sides of the connections, and two shakers were located at the
tanks. The instrumentation at one of the connection is shown in Fig. 7.
The dynamic behavior of these connections in the vertical direction
was investigated using the restoring force surface method [22].
Newton’s second law applied at the wing side of one connection
writes
meic (1) + frodxc (D), %)} = 0 14
where f, .. is the restoring force at the considered DOF. The index c is
related to the connection under consideration (i.e., either the rear or
front attachment of the left or right wing). From Eq. (14), the restoring
force is obtained by
fr,c = _mcjéc (15)
Because the restoring force f, . includes both the force related to the
connection of interest and the force generated by the elastic

deformation of the wing, a quantitative assessment of the nonlinear
effects cannot be achieved precisely. However, plotting the measured
acceleration signal X.(f) against the relative displacement and
velocity across the connection can provide meaningful qualitative
information about the type of nonlinearity present in the bolted
connections. To this end, the aircraft was excited close to the second
torsional mode, which is known to activate nonlinear behavior, using
a band limited swept sine excitation. Figure 8 presents the resulting
3 D plots for the rear connections of the left and right wings. 2 D
sections corresponding to zero relative velocities are also shown to
highlight elastic nonlinearities. A softening elastic nonlinearity with
a piecewise linear characteristic can clearly be observed. This result
seems to be compatible with what was previously reported for bolted
connections in the literature [23,24]. Similar nonlinear effects were
also observed for the front connections. They are not shown here,
because these connections participated in the aircraft response to a
lesser extent.

Because nonsmooth nonlinearities require dedicated and very
specific time integration methods, which are not yet available in our
NNM computation algorithm, the nonlinearities in the connections
were regularized using polynomial expansions. This is why the
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stiffness curve was reconstructed by considering the mathematical
model

fr,c = erel + k;l‘xs

= (ky; <0) (16)
A value of —10'3 N/m3 was found to be adequate for the cubic
spring. Damping in the connections was not considered because the
focus of this study is on the NNMs of the underlying Hamiltonian
system.

The reduced order model, generated in the SAMCEF software,
was exported to MATLAB® where nonlinearities were imple
mented. Four nonlinearities were added, each one being located
between the two nodes defining a nonlinear connection.

B. Nonlinear Normal Modes and Corresponding Oscillation
Frequencies

The NNM computation was carried out in the MATLAB®
environment using the nonlinear reduced order model built in the
preceding sections. For conciseness, only the modes that are the most
relevant ones for the purpose of this study are described in what
follows.

The first mode examined herein is the nonlinear counterpart of the
first T tail symmetric bending mode (i.e., mode 13 in Table 2). As in
Sec. 11, the computed backbone branch and related NNM motions are
depicted in a FEP in Fig. 9. Because there is no visible wing
deformation, the modal shape and the corresponding oscillation
frequency remain practically unchanged when the total energy is
increased in the system. Despite the fact that a nonlinear aircraft

model is considered, this mode is not affected by nonlinearity and can
be considered as a purely linear mode.

The nonlinear extension of the two node wing bending mode (i.e.,
mode 10 in Table 2) is illustrated in Fig. 10. The FEP reveals that this
mode is weakly affected by the nonlinearities, at least until energies
compatible with physical constraints. The frequency of the NNM
motions on the backbone slightly decreases with increasing energy
levels, which results from the softening characteristic of the
nonlinearity. A quantitatively similar decrease in frequency between
low level and high level swept sine excitations was observed during
the experimental tests. Even though the frequency decrease is small,
we remark that an accuracy of 0.001 Hz is usually sought during
GVTs; it is therefore important to account for it. The MAC value
between the NNMs at low and high energy levels (see Figs. 10b and
10c) is 0.99. Accordingly, the modal shapes do not change much over
the considered energy range and resemble the corresponding LNM.

Figure 11 represents the FEP of the first symmetric wing torsional
mode (i.e., mode 19 in Table 2). For this mode, the relative motion of
the fuel tanks is more important, which enhances the nonlinear effect
of the connections. As aresult, the oscillation frequency has a marked
energy dependence along the backbone branch. This decay of the
natural frequency is in agreement, at least qualitatively, with what
observed experimentally and confirms the relevance of this nonlinear
modal analysis. Conversely, the modal shapes on the backbone
branch are only weakly altered by the nonlinearities; the MAC value
between the NNMs at low and high energy levels is equal to 0.98.

In addition to the main backbone branch, three other NNM
branches that are localized to a specific region of the FEP can be
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noticed. These tongues bifurcate from the backbone branch of the
considered mode and bifurcate into the backbone branch of another
mode, thereby realizing an internal resonance between two modes.
Because of harmonics, modal interactions with distinct linear
frequencies can be generated in nonlinear regimes of motion.
Specifically, the 3:1, 5:1, and 9:1 internal resonances in Fig. 11
involve third, fifth, and ninth harmonics of the fundamental
frequency of the first symmetric wing torsional mode.

A close up of the 3:1 internal resonance is depicted in Fig. 12.
Modal shapes at three different locations on the tongue are also
represented. When the energy gradually increases along the tongue, a
smooth transition from the first wing torsional mode to a higher
frequency tail torsional mode occurs. Both modes are present in the
linear modal basis, but their mixing realized by the NNM in Fig. 12¢
is not. Itis therefore a mode with no linear counterpart. These tongues
of internal resonance represent an inherently nonlinear dynamical
phenomenon. Focusing now on the frequency content along the
branch, a third harmonic progressively appears for increasing
energies. In the vicinity of the NNM in Fig. 12c, the aircraft
undergoes a subharmonic motion with two dominant frequencies.
The wing vibrates at a frequency around 31 Hz, whereas the tail
vibrates at a frequency close to 93 Hz. Beyond this point, the relative
importance of the third harmonic component grows, until a complete
coalescence with the tail torsional mode at 93 Hz is realized.

A completely similar dynamical mechanism exists for the 5:1 and
9:1 internal resonances, but the wing torsional mode interacts with
other modes of the linear basis at 153 and 275 Hz, respectively. These
modes correspond to local modes of some aircraft parts and are not
shown here. We note that such nonlinear modal interactions were also
observed in [9] for the two DOF system (2). However, they appeared
at very high energies, and this is why they were not present in Fig. 1.

Finally, the second (antisymmetric) wing torsional mode (i.e.,
mode 20 in Table 2) is plotted in Fig. 13. The oscillation frequency
undergoes a decrease around 5% in the considered energy range. The
MAC value between the modal shapes at low and high energy levels
is 0.97. The modal shapes are therefore affected by nonlinearity but
notto a large extent. As for the first wing torsion mode, one tongue of
internal resonance is present in the FEP and indicates that nonlinear
modal interactions are in fact generic in such a large scale structure.

The computation of the backbone branch up to the tongue in
Fig. 13 requires 20 min of CPU time with a single 2.67 GHz
processor. Because of the presence of bifurcations, the computation
of the branch of internal resonance demands about 1 h. This shows
that the computation of NNM:s of real world structures is now within
reach using a conventional laptop computer.

V. Conclusions

The objective of this paper was to compute the nonlinear normal
modes (NNMs) of a full scale aircraft together with the corres
ponding oscillation frequencies. NNMs were represented in a
frequency energy plot, in which the impact that nonlinearities have
on modal parameters can readily be seen.

Parts of aircraft, such as landing gears, connections between the
horizontal tail plane and vertical tail plane, and pylons, are known to
be nonlinear. When these components are excited during ground
vibration testing, complex nonlinear phenomena that cannot be
described using linear tools may be observed. Therefore, the first
practical implementation of this work is to provide a rigorous
framework for the understanding and interpretation of these
phenomena. For instance, the present study showed that only a few
aircraft modes were influenced by the nonlinear bolted connections.
Their frequencies were found to decrease by a few percent in the
considered energy range, whereas their mode shapes were practically
unaffected. All this information is relevant for the practicing
aerospace engineer. Because of mode bifurcations, supernumerary
nonlinear modes with no linear counterpart (i.e., that are not the direct
extension of linear normal modes) were also reported in this study. To
the authors’ knowledge, this is the first time that such modes are
evidenced for a real life structure. The practical realization of these
nonlinear resonances is still an open question in view of the small
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frequency region in which they live. This will be addressed in
subsequent research by applying, numerically and experimentally, a
slow sweep sine excitation and nonlinear force appropriation to this
aircraft.

Finally, this research paves the way for the constructive use of
nonlinearity for design. Some nonlinear phenomena with no linear
counterpart such as targeted energy transfer could be exploited for
protecting more sensitive parts of aircraft by transferring or
redistributing energy from one substructure to another substructure.
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