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A reduced-order modeling technique for the study of nonlinear vibrations in dissipative systems

This work is dedicated to the presentation and testing of a new reduced-order modeling technique, devised in order to handle effectively vibrations of phenomenological models as well as large-scale industrial systems, in the presence of strongly activated nonlinearities. The method is quite flexible and does not require any restrictions concerning the nature of the nonlinear effects. Both smooth and non-smooth nonlinearities can be tackled, as well as dissipative phenomena. In this paper the main steps of this new reduction strategy are introduced, and the method is tested on a lumped-parameter model, representative of the bending behaviour of an industrial bladed-disk subjected to dry friction at the blade-disk joints. The method proves to efficiently capture and render the intricate dynamics of the model, while providing a significant improvement in terms of computational effort, allowing here to perform a short study of the amplification factor arising from mistuning in the presence of strong nonlinearities.

Introduction

Despite the growing performance of modern computing, the need to perform finite element analyses on ever more complex and large systems have made of component mode synthesis (CMS) methods [START_REF] Bampton | Coupling of substructures for dynamic analyses[END_REF][START_REF] Craig | Free-interface methods of substructure coupling for dynamic analysis[END_REF][START_REF] Klerk | General framework for dynamic substructuring: History, review and classification of techniques[END_REF][START_REF] Bathe | Finite Element Procedures[END_REF] a key tool for structural dynamicists. However, to improve the design process or to further our understanding of complex systems, it can prove necessary to take into account nonlinear phenomena, which can severely impact the efficiency of these reduction techniques, usually requiring to retain all nonlinear degrees of freedom (DOF) as master coordinates to achieve sufficient accuracy. As a consequence, one way to improve classic CMS methods would be to build a reduction basis allowing to capture the nonlinear effects and thus not having to keep nonlinear DOF as master coordinates. With that in mind, recent works devoted to nonlinear complex modes [START_REF] Laxalde | Complex non-linear modal analysis for mechanical systems: Application to turbomachinery bladings with friction interfaces[END_REF][START_REF] Krack | A method for nonlinear modal analysis and synthesis: Application to harmonically forced and self-excited mechanical systems[END_REF] make them appear as an interesting tool to tackle this problematic.

A well-known topic of research in the field of turbomachinery is what is nowadays commonly referred to as mistuning, denoting the loss of symmetry of a cyclic structure, such as a turbine or compressor bladeddisk. Addressed a few decades ago [START_REF] Whitehead | Effect of mistuning on the vibration of turbo-machine blades induced by wakes[END_REF][START_REF] Wagner | Coupling of turbomachine blade vibrations through the rotor[END_REF][START_REF] Dye | Vibration amplitudes of compressor blades resulting from scatter in blade natural frequencies[END_REF][START_REF] Ewins | The effects of detuning upon the forced vibrations of bladed disks[END_REF], the subject has led to a rich and topical scientific literature [START_REF] Castanier | Modeling and analysis of mistuned bladed disk vibration: Current status and emerging directions[END_REF], reflecting the interest of both industrials and researchers in the matter. The phenomenon, resulting for instance from tolerancing limitations and in-operation wear, is indeed of primary importance in designing such components. It can, indeed, drastically disturb their dynamical behaviour, with a potential localization and amplification of the vibrations on a few blades. As a consequence, a great deal of reduced-order modeling methods dedicated to the analysis of mistuned structures can be found in the literature [START_REF] Castanier | A reduced order modeling technique for mistuned bladed disks[END_REF][START_REF] Bladh | Reduced order modeling and vibration analysis of mistuned bladed disk assemblies with shrouds[END_REF][START_REF] Yang | A reduced-order model of mistuning using a subset of nominal system modes[END_REF][START_REF] Mbaye | Robust analysis of design in vibration of turbomachines[END_REF], but most of them are unfortunately confined to the study of linear systems, and are either inapplicable or far less efficient when confronted to nonlinearities.

The technique presented in this paper aims at providing a novel and efficient tool to study nonlinear and dissipative systems without requiring any symmetry assumptions, being hence directly applicable to strongly mistuned cyclic structures. The method is similar to a standard fixed-interface CMS, but furthers the reduction by not retaining the nonlinear DOFs as master coordinates, unlike the standard strategy. In order to allow this while avoiding any detrimental loss of information, the method makes use of the concept of nonlinear modes to capture the essence of the nonlinearities in the reduction basis. The fixed-interface linear modes of each substructure are thus replaced by fixed-interface nonlinear complex modes, which are still supplemented by classic static modeshapes to account for the displacement of the interface DOFs. The harmonic balance approach [START_REF] Laxalde | Complex non-linear modal analysis for mechanical systems: Application to turbomachinery bladings with friction interfaces[END_REF][START_REF] Krack | A method for nonlinear modal analysis and synthesis: Application to harmonically forced and self-excited mechanical systems[END_REF][START_REF] Krack | On the computation of the slow dynamics of nonlinear modes of mechanical systems[END_REF] used to compute them allows to benefit from the flexibility of numerical methods, compared to analytical approaches which can involve cumbersome algebra when dealing with large-scale systems and strong, non-smooth nonlinearities.

A few reminders concerning nonlinear complex modes and their computation are given in Section 2, before introducing the methodology used to build a nonlinear superelement from them. In Section 3, the method is applied on a phenomenological model representative of an industrial bladed-disk exhibiting friction at the blade-disk joints and subjected to structural mistuning, in order to appraise the performance of the proposed nonlinear CMS. As commonly tackled when it comes to mistuning, the evolution of the amplification factor with the mistuning magnitude is addressed, in the linear domain as well as at a strongly nonlinear level thanks to the capabilities of the proposed method.

Nonlinear reduced-order modeling

This section provides the theoretical background of the proposed reduced-order modeling strategy. The notion of nonlinear complex mode is first reminded and illustrated on an academic system, and the equations governing a nonlinear superelement are then derived. Since the method aims at being an extension of standard fixed-interface CMS, it is referred to as CNCMS throughout the paper, which stands for component nonlinear complex mode synthesis.

Nonlinear complex modes

Nonlinear modes and their applications have been thoroughly studied by structural dynamicists, and appear nowadays as a viable extension to linear modal analysis in the study of some industrial systems. A comprehensive state-of-the-art on the subject can be found in [START_REF] Kerschen | Nonlinear normal modes, part i: A useful framework for the structural dynamicist[END_REF]. The concept of nonlinear complex modes was first introduced in [START_REF] Laxalde | Complex non-linear modal analysis for mechanical systems: Application to turbomachinery bladings with friction interfaces[END_REF] to provide an alternative to analytical approaches and handle efficiently strong and non-smooth nonlinearities thanks to a modified harmonic balance formulation. Recent papers [START_REF] Krack | A method for nonlinear modal analysis and synthesis: Application to harmonically forced and self-excited mechanical systems[END_REF][START_REF] Krack | On the computation of the slow dynamics of nonlinear modes of mechanical systems[END_REF][START_REF] Joannin | Nonlinear modal analysis of mistuned periodic structures subjected to dry friction[END_REF] have been devoted to these modes and have proved their capability to deal with large-scale industrial systems and mistuned cyclic structures. The interested reader is referred to the aforementionned references for further information, as only the main steps of their computation are tackled below to introduce some notations.

In structural dynamics, the differential equations governing an autonomous system after spatial discretization can usually take the form given by Eq. (1),

Mẍ(t) + C ẋ(t) + Kx(t) + f nl (x, ẋ) = 0 (1)
where the terms M, C, and K refer to the mass, viscous damping, and linear stiffness matrices, respectively, and x is the vector of DOFs. The nonlinear restoring and dissipative forces acting on the system are gathered in the column vector f nl . The n-th nonlinear complex mode of the system is sought as a multi-harmonic pseudo-oscillation,

x n (t) = 1 2 n h k=1 xn,k e ktλn + c.c. ( 2 
)
where λ n = -β n + iω n is the eigenvalue of the mode, with ω n the fundamental natural frequency and β n the modal damping coefficient, and where c.c. refers to the complex conjugate terms. The substitution of x n (t) in Eq. ( 1) yields a set of residual equations, which can be orthogonalized to the subspace spanned by the basis functions {e k = e iktωn }, ∀k ∈ [[1, n h ]] with respect to the bilinear form [START_REF] Klerk | General framework for dynamic substructuring: History, review and classification of techniques[END_REF], where the overline denotes the complex conjugate operator.

f |g = 2 T T 0 f (t)g(t)dt , with T = 2π ω n (3) 
As suggested in former papers [START_REF] Laxalde | Complex non-linear modal analysis for mechanical systems: Application to turbomachinery bladings with friction interfaces[END_REF][START_REF] Krack | A method for nonlinear modal analysis and synthesis: Application to harmonically forced and self-excited mechanical systems[END_REF][START_REF] Krack | On the computation of the slow dynamics of nonlinear modes of mechanical systems[END_REF][START_REF] Joannin | Nonlinear modal analysis of mistuned periodic structures subjected to dry friction[END_REF], it is assumed that the solution is undamped over the period T used in Eq. ( 3), which allows to take advantage of the orthogonality properties of the complex exponentials with respect to the bilinear form. The procedure results in a nonlinear algebraic system (4) governing the mode,

∀k ∈ [[1, n h ]] : (kλ n ) 2 M + (kλ n )C + K xn,k + f nl |e k = 0 (4) 
in which f nl |e k can couple the whole set of equations. Unlike a standard harmonic balance procedure, the system is here underdetermined due to the unknowns ω n and β n , and requires two additional equations to be solved. These equations are usually taking the form of a continuation condition and a phase constraint [START_REF] Joannin | Nonlinear modal analysis of mistuned periodic structures subjected to dry friction[END_REF], which will not be detailed in this paper. The evaluation of f nl |e k at each iteration of the solver is achieved by an alternating frequency-time (AFT) procedure [START_REF] Cameron | An alternating frequency/time domain method for calculating the steadystate response of nonlinear dynamic systems[END_REF], which allows to deal readily with non-smooth nonlinear forces such as contact and dry friction.

In order to illustrate the modal phenomenology of friction-damped systems, the first nonlinear complex mode of the 2-DOFs system shown on Fig. ( 1) is computed. Table 1 lists the value taken by each parameter. The evolution of the natural frequency ω n and modal damping β n with respect to the amplitude of vibration |x 1 | is plotted on Fig. [START_REF] Craig | Free-interface methods of substructure coupling for dynamic analysis[END_REF]. These curves are classically referred to as backbones of the nonlinear mode, and are well described and explained in former papers [START_REF] Laxalde | Complex non-linear modal analysis for mechanical systems: Application to turbomachinery bladings with friction interfaces[END_REF][START_REF] Krack | A method for nonlinear modal analysis and synthesis: Application to harmonically forced and self-excited mechanical systems[END_REF][START_REF] Joannin | Nonlinear modal analysis of mistuned periodic structures subjected to dry friction[END_REF]. Let us just point out that the modal parameters are controlled by the activation of the nonlinearity, here embodied by the amplitude |x 1 |, and that dry friction is a softening nonlinearity that induces a reduction of the natural frequency and a potential maximum in modal damping. Table 1: Values of the lumped-parameters for the 2-DOFs system
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Nonlinear superelement equations

Assuming that the structure has been divided into a given set of substructures, this section derives the equations governing one superelement. Since only one substructure is considered throughout the section, the non- linear superelement can perfectly be coupled to linear superelements computed by any other fixed-interface CMS method, such as the Craig-Bampton method. It is assumed that at least one nonlinear complex mode of the substructure has been computed by means of the methodology presented above for fixed boundary conditions, and that the excitation is a multi-harmonic forcing of fundamental frequency Ω, which can be written in the form,

β n (rad/s)
f e (t) = 1 2 k f e |e k e ikΩt + c.c. (5) 
using the same notations than in Eq. ( 2).

Similarly to a classic fixed-interface CMS, the displacement field is approximated by a multiharmonic superposition of internal eigenvectors ϕ n,k , corresponding to the nonlinear modes computed for fixed boundaries, and a set of static modeshapes ψ s,k ,

x(t) = 1 2 n q n k ϕ n,k (|q n |)e ikΩt + s p s k ψ s,k e ikΩt + c.c. ( 6 
)
where q n and p s are the generalized coordinates of the nonlinear modes and static modeshapes, respectively. The vectors ϕ n,k are derived from the vectors xn,k of the previous section by a standard normalization,

xn,k = q n ϕ n,k (7) 
The static modeshapes are here those of a classic Craig-Bampton CMS, regardless of the harmonic considered, ∀k ∈ [[1, n h ]] :

ψ s,k = -K -1 ii K ib with K = K ii K ib K bi K bb (8) 
where subscript i refers to internal DOFs and subscript b refers to boundary DOFs. It should be pointed out that if different vectors ψ s,k were to be used, the method could still be applied without any modifications.

For a given mode, the quantity driving the activation of the nonlinearities, and thus the modal parameters, is the amplitude of its coordinate |q n |, formerly embodied by |x 1 | for the 2-DOFs system of the previous section. Even if not explicitly written to improve the legibility, ϕ n,k and λ n are still functions of |q n | in the rest of the paper.

Adding the excitation vector f e of Eq. ( 5) on the right-hand-side of Eq. ( 1) yields the nonlinear system of differential equations to be solved. The substitution of Eq. ( 6) into this non-autonomous system yields a set of residual equations, which can be orthogonalized to the subspace spanned by the basis functions {e k = e ikΩt } by means of the bilinear form defined in Eq. ( 3). The procedure leads to

∀k ∈ [[1, n h ]] : (ikΩ) 2 M + (ikΩ)C + K n q n ϕ n,k + s p s ψ s,k + f nl |e k = f e |e k (9) 
In order to drop the projection of the nonlinear forces f nl |e k , the sum of the corresponding terms in the eigenproblems ( 4) is used to express it as a function of the nonlinear eigenvalues λ n , leading to

∀k ∈ [[1, n h ]] : n (ikΩ) 2 M + (ikΩ)C + K q n ϕ n,k - n (kλ n ) 2 M + (kλ n )C + K q n ϕ n,k + s (ikΩ) 2 M + (ikΩ)C + K p s ψ s,k -f e |e k ≈ 0 (10) 
where f nl |e k has been replaced by the terms on the second line. Since the nonlinear modes were computed for fixed-boundary conditions, the stiffness matrix K is not strictly equal to K. The last step of the procedure is to orthogonalize the residual equations [START_REF] Ewins | The effects of detuning upon the forced vibrations of bladed disks[END_REF] to the subspace spanned by the nonlinear eigenvectors ϕ n,k and the static modeshapes ψ s,k by means of the standard Hermitian form of C n , yielding eventually the governing equations of a nonlinear superelement,

∀k ∈ [[1, n h ]] : ρ k = Φ † k (Z k Φ k -ξ k ) Φ † k Z k Ψ k Ψ † k (Z k Φ k -ξ k ) Ψ † k Z k Ψ k q p - Φ † k f e |e k Ψ † k f e |e k = 0 (11) 
where

• † is the conjugate transpose operator, Z k = (ikΩ) 2 M + (ikΩ)C + K is the dynamic stiffness ma- trix of the k-th harmonic, ξ k = MΦ k Λ 2 k 2 + CΦ k Λk + KΦ k
is the term accounting for the substitution of f nl |e k , Φ k is the matrix of the vectors ϕ n,k , Ψ k is the matrix made of the static modeshapes ψ s,k , and Λ is the diagonal spectral matrix gathering the eigenvalues λ n . Finally, the vectors q and p list the unknowns of the system i.e. the coordinates q n et p s , respectively.

Once a superelement has been built for every substructure, the reduced-order model can be obtained by coupling the superelements through the generalized coordinates p s , as in a classic fixed-interface CMS. It should be pointed out that if the maximum harmonic order n h retained is larger than 1, the method results in an overdetermined system. However, neglecting the equations corresponding to f e |e k = 0 has proved to have a negligible influence on the solution. As a consequence, for a mono-harmonic excitation, the system to be solved possesses as many unknowns as equations. Due to ϕ n,k and λ n being functions of the variables |q n |, the final algebraic system is nonlinear and requires an iterative algorithm to be solved numerically. Since a given nonlinear complex mode is computed over a discrete range of |q n |, it is necessary to perform an interpolation at each iteration of the solver to get an approximation of ϕ n,k and λ n for the ongoing value of |q n |.

Numerical applications

In this section, the method is tested on a phenomenological model of mistuned bladed disk subjected to dry friction nonlinearities. First, the forced response synthesised by CNCMS is compared to that obtained with a standard harmonic balance method (HBM), and the computational performance of both are appraised. Then, a short study on the amplification factor arising from the mistuning is presented, in order to compare the behaviour of the nonlinear system and that of the underlying linear structure.

Phenomenological model

The phenomenological model used in the following sections is made of 24 substructures, or sectors, representing the bending behaviour of a bladed-disk. The fundamental sector of the ideal, perfectly tuned structure, is shown on Fig. 3, with the structural lumped-parameters taking their values in Tab. 2. The damping coefficients of the dashpots are tuned so as to enforce a modal damping ratio of 0.1 for the first mode.

The nonlinear nature of the model arises from the dry friction element linking the DOFs representative of the root of the blades and the disk, the nonlinear force being modeled by a hyperbolic tangent function [START_REF] Joannin | Nonlinear modal analysis of mistuned periodic structures subjected to dry friction[END_REF]. The maximum number of harmonics n h retained for both nonlinear complex mode and HBM calculations is taken equal to 5.

- 

Forced response synthesis and computational performance

The first nonlinear complex mode of each fundamental sector is computed by means of the methodology reminded in Sec.2.1 for fixed boundary conditions, and the corresponding superelements are then built from Eq. ( 11), and finally assembled through the generaltized coordinates p s . Figure 4 compares the backbones of the nonlinear mode of the two sectors, where the 5% frequency shift mentioned above can be clearly observed on the upper plot.

The reduced-order model of this mistuned system is then subjected to a traveling wave excitation, as commonly encountered in bladed-disk dynamics [START_REF] Joannin | Nonlinear modal analysis of mistuned periodic structures subjected to dry friction[END_REF], with an arbitrary number of 6 nodal diameters. The intensity of the excitation is set high enough to bring the system close to the vibration level yielding the maximum nonlinear damping i.e. in the vicinity of 1mm (see Fig. 4). The response of all 24 blades, monitored at the tip DOFs, is plotted on Fig. 5 in blue solid lines, and compared to a reference in black dashed lines computed by HBM. The impact of the mistuning can be clearly observed as the responses of the blades significantly differ from one another. The accuracy of the CNCMS proves here very satisfactory.

Figure 6 reports the ratio of the computation time of the HBM with respect to the computation time of the CNCMS to compute the response of the system, as a function of the excitation level F , so as to compare the methods for different nonlinear levels. Throughout the excitation range, the CNCMS proves to be significantly more time efficient than the HBM, outperforming the latter by a ratio of about 55 close to the maximum nonlinear damping point (F =5N) i.e. to compute the response on Fig. 5. Viewing the performance of the method, a quantitative analysis of the amplification factor, in the nonlinear domain, appears to be feasible at reasonable computational cost, which is the topic of the next section.

Mistuning amplification factor in the presence of dry-friction

As mentioned in the introduction, a direct consequence of mistuning is a potential amplification of the vibration level on a few blades of the structure. A lot of effort has been dedicated to the understanding and prediction of this amplification phenomenon [START_REF] Castanier | Modeling and analysis of mistuned bladed disk vibration: Current status and emerging directions[END_REF]. However, most of the time the analysis is restricted to linear bladed-disks, such studies typically requiring thousands of computations, which can prove very costly for nonlinear systems. In light of the performance of the CNCMS presented in the previous section, such studies could actually be led at a reasonable cost with this new method. To illustrate the promising capabilities of the CNCMS to tackle this problematic, a few series of simulations were performed on the phenomenological model of Sec. 3.1 in order to highlight the differences in terms of amplification between a dry-friction damped bladed-disk and the underlying linear structure, as a function of the mistuning intensity. For these simulations, the mistuning was applied separately to each sector, by addition of a random perturbation shifting the backbone of the natural frequency ω n corresponding to the nonlinear mode used to build the superelement. The standard deviation of this perturbation with respect to the nominal natural frequency is the parameter controlling the mistuning level in the following results.

Figure 7 shows the evolution of the amplification factor after 12000 random draws, which proved sufficient to ensure the convergence of the simulations. Similarly to the previous section, the forced responses are computed for a travelling wave excitation with 6 nodal diameters. The nonlinear behaviour is obtained by setting the excitation intensity close to the maximum nonlinear damping point (F =5N), and compared to a linear analysis. It can be observed that the linear behaviour is perfectly standard [START_REF] Castanier | Modeling and analysis of mistuned bladed disk vibration: Current status and emerging directions[END_REF], with a high sensitivity range at low level of mistuning, a maximum amplification value, followed by a reduction of the amplification factor. In the nonlinear domain however, the evolution of the amplification factor differs significantly from that of the underlying linear system. The range of high sensitivity and the maximum in amplification are still observed, although the mistuning level yielding the maximum slightly differs from the linear case. The reduction in amplification is, on the other hand, nearly insignificant. Since intentional mistuning appears as an interesting alternative to improve the robustness of the design [START_REF] Castanier | Modeling and analysis of mistuned bladed disk vibration: Current status and emerging directions[END_REF], this result could be of great interest if extended to industrial models, as the curves on Fig 7 show that the nonlinear effects can significantly affect the way a given mistuning level amplifies the response.

Conclusion

This paper presented a novel reduced-order modeling technique to study nonlinear vibrations in dissipative systems, the CNCMS. The method can be seen as an extension of the well-known fixed-interface CMS method, making use of nonlinear complex modes instead of classic linear modes in the reduction basis. It has proved very promising in the study mistuned cyclic structures such as turbines and compressors bladeddisks, enabling a drastic reduction of the computation time compared to a standard HBM procedure. Since the method is quite general and does not require any symmetry assumption to derive the expression of a superelement, it could be directly used in the study of non-cyclic structures. As a fixed-interface CMS method, it could be used in combination with other linear fixed-interface CMS methods, as long as the same interface DOFs are retained in the superelements to be assembled.

Thanks to the flexibility of nonlinear complex modes, a great variety of nonlinearities could be addressed, such as large displacement and large deformation, without any loss in order reduction. The method could also be adapted to other families of substructuring methods, such as free-interface or hybrid CMS. The authors are currently working on the implementation of the method on a 3D finite element model, in order to appraise its performance on full scale industrial components.
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 2 Values of the parameters for the fundamental sector Fundamental sector of the cyclic model In the next section, the structural mistuning is introduced by defining a second fundamental sector with different stiffness coefficients for the blade middle and tip DOFs, as reported in Tab. 3. This new set of structural parameters induces a 5% shift of the first natural frequency of the sector. These two fundamental sectors are randomly distributed to form the bladed-disk, according to the pattern given in Tab. 4, where A refers to the initial fundamental sector and B refers to the second one.

	(unit)	Tip Middle Root Disk Ground
	m (kg)	0.2	0.3	0.4	1.2	-
	c (Ns/m)	1.3	0.7	26.7 33.3	0.4
	k (10 6 •N/m)	2	1	40	50	0.6
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Table 3 :

 3 Values of the parameters of sector B

	Sector 1	2	3	4	5	6	7	8	9 10 11 12
	Type	A B A A B B B A A B A B
	Sector 13 14 15 16 17 18 19 20 21 22 23 24
	Type	A A B B A A A A A A B B

Table 4 :

 4 Mistuning pattern