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Abstract. This work is devoted to the development of a new dynamic substructuring method
inspired by classic fixed-interface component mode synthesis, in order to compute the steady-
state vibrations of dissipative, nonlinear structures. For each substructure, the displacement
field is sought as a multiharmonic oscillation made of standard static mode shapes, supple-
mented by the eigenvectors of the nonlinear complex modes of the substructure computed with
fixed-boundary conditions. The method eventually leads to a strongly reduced nonlinear alge-
braic system, easily solved by iterative solvers. The procedure is tested on a lumped parameter
model of bladed disk subjected to dry friction nonlinearities, with or without structural mis-
tuning, and proves very efficient in terms of computational cost. These results emphasize the
promising capabilities of this new reduced-order modeling technique to tackle such nonlinear
systems exhibiting high modal density.
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1 INTRODUCTION

Reduced-order modeling has always been a key problematic in computational mechanics.
Despite the soaring hardware and software capabilities offered by modern electronics and com-
puting, finite element analysis of large scale industrial systems remains challenging when some
complex and nonlinear phenomena are to be included in the design process. Component mode
synthesis (CMS) methods [1, 2, 3, 4] have been widely used in structural dynamics, but can
unfortunately prove ill-suited to the study of nonlinear systems when a large number of degrees-
of-freedom (DOF) are impacted by strong nonlinear effects. For such systems, standard tech-
niques may indeed fail to find a satisfying compromise between order-reduction and accuracy,
due to the lack of representativity of the reduction basis. From this perspective, owing to their
ability to capture the essence of the nonlinearities [5, 6], nonlinear complex modes are inter-
esting candidates in devising new effective and efficient approaches to reduce nonlinear models.

In bladed-disk dynamics, the loss of cyclic symmetry of the structures, referred to as mistun-
ing, has been a leading subject of research, first tackled by a few authors in the 1960s [7, 8, 9, 10]
and widely studied since then [11]. This phenomenon mainly denotes the discrepancies be-
tween the blades of the assembly, resulting for instance from the manufacturing process and
in-operation wear, but which can also be intentionally introduced in the nominal design. Even
though the mistuning of cyclic structures is known to potentially induce a significant increase
in the vibration level, it has also proved, indeed, to improve the robustness of the design against
hazardous instabilities such as flutter. In order to perform quantitative analyses on industrial
models, several mistuning dedicated reduced-order modeling techniques have been devised to
efficiently handle large scale systems [12, 13, 14, 15]. Unfortunately, most of them are not ap-
plicable in the presence of nonlinearities, hence the need for further endeavours devoted to the
reduced-order modeling of nonlinear, mistuned cyclic structures.

In the present paper, a new approach is proposed to build reduced-order models of nonlinear
and dissipative systems. The method does not require any cyclic or nearly-cyclic symmetry
assumption, and can thus be directly applied to the study of strongly mistuned bladed-disks.
The procedure mimics a standard Craig-Bampton CMS, but makes use of the notion of non-
linear complex modes to build nonlinear superelements, including all internal nonlinear DOFs
in the reduction basis. The resulting algebraic system can thus be much smaller than that of
a standard harmonic balance method (HBM), which requires to retain all nonlinear DOFs as
master coordinates. The flexibility of nonlinear complex modes [5, 6, 16] makes this reduction
technique suitable for the study of a broad range of nonlinearities, dissipative and non-smooth
ones included.

In Section 2, the main steps of the computation of nonlinear complex modes are first re-
minded, and the nonlinear superelement equations are derived. A lumped-parameter model of
bladed-disk exhibiting dry friction nonlinear elements is then used in Section 3 to illustrate the
capability of this new technique. First, the method is tested on a tuned system, and is then used
to synthesise the response after application of a random mistuning pattern. Section 4 presents
the performance of the procedure, and its potential limitations.
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2 NONLINEAR COMPONENT MODE SYNTHESIS

This section aims at summarizing the main steps to build a nonlinear superelement. The
computation of nonlinear complex modes is briefly reminded in Section 2.1, and the notion
is illustrated on a basic 2-DOFs system. In Section 2.2, the system of equations defining a
nonlinear superelement are then derived. As mentioned in the introduction, this new reduced-
order modeling procedure shares some similarities with classic CMS methods, and is hereafter
referred to as CNCMS, for component nonlinear complex mode synthesis.

2.1 Nonlinear complex modes

The concept of nonlinear mode is nowadays well established in the community of nonlinear
dynamicists. A comprehensive review listing all major contributions and techniques applica-
ble to structural dynamics is proposed in [17]. Nonlinear complex modes are an extension
of nonlinear normal modes to dissipative systems, that aims at taking advantage of numerical
and frequency-based formulation such as the harmonic balance method to compute the free
vibrations of damped nonlinear structures. First introduced in [5], they have proved tremen-
dously interesting to study all sorts of nonlinear systems [6, 16, 18], and are fundamentals to
the reduced-order modeling technique presented here. Only a brief reminder is provided here
to introduce some notations, but more details can be found in [5, 6, 16, 18].

Nonlinear complex modes refer to pure or pseudo-oscillations of the system of nonlinear
differential equations (1). The terms are defined in a classic manner, with M the mass ma-
trix, C the viscous damping matrix, K the linear stiffness matrix, and fnl a term of nonlinear
restoring and dissipative forces.

Mẍ(t) + Cẋ(t) + Kx(t) + fnl(x, ẋ) = 0 (1)

The n-th mode xn is approximated by a truncated series of damped oscillations of fundamental
frequency ωn and modal damping βn, such that with λn = −βn + iωn and c.c. referring to the
complex conjugate terms,

xn(t) =
1

2

{
nh∑
k=1

x̂n,ke
ktλn + c.c.

}
(2)

Similarly to standard Galerkin methods, the approximation (2) is then substituted into the gov-
erning equations (1), and the orthogonality of the residual to the subspace spanned by the func-
tions {ek = eiktωn}, ∀k ∈ [[1, nh]], is enforced, with respect to the inner product (3) where g(t)
is the complex conjugate of g(t). In order to take advantage of the orthogonality property of the
complex exponential functions, the solution is assumed to be undamped over the period T used
in the inner product, which has proved to have a negligible effects on the accuracy of the results
(see [5] for further information).

〈f |g〉 =
2

T

∫ T

0

f(t)g(t)dt , with T =
2π

ωn
(3)

The resulting algebraic system (4) is the eigenproblem corresponding to the nonlinear com-
plex mode xn, where the term 〈fnl|ek〉 potentially couples all the equations. This system is
underdetermined and must be supplemented with two equations, classically in the form of a
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phase condition and a continuation scheme, which are not detailed here. The interested reader
is referred to [18] for further information.

∀k ∈ [[1, nh]] :[
(kλn)2M + (kλn)C + K

]
x̂n,k + 〈fnl|ek〉 = 0

(4)

The flexibility of nonlinear complex modes arises, among other things, from their applicabil-
ity to a broad range of nonlinearities, including non-smooth forces. This is made possible and
easy to implement by means of the alternating frequency-time scheme (AFT) proposed in [19],
and widely used in conjunction with harmonic balance methods [5, 16, 18]. This procedure
uses direct (F) and inverse (F−1) Fourier transforms to compute 〈fnl|ek〉 from the time-domain
definition of the nonlinear terms.

To exemplify nonlinear complex modes, let us now consider the academic system on Fig-
ure 1 subjected to a dry friction force, with the lumped-parameters taking their values in Table 1.
Figure 2 shows the variations of the first natural frequency and corresponding modal damping
as a function of the displacement amplitude |x1|. These so-called backbones are thoroughly
explained in previous papers [5, 6, 18] and will not be discussed here. However, it should be re-
membered in the following sections that nonlinear complex modes are functions of a parameter
describing the intensity of the nonlinear effects, here the amplitude of vibration |x1|, and that
the modes of friction-damped systems exhibit an optimum damping point, corresponding to a
maximum dissipation arising from the nonlinearity.

k1

c1

m1

k2

c2

m2

fnl(ẋ2)

x1(t) x2(t)

Figure 1: 2-DOFs dry-friction damped model

– (unit) m (kg) c (Ns/m) k (N/m)
DOF1 1 0.5 640
DOF2 0.02 0.5 40

Table 1: Values of the lumped-parameters for the 2-DOFs system

2.2 Nonlinear superelement

This section is dedicated to the derivation of the equations governing one superelement, built
by means of nonlinear complex modes. Each substructure being treated indepedently, the non-
linear superelement could be perfectly used in conjunction with standard CMS superelements
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Figure 2: Nonlinear natural frequency and modal damping of the 2-DOFs model

using linear modes. This reduced-order model is devoted to the study of forced vibrations aris-
ing from harmonic or multi-harmonic excitations, of the form given in Eq. (5) where Ω is the
fundamental forcing frequency.

fe(t) =
1

2

(∑
k

〈fe|ek〉eikΩt + c.c.

)
(5)

The displacement of the substructure is sought as a multi-harmonic oscillation (6) made of
nonlinear eigenvectors ϕn,k corresponding to fixed-interface nonlinear complex modes, supple-
mented by linear static modes ψs,k as in a standard fixed-interface CMS [1]. The generalized
coordinates qn and ps corresponding to the nonlinear complex modes and static modes, respec-
tively, are the new unknowns of the problem.

x(t) =
1

2

(∑
n

qn
∑
k

ϕn,k(|qn|)eikΩt +
∑
s

ps
∑
k

ψs,ke
ikΩt + c.c.

)
(6)

The relation between the nonlinear eigenvectors ϕn,k and the k-th harmonics x̂n,k in Eq. (2) is
given by Eq. (7).

x̂n,k = qnϕn,k (7)

In the following, the vectors ψs,k are all taken equal to the standard static modeshapes of a
Craig-Bampton CMS, given by Eq. (8) when the DOFs are partitionned into a set of internal
(subscript i) and boundary (subscript b) DOFs, although different vectors could be used.

∀k ∈ [[1, nh]] :

ψs,k = −K−1
ii Kib with K =

[
Kii Kib

Kbi Kbb

]
(8)
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As mentioned in Section 2.1 for the 2-DOFs model, the modal parameters ϕn,k and λn are
functions of a parameter describing the activation of the nonlinearity. In Eq. (6), this parameter
is the amplitude |qn| of the coordinate of the corresponding mode. In theory, since the mode
is complex, two variables should be used to describe its variations (i.e. the real and imaginary
parts of qn), but it was shown in [5] that chosing only the amplitude |qn| yields excellent results
for dry-friction nonlinearities. In the following equations, the dependency of ϕn,k and λn on
|qn| is implied.

In accordance with Galerkin methods, the approximation (6) is substituted into Eq. (1), af-
ter addition of the external forcing fe from Eq. (5) on the right hand side, and the residual is
orthogonalized to the subspace spanned by the functions {ek = eikΩt} with respect to the inner
product (3). The operation yields,

∀k ∈ [[1, nh]] :[
(ikΩ)2M + (ikΩ)C + K

]{∑
n

qnϕn,k +
∑
s

psψs,k

}
+ 〈fnl|ek〉 = 〈fe|ek〉

(9)

As performed in [6] in a modal synthesis procedure, the term 〈fnl|ek〉 is replaced by the sum
of the analogous vectors in the eigenproblem (4), which yields the set of equations (10), where
the second line accounts now for 〈fnl|ek〉. The matrix K̃ differs from the matrix K owing to the
fixed boundary conditions enforced during the computation of the modes.

∀k ∈ [[1, nh]] :∑
n

[
(ikΩ)2M + (ikΩ)C + K

]
qnϕn,k

−
∑
n

[
(kλn)2M + (kλn)C + K̃

]
qnϕn,k

+
∑
s

[
(ikΩ)2M + (ikΩ)C + K

]
psψs,k

−〈fe|ek〉 ≈ 0

(10)

Finally, the residuals (10) are orthogonalized to the subspace spanned by the basis vectors ϕn,k
and ψs,k with respect to the classic Hermitian form in Cn. The whole process leads to the
set of algebraic equations (11) governing the motion of a substructure, where •† refers to the
Hermitian transpose.

∀k ∈ [[1, nh]] :

ρk =

[
Φ†n,k (ZkΦn,k − ξk) Φ†n,kZkΨs,k

Ψ†s,k (ZkΦn,k − ξk) Ψ†s,kZkΨs,k

]{
q
p

}
−

{
Φ†n,k〈fe|ek〉
Ψ†s,k〈fe|ek〉

}
= 0

(11)

with Zk = [(ikΩ)2M + (ikΩ)C + K] and ξk =
[
MΦn,kΛ

2
nk

2 + CΦn,kΛnk + K̃Φn,k

]
the

dynamic stiffness matrix and the term arising from the substitution of each 〈fnl|ek〉 from the
eigenproblems, Φn,k and Ψs,k the matrices made of the column vectors ϕn,k and ψs,k, Λn a
diagonal matrix made of the nonlinear eigenvalues distributed along the diagonal, and q and p
the column vectors listing the general coordinates qn and ps respectively.
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The reduced-order order model of the global system is eventually built by coupling the sub-
structures through the generalized coordinates corresponding to the static modeshapes, ps. If
more than one harmonic is kept in the series expansion (2), which is typically the case for
strong and non-smooth nonlinearities such as contact and friction, the resulting system is over-
determined. However, one could, as a first approximation, discard the equations for which
〈fe|ek〉 = 0, which has proved to have a neglictible impact on the accuracy of the results. In the
case of a mono-harmonic excitation, as in Section 3, the resulting system of equations is thus
square.

Whether the system dealt with is over-determined or square, it is clearly nonlinear due to
the dependency of the modes over the amplitude of their coordinates |qn|, and must be solved
iteratively by standard routines available in most commercial computing softwares. In practice,
ϕn,k and λn are known for discrete values of |qn| from the nonlinear mode computation per-
formed beforehand, and it requires now that they be interpolated at each iteration of the solver,
which is readily achieved by linear or cubic interpolations.

3 NUMERICAL EXAMPLES

The dynamic substructuring method derived in Section 2 is now tested on a lumped-parameter
model of bladed-disk, first on a tuned system, and then on the mistuned model, in order to
demonstrate its efficiency in dealing with such complex and rich systems.

3.1 Lumped-parameter model

The cyclic model devised in this section aims at being representative of the phenomenology
encountered in bladed-disk dynamics. It consists of identical sectors such as shown on Fig-
ure 3, with structural parameters taking the values reported in Table 2. The viscous damping
parameters are defined so as to set the linear modal damping ratio of the first mode to 0.1%.
Throughout the study, the maximum harmonic number nh is set to 5, which has proved to pro-
vide a sufficient accuracy for the purpose of such analyses, and the nonlinear force arising from
the dry-friction element is modeled by a hyperbolic tangent law [18].

– (unit) Tip Middle Root Disk Ground
m (kg) 0.2 0.3 0.4 1.2 –
c (Ns/m) 1.3 0.7 26.7 33.3 0.4
k (106·N/m) 2 1 40 50 0.6

Table 2: Values of the parameters for the fundamental sector

In order to obtain clear and legible response curves for the mistuned system in Section 3.3,
a model with only 12 sectors is used throughout Section 3.2 and Section 3.3. However, the
performance of the method are appraised in Section 4.1 for 72 sectors, so as to deal with a more
significant number of nonlinear DOFs, and thus assess the practical capabilities of the CNCMS.

3.2 Tuned system

The superelement of one sector is built from one nonlinear complex mode and two static
modeshapes. Of course, for this tuned case, cyclic boundary conditions could have been applied
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m

fe

fnl

k c

tip

middle

root

disk

ground

Figure 3: Fundamental sector of the cyclic model

to compute the mode, thus restricting the study to cyclic solutions. The system is first subjected
at the blade tips to a travelling wave excitation, standard in bladed-disk dynamics, with 6 nodal
parameters and for various excitation levels. In accordance with the linear theory of cyclic
systems, the frequency response exhibits one resonance corresponding to the mode with 6 nodal
diameters. Figure 4 shows the perfect agreement of the solution obtained by CNCMS with
the reference, computed by means of a classic harmonic balance method (HBM), even for a
strong activation of the nonlinearities. The shift of the resonance toward lower frequencies as
the amplitude of the response increases is characteristic of friction damped systems, and is a
direct consequence of the evolution of the nonlinear natural frequencies that can be observed on
Figure 2.

3.3 Mistuned system

An interesting application of the reduced-order modeling technique presented in this paper
is the study of nonlinear and mistuned cyclic structures. In order to prove that the method can
effectively handle such systems, the lumped-parameter model of Section 3.1 is modified by
defining a new type of sector, with different tip and middle stiffness values, so as to shift the
first natural frequency by 5% from that of the initial sector. The values taken by the structural
parameters of this new sector are reported in Table 3. The fundamental sector A of the tuned
model and this new sector B are then distributed according to a randomly generated pattern
given in Table 4. The first nonlinear complex mode of each sector type is computed and used to
build two different nonlinear superelements, which are then assembled in accordance with the
mistuning pattern to build the reduced-order model.

The response of the mistuned system is computed for a travelling wave excitation with 6
nodal diameters, at a strong nonlinear level, and compared to the reference on Figure 5. As
a consequence of the mistuning pattern, the response non longer exhibits one single peak, the
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Figure 4: Response to a travelling wave excitation with 6 nodal diameters, for 5 excitation amplitudes (CNCMS in
blue solid lines and HBM in black dashed lines)

– (unit) Tip Middle Root Disk Ground
m (kg) 0.2 0.3 0.4 1.2 –
k (106·N/m) 1.8 0.9 40 50 0.6

Table 3: Values of the parameters of sector B

Sector 1 2 3 4 5 6 7 8 9 10 11 12
Type A B A A B B B A A B A B

Table 4: Mistuning pattern

9



Colas Joannin, Benjamin Chouvion and Fabrice Thouverez

travelling wave exciting now all the modes in the frequency range. Even though some small dif-
ferences can be observed, the accuracy of the solution synthesised by CNCMS is very satisfac-
tory. The origin of these differences is adressed in Section 4.2, and should be put in perspective
with the complexity of the response and the computational efficiency of the method, discussed
in Section 4.1.
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Figure 5: Response of all the blades of the mistuned system for a travelling wave excitation with 6 nodal diameters
(CNCMS in blue solid lines, HBM black dashed lines)

4 DISCUSSION

This section briefly discusses the performance of the proposed reduced-order modeling tech-
nique. The efficiency of the method in terms of computational effort is first appraised, as well
as the actual order-reduction obtained. The range of validity of the assumptions made is also
adressed.

4.1 Performance

Figure 6 shows the ratio of the time required to compute the solution on a model with 72 sec-
tors by HBM, normalized by the time required by CNCMS, for different excitation amplitudes
F . Even close to the linear domain (F=1N), the CNCMS is about already 80 times faster than
the HBM, and is up to 190 times faster when the system is extremely nonlinear (F=10N). Close
to the optimum damping point (F=5N), mentioned in Section 2.1 and where it can be interesting
to operate industrial systems, the ratio is close to 135, which highlights the outstanding poten-
tial of the CNCMS. The local maximum observed for F=4N also points out that the pattern of
the nonlinear effects, besides the excitation level, can impact the performance of standard HBM
methods when compared to the CNCMS.

The computational efficiency of the method clearly stands out in this study. It should how-
ever be pointed out that on the relatively small lumped-parameter model used here, the reduction
capability of the CNCMS was not fully taken advantage of. On a larger model, the reduction
arising from the use of nonlinear complex modes, allowing to drop all internal DOFs, would
indeed be significantly more effective, and the computational performance of the method might
prove even more impressive.
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Figure 6: Computation time ratio between HBM and CNCMS

4.2 Limitations

In Section 3, some very small differences between the results obtained by CNCMS and
the HBM reference could be observed. This could be explained by the fact that the model
used here does not fully satisfy the assumptions made to derive the nonlinear superelement
equations. In Eq. (6), the approximation of the displacement field for a given substructure uses
indeed linear static modeshapes to account for the motion of the boundaries, which is quite
understandable when it comes to actual blade-disk friction. On the lumped-parameter model
of Section 3, however, the dry-friction elements are directly linked to the boundaries, which
makes this approximation a bit bold. Nevertheless, the HBM reference curve is accurately
approximated eventually, which allows to appraise the robustness of this new method.

5 CONCLUSION

The dynamic substructuring technique presented in this paper, the CNCMS, proved very
promising for the study of forced vibrations in nonlinear structures. The method proved to han-
dle quite well cases of neighboring resonant modes, and excellent computational performance
has been obtained on a phenomenological model of mistuned bladed-disk, with a computation
time about 135 times smaller than with standard and state-of-the-art HBM methods. Although
devised initially in order to provide a new and efficient way to tackle problematics in bladed-disk
dynamics, and allow to combine the presence of nonlinearities and mistuning, the procedure is
flexible and could be applied to other types of nonlinear systems. Furthermore, the similarities
between the CNCMS and the classic fixed-interface CMS perfectly allow to combine the two
methods to build nonlinear and linear superelements, respectively, and build a hybrid reduced-
order model by assembling these superelements.

Future prospects of this work could involve testing the procedure on other kind of non-
linearities, such as large deformation, or extend it to other CMS methods such as free-interface
CMS. The implementation of the method on a large-scale 3D-model is an ongoing project of
the authors, in view of assessing its potential for real, industrial structures.
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[12] M. P. Castanier, G. Óttarsson, C. Pierre, A reduced order modeling technique for mistuned
bladed disks, Journal of Vibration and Acoustics 119 (3) (1997) 439–447. doi:10.
1115/1.2889743.

[13] R. Bladh, M. P. Castanier, C. Pierre, Reduced order modeling and vibration analysis of
mistuned bladed disk assemblies with shrouds, Journal of Engineering for Gas Turbines
and Power 121 (3) (1999) 515–522. doi:10.1115/1.2818503.

[14] M. T. Yang, J. H. Griffin, A reduced-order model of mistuning using a subset of nominal
system modes, Journal of Engineering for Gas Turbines and Power 123 (4) (1999) 893–
900. doi:10.1115/1.1385197.

12

http://dx.doi.org/10.2514/3.4741
http://dx.doi.org/10.2514/3.7264
http://dx.doi.org/10.2514/1.33274
http://dx.doi.org/10.1016/j.jsv.2008.11.044
http://dx.doi.org/10.1016/j.jsv.2013.08.009
http://dx.doi.org/10.1016/j.jsv.2013.08.009
http://dx.doi.org/10.1243/JMES_JOUR_1966_008_004_02
http://dx.doi.org/10.1243/JMES_JOUR_1966_008_004_02
http://dx.doi.org/10.1115/1.3616718
http://dx.doi.org/10.1115/1.3574726
http://dx.doi.org/10.1016/0022-460X(69)90264-8
http://dx.doi.org/10.2514/1.16345
http://dx.doi.org/10.1115/1.2889743
http://dx.doi.org/10.1115/1.2889743
http://dx.doi.org/10.1115/1.2818503
http://dx.doi.org/10.1115/1.1385197


Colas Joannin, Benjamin Chouvion and Fabrice Thouverez

[15] M. Mbaye, C. Soize, J.-P. Ousty, E. Capiez-Lernout, Robust analysis of design in vibration
of turbomachines, Journal of Turbomachinery 135 (2) (2012) 021008–021008. doi:
10.1115/1.4007442.

[16] M. Krack, L. P. von Scheidt, J. Wallaschek, On the computation of the slow dynamics
of nonlinear modes of mechanical systems, Mechanical Systems and Signal Processing
42 (1–2) (2014) 71–87. doi:10.1016/j.ymssp.2013.08.031.

[17] G. Kerschen, M. Peeters, J. Golinval, A. Vakakis, Nonlinear normal modes, part i: A useful
framework for the structural dynamicist, Mechanical Systems and Signal Processing 23 (1)
(2009) 170–194. doi:10.1016/j.ymssp.2008.04.002.

[18] C. Joannin, B. Chouvion, F. Thouverez, M. Mbaye, J.-P. Ousty, Nonlinear modal analysis
of mistuned periodic structures subjected to dry friction, Journal of Engineering for Gas
Turbines and Powerdoi:10.1115/1.4031886.

[19] T. M. Cameron, J. H. Griffin, An alternating frequency/time domain method for calculat-
ing the steady-state response of nonlinear dynamic systems, Journal of Applied Mechanics
56 (1) (1989) 149–154. doi:10.1115/1.3176036.

13

http://dx.doi.org/10.1115/1.4007442
http://dx.doi.org/10.1115/1.4007442
http://dx.doi.org/10.1016/j.ymssp.2013.08.031
http://dx.doi.org/10.1016/j.ymssp.2008.04.002
http://dx.doi.org/10.1115/1.4031886
http://dx.doi.org/10.1115/1.3176036

	INTRODUCTION
	NONLINEAR COMPONENT MODE SYNTHESIS
	Nonlinear complex modes
	Nonlinear superelement

	NUMERICAL EXAMPLES
	Lumped-parameter model
	Tuned system
	Mistuned system

	DISCUSSION
	Performance
	Limitations

	CONCLUSION

