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Abstract
This work is dedicated to the presentation and testing of a new reduced-order modeling technique, devised in
order to handle effectively vibrations of phenomenological models as well as large-scale industrial systems,
in the presence of strongly activated nonlinearities. The method is quite flexible and does not require any
restrictions concerning the nature of the nonlinear effects. Both smooth and non-smooth nonlinearities can
be tackled, as well as dissipative phenomena. In this paper the main steps of this new reduction strategy are
introduced, and the method is tested on a lumped-parameter model, representative of the bending behaviour
of an industrial bladed-disk subjected to dry friction at the blade-disk joints. The method proves to efficiently
capture and render the intricate dynamics of the model, while providing a significant improvement in terms
of computational effort, allowing here to perform a short study of the amplification factor arising from
mistuning in the presence of strong nonlinearities.

1 Introduction

Despite the growing performance of modern computing, the need to perform finite element analyses on ever
more complex and large systems have made of component mode synthesis (CMS) methods [1–4] a key tool
for structural dynamicists. However, to improve the design process or to further our understanding of com-
plex systems, it can prove necessary to take into account nonlinear phenomena, which can severely impact
the efficiency of these reduction techniques, usually requiring to retain all nonlinear degrees of freedom
(DOF) as master coordinates to achieve sufficient accuracy. As a consequence, one way to improve classic
CMS methods would be to build a reduction basis allowing to capture the nonlinear effects and thus not
having to keep nonlinear DOF as master coordinates. With that in mind, recent works devoted to nonlinear
complex modes [5, 6] make them appear as an interesting tool to tackle this problematic.

A well-known topic of research in the field of turbomachinery is what is nowadays commonly referred
to as mistuning, denoting the loss of symmetry of a cyclic structure, such as a turbine or compressor bladed-
disk. Addressed a few decades ago [7–10], the subject has led to a rich and topical scientific literature [11],
reflecting the interest of both industrials and researchers in the matter. The phenomenon, resulting for in-
stance from tolerancing limitations and in-operation wear, is indeed of primary importance in designing such
components. It can, indeed, drastically disturb their dynamical behaviour, with a potential localization and
amplification of the vibrations on a few blades. As a consequence, a great deal of reduced-order modeling
methods dedicated to the analysis of mistuned structures can be found in the literature [12–15], but most of
them are unfortunately confined to the study of linear systems, and are either inapplicable or far less efficient
when confronted to nonlinearities.



The technique presented in this paper aims at providing a novel and efficient tool to study nonlinear and dis-
sipative systems without requiring any symmetry assumptions, being hence directly applicable to strongly
mistuned cyclic structures. The method is similar to a standard fixed-interface CMS, but furthers the re-
duction by not retaining the nonlinear DOFs as master coordinates, unlike the standard strategy. In order
to allow this while avoiding any detrimental loss of information, the method makes use of the concept of
nonlinear modes to capture the essence of the nonlinearities in the reduction basis. The fixed-interface lin-
ear modes of each substructure are thus replaced by fixed-interface nonlinear complex modes, which are
still supplemented by classic static modeshapes to account for the displacement of the interface DOFs. The
harmonic balance approach [5, 6, 16] used to compute them allows to benefit from the flexibility of numeri-
cal methods, compared to analytical approaches which can involve cumbersome algebra when dealing with
large-scale systems and strong, non-smooth nonlinearities.

A few reminders concerning nonlinear complex modes and their computation are given in Section 2, before
introducing the methodology used to build a nonlinear superelement from them. In Section 3, the method
is applied on a phenomenological model representative of an industrial bladed-disk exhibiting friction at the
blade-disk joints and subjected to structural mistuning, in order to appraise the performance of the proposed
nonlinear CMS. As commonly tackled when it comes to mistuning, the evolution of the amplification fac-
tor with the mistuning magnitude is addressed, in the linear domain as well as at a strongly nonlinear level
thanks to the capabilities of the proposed method.

2 Nonlinear reduced-order modeling

This section provides the theoretical background of the proposed reduced-order modeling strategy. The
notion of nonlinear complex mode is first reminded and illustrated on an academic system, and the equations
governing a nonlinear superelement are then derived. Since the method aims at being an extension of standard
fixed-interface CMS, it is referred to as CNCMS throughout the paper, which stands for component nonlinear
complex mode synthesis.

2.1 Nonlinear complex modes

Nonlinear modes and their applications have been thoroughly studied by structural dynamicists, and appear
nowadays as a viable extension to linear modal analysis in the study of some industrial systems. A com-
prehensive state-of-the-art on the subject can be found in [17]. The concept of nonlinear complex modes
was first introduced in [5] to provide an alternative to analytical approaches and handle efficiently strong
and non-smooth nonlinearities thanks to a modified harmonic balance formulation. Recent papers [6, 16, 18]
have been devoted to these modes and have proved their capability to deal with large-scale industrial systems
and mistuned cyclic structures. The interested reader is referred to the aforementionned references for further
information, as only the main steps of their computation are tackled below to introduce some notations.

In structural dynamics, the differential equations governing an autonomous system after spatial discretization
can usually take the form given by Eq. (1),

Mẍ(t) + Cẋ(t) + Kx(t) + fnl(x, ẋ) = 0 (1)

where the terms M, C, and K refer to the mass, viscous damping, and linear stiffness matrices, respectively,
and x is the vector of DOFs. The nonlinear restoring and dissipative forces acting on the system are gathered
in the column vector fnl. The n-th nonlinear complex mode of the system is sought as a multi-harmonic
pseudo-oscillation,

xn(t) =
1

2

{
nh∑
k=1

x̂n,ke
ktλn + c.c.

}
(2)



where λn = −βn+ iωn is the eigenvalue of the mode, with ωn the fundamental natural frequency and βn the
modal damping coefficient, and where c.c. refers to the complex conjugate terms. The substitution of xn(t)
in Eq. (1) yields a set of residual equations, which can be orthogonalized to the subspace spanned by the
basis functions {ek = eiktωn}, ∀k ∈ [[1, nh]] with respect to the bilinear form (3), where the overline denotes
the complex conjugate operator.

〈f |g〉 =
2

T

∫ T

0
f(t)g(t)dt , with T =

2π

ωn
(3)

As suggested in former papers [5, 6, 16, 18], it is assumed that the solution is undamped over the period T
used in Eq. (3), which allows to take advantage of the orthogonality properties of the complex exponentials
with respect to the bilinear form. The procedure results in a nonlinear algebraic system (4) governing the
mode,

∀k ∈ [[1, nh]] :[
(kλn)2M + (kλn)C + K

]
x̂n,k + 〈fnl|ek〉 = 0

(4)

in which 〈fnl|ek〉 can couple the whole set of equations. Unlike a standard harmonic balance procedure, the
system is here underdetermined due to the unknowns ωn and βn, and requires two additional equations to be
solved. These equations are usually taking the form of a continuation condition and a phase constraint [18],
which will not be detailed in this paper. The evaluation of 〈fnl|ek〉 at each iteration of the solver is achieved
by an alternating frequency-time (AFT) procedure [19], which allows to deal readily with non-smooth non-
linear forces such as contact and dry friction.

In order to illustrate the modal phenomenology of friction-damped systems, the first nonlinear complex
mode of the 2-DOFs system shown on Fig. (1) is computed. Table 1 lists the value taken by each parameter.
The evolution of the natural frequency ωn and modal damping βn with respect to the amplitude of vibration
|x1| is plotted on Fig. (2). These curves are classically referred to as backbones of the nonlinear mode, and
are well described and explained in former papers [5, 6, 18]. Let us just point out that the modal parameters
are controlled by the activation of the nonlinearity, here embodied by the amplitude |x1|, and that dry friction
is a softening nonlinearity that induces a reduction of the natural frequency and a potential maximum in
modal damping.

k1

c1

m1

k2

c2

m2

fnl(ẋ2)

x1(t) x2(t)

Figure 1: 2-DOFs dry-friction damped model

– (unit) m (kg) c (Ns/m) k (N/m)
DOF1 1 0.5 640
DOF2 0.02 0.5 40

Table 1: Values of the lumped-parameters for the 2-DOFs system

2.2 Nonlinear superelement equations

Assuming that the structure has been divided into a given set of substructures, this section derives the equa-
tions governing one superelement. Since only one substructure is considered throughout the section, the non-
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Figure 2: Nonlinear natural frequency and modal damping of the 2-DOFs model

linear superelement can perfectly be coupled to linear superelements computed by any other fixed-interface
CMS method, such as the Craig-Bampton method. It is assumed that at least one nonlinear complex mode
of the substructure has been computed by means of the methodology presented above for fixed boundary
conditions, and that the excitation is a multi-harmonic forcing of fundamental frequency Ω, which can be
written in the form,

fe(t) =
1

2

(∑
k

〈fe|ek〉eikΩt + c.c.

)
(5)

using the same notations than in Eq. (2).

Similarly to a classic fixed-interface CMS, the displacement field is approximated by a multiharmonic super-
position of internal eigenvectors ϕn,k, corresponding to the nonlinear modes computed for fixed boundaries,
and a set of static modeshapes ψs,k,

x(t) =
1

2

(∑
n

qn
∑
k

ϕn,k(|qn|)eikΩt +
∑
s

ps
∑
k

ψs,ke
ikΩt + c.c.

)
(6)

where qn and ps are the generalized coordinates of the nonlinear modes and static modeshapes, respectively.
The vectors ϕn,k are derived from the vectors x̂n,k of the previous section by a standard normalization,

x̂n,k = qnϕn,k (7)

The static modeshapes are here those of a classic Craig-Bampton CMS, regardless of the harmonic consid-
ered,

∀k ∈ [[1, nh]] :

ψs,k = −K−1
ii Kib with K =

[
Kii Kib

Kbi Kbb

]
(8)

where subscript i refers to internal DOFs and subscript b refers to boundary DOFs. It should be pointed out
that if different vectors ψs,k were to be used, the method could still be applied without any modifications.



For a given mode, the quantity driving the activation of the nonlinearities, and thus the modal parameters,
is the amplitude of its coordinate |qn|, formerly embodied by |x1| for the 2-DOFs system of the previous
section. Even if not explicitly written to improve the legibility, ϕn,k and λn are still functions of |qn| in the
rest of the paper.

Adding the excitation vector fe of Eq. (5) on the right-hand-side of Eq. (1) yields the nonlinear system
of differential equations to be solved. The substitution of Eq. (6) into this non-autonomous system yields
a set of residual equations, which can be orthogonalized to the subspace spanned by the basis functions
{ek = eikΩt} by means of the bilinear form defined in Eq. (3). The procedure leads to

∀k ∈ [[1, nh]] :[
(ikΩ)2M + (ikΩ)C + K

]{∑
n

qnϕn,k +
∑
s

psψs,k

}
+ 〈fnl|ek〉 = 〈fe|ek〉

(9)

In order to drop the projection of the nonlinear forces 〈fnl|ek〉, the sum of the corresponding terms in the
eigenproblems (4) is used to express it as a function of the nonlinear eigenvalues λn, leading to

∀k ∈ [[1, nh]] :∑
n

[
(ikΩ)2M + (ikΩ)C + K

]
qnϕn,k

−
∑
n

[
(kλn)2M + (kλn)C + K̃

]
qnϕn,k

+
∑
s

[
(ikΩ)2M + (ikΩ)C + K

]
psψs,k

−〈fe|ek〉 ≈ 0

(10)

where 〈fnl|ek〉 has been replaced by the terms on the second line. Since the nonlinear modes were computed
for fixed-boundary conditions, the stiffness matrix K̃ is not strictly equal to K. The last step of the procedure
is to orthogonalize the residual equations (10) to the subspace spanned by the nonlinear eigenvectors ϕn,k
and the static modeshapes ψs,k by means of the standard Hermitian form of Cn, yielding eventually the
governing equations of a nonlinear superelement,

∀k ∈ [[1, nh]] :

ρk =

[
Φ†k (ZkΦk − ξk) Φ†kZkΨk

Ψ†k (ZkΦk − ξk) Ψ†kZkΨk

]{
q
p

}
−

{
Φ†k〈fe|ek〉
Ψ†k〈fe|ek〉

}
= 0

(11)

where •† is the conjugate transpose operator, Zk =
[
(ikΩ)2M + (ikΩ)C + K

]
is the dynamic stiffness ma-

trix of the k-th harmonic, ξk =
[
MΦkΛ

2k2 + CΦkΛk + K̃Φk

]
is the term accounting for the substitution

of 〈fnl|ek〉, Φk is the matrix of the vectorsϕn,k, Ψk is the matrix made of the static modeshapesψs,k, and Λ
is the diagonal spectral matrix gathering the eigenvalues λn. Finally, the vectors q and p list the unknowns
of the system i.e. the coordinates qn et ps, respectively.

Once a superelement has been built for every substructure, the reduced-order model can be obtained by
coupling the superelements through the generalized coordinates ps, as in a classic fixed-interface CMS. It
should be pointed out that if the maximum harmonic order nh retained is larger than 1, the method results in
an overdetermined system. However, neglecting the equations corresponding to 〈fe|ek〉 = 0 has proved to
have a negligible influence on the solution. As a consequence, for a mono-harmonic excitation, the system
to be solved possesses as many unknowns as equations. Due to ϕn,k and λn being functions of the variables
|qn|, the final algebraic system is nonlinear and requires an iterative algorithm to be solved numerically.
Since a given nonlinear complex mode is computed over a discrete range of |qn|, it is necessary to perform
an interpolation at each iteration of the solver to get an approximation of ϕn,k and λn for the ongoing value
of |qn|.



3 Numerical applications

In this section, the method is tested on a phenomenological model of mistuned bladed disk subjected to dry
friction nonlinearities. First, the forced response synthesised by CNCMS is compared to that obtained with a
standard harmonic balance method (HBM), and the computational performance of both are appraised. Then,
a short study on the amplification factor arising from the mistuning is presented, in order to compare the
behaviour of the nonlinear system and that of the underlying linear structure.

3.1 Phenomenological model

The phenomenological model used in the following sections is made of 24 substructures, or sectors, rep-
resenting the bending behaviour of a bladed-disk. The fundamental sector of the ideal, perfectly tuned
structure, is shown on Fig. 3, with the structural lumped-parameters taking their values in Tab. 2. The damp-
ing coefficients of the dashpots are tuned so as to enforce a modal damping ratio of 0.1 for the first mode.
The nonlinear nature of the model arises from the dry friction element linking the DOFs representative of
the root of the blades and the disk, the nonlinear force being modeled by a hyperbolic tangent function [18].
The maximum number of harmonics nh retained for both nonlinear complex mode and HBM calculations is
taken equal to 5.

– (unit) Tip Middle Root Disk Ground
m (kg) 0.2 0.3 0.4 1.2 –
c (Ns/m) 1.3 0.7 26.7 33.3 0.4
k (106·N/m) 2 1 40 50 0.6

Table 2: Values of the parameters for the fundamental sector
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Figure 3: Fundamental sector of the cyclic model



In the next section, the structural mistuning is introduced by defining a second fundamental sector with
different stiffness coefficients for the blade middle and tip DOFs, as reported in Tab. 3. This new set of
structural parameters induces a 5% shift of the first natural frequency of the sector. These two fundamental
sectors are randomly distributed to form the bladed-disk, according to the pattern given in Tab. 4, where A
refers to the initial fundamental sector and B refers to the second one.

– (unit) Tip Middle Root Disk Ground
m (kg) 0.2 0.3 0.4 1.2 –
k (106·N/m) 1.8 0.9 40 50 0.6

Table 3: Values of the parameters of sector B

Sector 1 2 3 4 5 6 7 8 9 10 11 12
Type A B A A B B B A A B A B
Sector 13 14 15 16 17 18 19 20 21 22 23 24
Type A A B B A A A A A A B B

Table 4: Mistuning pattern

3.2 Forced response synthesis and computational performance

The first nonlinear complex mode of each fundamental sector is computed by means of the methodology
reminded in Sec.2.1 for fixed boundary conditions, and the corresponding superelements are then built from
Eq. (11), and finally assembled through the generaltized coordinates ps. Figure 4 compares the backbones
of the nonlinear mode of the two sectors, where the 5% frequency shift mentioned above can be clearly
observed on the upper plot.

The reduced-order model of this mistuned system is then subjected to a traveling wave excitation, as com-
monly encountered in bladed-disk dynamics [18], with an arbitrary number of 6 nodal diameters. The inten-
sity of the excitation is set high enough to bring the system close to the vibration level yielding the maximum
nonlinear damping i.e. in the vicinity of 1mm (see Fig. 4). The response of all 24 blades, monitored at the tip
DOFs, is plotted on Fig. 5 in blue solid lines, and compared to a reference in black dashed lines computed
by HBM. The impact of the mistuning can be clearly observed as the responses of the blades significantly
differ from one another. The accuracy of the CNCMS proves here very satisfactory.

Figure 6 reports the ratio of the computation time of the HBM with respect to the computation time of
the CNCMS to compute the response of the system, as a function of the excitation level F , so as to com-
pare the methods for different nonlinear levels. Throughout the excitation range, the CNCMS proves to be
significantly more time efficient than the HBM, outperforming the latter by a ratio of about 55 close to the
maximum nonlinear damping point (F=5N) i.e. to compute the response on Fig. 5. Viewing the perfor-
mance of the method, a quantitative analysis of the amplification factor, in the nonlinear domain, appears to
be feasible at reasonable computational cost, which is the topic of the next section.

3.3 Mistuning amplification factor in the presence of dry-friction

As mentioned in the introduction, a direct consequence of mistuning is a potential amplification of the vi-
bration level on a few blades of the structure. A lot of effort has been dedicated to the understanding and
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Figure 5: Response of all the blades of the mistuned system for a travelling wave excitation with 6 nodal
diameters (CNCMS -, HBM - -)
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Figure 6: Computation time ratio between HBM and CNCMS

prediction of this amplification phenomenon [11]. However, most of the time the analysis is restricted to lin-
ear bladed-disks, such studies typically requiring thousands of computations, which can prove very costly for
nonlinear systems. In light of the performance of the CNCMS presented in the previous section, such studies
could actually be led at a reasonable cost with this new method. To illustrate the promising capabilities of
the CNCMS to tackle this problematic, a few series of simulations were performed on the phenomenological
model of Sec. 3.1 in order to highlight the differences in terms of amplification between a dry-friction damped
bladed-disk and the underlying linear structure, as a function of the mistuning intensity. For these simula-
tions, the mistuning was applied separately to each sector, by addition of a random perturbation shifting the
backbone of the natural frequency ωn corresponding to the nonlinear mode used to build the superelement.
The standard deviation of this perturbation with respect to the nominal natural frequency is the parameter
controlling the mistuning level in the following results.

Figure 7 shows the evolution of the amplification factor after 12000 random draws, which proved suffi-
cient to ensure the convergence of the simulations. Similarly to the previous section, the forced responses
are computed for a travelling wave excitation with 6 nodal diameters. The nonlinear behaviour is obtained by
setting the excitation intensity close to the maximum nonlinear damping point (F=5N), and compared to a
linear analysis. It can be observed that the linear behaviour is perfectly standard [11], with a high sensitivity
range at low level of mistuning, a maximum amplification value, followed by a reduction of the amplification
factor. In the nonlinear domain however, the evolution of the amplification factor differs significantly from
that of the underlying linear system. The range of high sensitivity and the maximum in amplification are
still observed, although the mistuning level yielding the maximum slightly differs from the linear case. The
reduction in amplification is, on the other hand, nearly insignificant. Since intentional mistuning appears as
an interesting alternative to improve the robustness of the design [11], this result could be of great interest if
extended to industrial models, as the curves on Fig 7 show that the nonlinear effects can significantly affect
the way a given mistuning level amplifies the response.

4 Conclusion

This paper presented a novel reduced-order modeling technique to study nonlinear vibrations in dissipa-
tive systems, the CNCMS. The method can be seen as an extension of the well-known fixed-interface CMS
method, making use of nonlinear complex modes instead of classic linear modes in the reduction basis. It
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Figure 7: Amplification factor arising from the mistuning (linear domain -, nonlinear domain -)

has proved very promising in the study mistuned cyclic structures such as turbines and compressors bladed-
disks, enabling a drastic reduction of the computation time compared to a standard HBM procedure. Since
the method is quite general and does not require any symmetry assumption to derive the expression of a su-
perelement, it could be directly used in the study of non-cyclic structures. As a fixed-interface CMS method,
it could be used in combination with other linear fixed-interface CMS methods, as long as the same interface
DOFs are retained in the superelements to be assembled.

Thanks to the flexibility of nonlinear complex modes, a great variety of nonlinearities could be addressed,
such as large displacement and large deformation, without any loss in order reduction. The method could
also be adapted to other families of substructuring methods, such as free-interface or hybrid CMS. The au-
thors are currently working on the implementation of the method on a 3D finite element model, in order to
appraise its performance on full scale industrial components.
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