
HAL Id: hal-01389699
https://hal.science/hal-01389699

Submitted on 29 Oct 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A nonlinear component mode synthesis method for the
computation of steady-state vibrations in

non-conservative systems
Colas Joannin, Benjamin Chouvion, Fabrice Thouverez, Jean-Philippe Ousty,

Moustapha Mbaye

To cite this version:
Colas Joannin, Benjamin Chouvion, Fabrice Thouverez, Jean-Philippe Ousty, Moustapha Mbaye.
A nonlinear component mode synthesis method for the computation of steady-state vibrations
in non-conservative systems. Mechanical Systems and Signal Processing, 2016, 83, pp.75 - 92.
�10.1016/j.ymssp.2016.05.044�. �hal-01389699�

https://hal.science/hal-01389699
https://hal.archives-ouvertes.fr


A nonlinear component mode synthesis method for the computation of
steady-state vibrations in non-conservative systems

Colas Joannina,b,∗, Benjamin Chouviona, Fabrice Thouvereza,
Jean-Philippe Oustyb, Moustapha Mbayec
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Abstract

This paper presents an extension to classic component mode synthesis methods to compute the steady-state
forced response of nonlinear and dissipative structures. The procedure makes use of the nonlinear complex
modes of each substructure, computed by means of a modified harmonic balance method, in order to build
a reduced-order model easily solved by standard iterative solvers. The proposed method is applied to a
mistuned cyclic structure subjected to dry friction forces, and proves particularly suitable for the study of
such systems with high modal density and non-conservative nonlinearities.
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1. Introduction

For many years reduced-order modeling of dynamical systems has been a challenging topic in both fun-
damental and applied sciences, partly due to the rising complexity of modern technologies. The primary
objective of order reduction is to cut down the number of parameters describing the system to a much
smaller set of variables, while ensuring the capability to predict the behaviour of the initial model with suffi-5

cient accuracy. A tremendous diversity of reduced-order modeling techniques applicable to a broad range of
engineering problems can be found in the literature. Standard mode superposition, component mode synthe-
sis (CMS) [1, 2, 3, 4], and proper orthogonal decomposition [5] methods, widely used in structural dynamics,
are classic examples of model order reduction. The efficiency of these methods mainly relies on the ability
of the reduction basis to capture and render the intrinsic dynamics of the system. As a consequence, in10

the presence of nonlinear phenomena, model reduction can become a very tedious task. Recent works [6, 7]
have however shown that the concept of nonlinear modes can prove very efficient in building reduced order
models of large scale nonlinear systems, thus paving the way for the development of new reduction strategies
well-suited for tackling industrial problematics.

15

Owing to their growing ubiquity in several industrial fields, cyclic structures have been extensively studied
by researchers and engineers during the past century, most of the effort aroused by turbomachinary manu-
facturers in response to a soaring need for efficient power generation for both aeronautical and power plant
applications. Facing evermore stringent and conflicting performance and safety requirements, bladed-disk
designers have pushed back the limits of these key components to provide industrials with efficient and light20

structures, while ensuring their integrity in operation. Along with this constant search for an optimal design
have emerged new problematics, among which stands out what is commonly referred to as mistuning, which
relates to the loss of the cyclic symmetry of the system. A great deal of studies have been dedicated to the
understanding and identification of the phenomenon during the last decades, first initiated by Whitehead [8],
Wagner [9], Dye and Henry [10], and Ewins [11], and furthered by numerous authors since then. A thorough25

review is made by Castanier and Pierre in [12], devoted to the state of the art and emerging directions in the
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modeling and analysis of mistuned bladed-disks.

A practical consequence of mistuning when it comes to modeling is that classic methods taking advantage
of the cyclic symmetry property of bladed-disks to reduce the size of the problem [13] cannot be used. Even30

though basic lumped-parameter models have first allowed to perform various statistical investigations to
better understand the phenomenology of such systems [14, 15, 16], quantitative analyses on large-scale finite
element models have required to summon reduced-order modeling techniques, such as the aforementioned
classic or modified CMS methods [1, 2, 17], as well as mistuning-dedicated methods [18, 19, 20, 21, 22].
However, the introduction of nonlinearities in the model makes most of these techniques either inapplicable35

or ill-suited to the task, whereas nonlinear effects can yet be of primary importance for the study. As a
consequence, the development of new methods allowing to efficiently combine nonlinear phenomena with
mistuning has been identified as one of the key challenges in bladed-disk dynamics [12].

So far, the classic way to tackle the mistuning of bladed-disks in a nonlinear context is to summon40

frequency-based formulation such as harmonic balance methods (HBM), and to proceed to a condensation
of the system on the nonlinear degrees of freedom (DOF) [23, 24]. This is conceivable for localised nonlin-
earities such as contact and friction, and of great interest for the industry. However, for industrial finite
element models, the number of nonlinear DOFs easily exceeds a few hundreds per sector, which amounts to
thousands overall, resulting in large and cumbersome nonlinear systems, especially when cyclic symmetry45

cannot or should not be enforced to narrow down the equations to those of one single sector, for instance in
case of mistuning or when localised responses are sought. Not to mention the case of non-localised nonlinear-
ities, such as large displacements, for which an exact condensation could amount to keeping all DOFs. As a
consequence, the need for fast and reliable design as well as statistical investigations entices both researchers
and industrials to endeavour and elaborate new reduction strategies well-suited to such problematics.50

In this paper, a new reduced-order modeling technique particularly suitable for the study of nonlinear
and mistuned cyclic structures is proposed. The method can be seen as an extension of classic fixed-interface
CMS methods, taking advantage of nonlinear complex modes instead of linear modes. This allows to treat
internal nonlinear DOFs as slave coordinates, and further the reduction compared to a standard linear CMS.55

The reduction basis of a superelement is made of nonlinear modes, which must be updated during the com-
putation to properly account for the nonlinear effects, supplemented by a set of static modeshapes through
which the substructures are assembled to form the global system. A similar approach was adopted by Api-
wattanalunggarn et al. [25] by means of nonlinear normal modes, but is unfortunately limited to weakly
nonlinear systems and involves significant analytical developments due to the invariant manifold approach60

used to compute the modes. The recent and promising works devoted to nonlinear complex modes and their
frequency-based formulation, first by Laxalde and Thouverez [6] and later on by Krack et al. [7, 26], have
highlighted their capabilities to accurately capture and render the intricate dynamics of strongly nonlinear
systems subjected to non-smooth and dissipative nonlinearities. This observation makes of them well-fitted
candidates in a model order reduction approach, not to mention the flexibility of their computation, inher-65

ent to numerical methods. It should be emphasised that even though the development of the method was
initiated to answer topical problematics in bladed-disk dynamics, the procedure could be readily applied to
all kind of nonlinear systems, with or without specific symmetry properties.

In section 2, the methodology used to compute nonlinear complex modes, key elements of the method,70

is reminded. The equations governing a nonlinear superelement are then derived in section 3. In section 4,
the method is applied to the lumped-parameter model of a bladed-disk subjected to blade-disk joint friction,
first in the absence of structural mistuning to highlight its capabilities to approximate multi-resonant non-
linear responses, before considering a randomly mistuned system to highlight its effectiveness and efficiency
in studying such dynamical systems. The performance and limitations of the method are finally discussed in75

section 5.
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2. Nonlinear complex modes

The reduced-order modeling technique presented in this paper is inspired by classic CMS, and makes use
of the rich information provided by nonlinear complex modes to further the reduction. Key element of the
procedure, the concept of nonlinear complex modes is first reminded in the following section, along with the80

main steps of their computation.

2.1. Historical background

Nonlinear normal modes of conservative systems have been extensively studied during the last decades.
Since Rosenberg adressed the topic in the 1960s [27], many authors have contributed to build a rich and
comprehensive literature, thoroughly reviewed by Kerschen et al. in [28]. Vakakis and coworkers used nonlin-85

ear normal modes to study the dynamics of cyclic structures subjected to nonlinear restoring forces [29, 30],
meanwhile Shaw and Pierre have dedicated their work to build an invariant manifold approach to calculate
the modes of weakly nonlinear and damped systems [31]. Later on, Pesheck et al. [32] proposed a modified
Galerkin-based approach to extend the invariant manifold method and circumvent some of its limitations.
Jézéquel and Lamarque [33] brought new insights through the method of normal forms, and Nayfeh [34]90

meticulously compared the existing analytical methods to construct nonlinear normal modes of continuous
systems. Let us also mention the work by Thomas and Touzé [35, 36], or Arquier et al. [37], dedicated to
nonlinear normal modes and internal resonance phenomena. More recently, Peeters et al. [38], and Grolet
and Thouverez [39] demonstrated the benefit of numerical techniques, namely shooting methods and HBMs,
respectively, to tackle nonlinear normal modes of conservative systems.95

In 2009, Laxalde and Thouverez [6] proposed a computation procedure inspired by the HBM to extend
the notion of nonlinear modes to a broad class of dissipative systems, capable to handle strong, dissipative
and non-smooth nonlinearities. Recent papers [7, 26, 40] have been devoted to these nonlinear complex
modes, and proved their efficiency in dealing with a wide range of systems. The nonlinear CMS presented100

in this paper makes a direct use of these modes, cornerstone of the reduction, and the main steps of their
computation is thus reminded hereunder. The interested reader is referred to the aforementioned references
for further information.

2.2. Nonlinear eigenproblem in the frequency domain

The governing equations of a nonlinear system can usually be written in the following form:105

Mẍ(t) + Cẋ(t) + Kx(t) + fnl(x, ẋ) = fe(t) (1)

with M, C, K commonly referred to as the mass, viscous damping, and linear stiffness matrices respectively,
fnl a term of nonlinear restoring and dissipative forces, fe the vector of external load applied to the system,
and x the displacement vector of all DOFs. Overdots indicate time derivatives. In order to take account
of the dissipative effects arising from C and fnl, the solution xn of the underlying autonomous system (i.e.
with fe = 0), referred to as nonlinear complex mode, is sought in the form of a damped multi-harmonic110

oscillation [6]:

xn(t) =
1

2

{
nh∑
k=1

x̂n,ke
ktλn + c.c.

}
(2)

with x̂n,k the k-th harmonic vector of the mode shape, λn = −βn + iωn the complex eigenvalue of the mode,
and where c.c. denotes the complex conjugate terms. A slightly different definition was later suggested by
Krack in [41], which could be used with the method derived in this paper. Equation (2) is then substituted into
the autonomous system of Eq. (1), and the residual is orthogonalized with respect to the basis {ek = eiktωn},115

∀k ∈ [[1, nh]], by means of the inner product defined by Eq. (3), where • denotes the complex conjugate.

〈f |g〉 =
2

T

∫ T

0

f(t)g(t)dt , with T =
2π

ωn
(3)
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As fully explained in [6], the decay of the solution is neglected during the period T used in the projection,
allowing to make use of the orthogonality of the projection basis. The procedure results in the set of complex
algebraic equations given by Eq. (4), coupled through the projection of the nonlinear forces 〈fnl|ek〉.

∀k ∈ [[1, nh]] :

rk =
[
(kλn)2M + (kλn)C + K

]
x̂n,k + 〈fnl|ek〉 = 0

(4)

2.3. Path continuation and phase condition120

The similarity between the previous equations and a standard HBM is obvious. However, it should be
pointed out that besides the coefficients x̂n,k, the frequency ωn and modal damping βn are also unknowns. As
a consequence, the nonlinear system of Eq. (4) is underdetermined, and requires two additional equations to
be solved. In [6], Laxalde and Thouverez suggested to set the amplitude and the phase of the first harmonic
of the j-th DOF, x̂n,1,j , to an arbitrary value α. The computation of a mode is thus achieved by performing
a sequential continuation on α, by enforcing the two conditions of Eq. (5).

Re {x̂n,1,j} = Im {x̂n,1,j} = α (5)

In [40], Joannin et al. suggested to use instead a phase condition, together with an arc-length continuation
scheme [42]. Such a continuation procedure requires to supplement the system of Eq. (4) with the following
equation:

nh∑
k=1

||δx̂n,k||2 + ||δλn||2 − ds2 = 0 (6)

where δx̂n,k and δλn are the differences between the last converged set of variables and the current trial of
the solver, and || • || is the canonical norm on Cn. The enforcement of Eq. (6) amounts to seeking the solu-
tion onto the hypersphere of the configuration space centered on the last converged solution, and of radius ds.

Regarding the phase condition, it has been shown that nonlinear modes of cyclic systems can take the125

form of travelling waves [29, 39, 40], similarly to linear systems [43], and the use of an appropriate phase
condition is of the utmost importance in defining the nature of the solution to be computed. To allow the
computation of travelling waves, a zero initial velocity for an arbitrary j-th DOF can be used as a phase con-
dition, which is achieved by enforcing Eq. (7) besides Eq. (4) and Eq. (6), where x̂n,k,j is the j-th component
of the k-th harmonic of the nonlinear mode.130

Re

{
nh∑
k=1

kλnx̂n,k,j

}
= 0 (7)

2.4. Prediction and initialization

The last step to perform the computation is to provide the iterative solver with a suitable starting
point, which can be achieved by means of a variety of predictors [42]. In this work, a secant predictor was
implemented, already used in [40]. At the first step of the continuation i0, when no previous converged solution
is known to use one of these prediction techniques, it has proved good practice to start the continuation for135

a very low activation of the nonlinearities, and use a linear mode of the equivalent linear system to initialize
the nonlinear mode [7, 40]. Thus, prior to the continuation, a standard linear modal analysis of Eq. (4)
is performed, after dropping the nonlinear terms 〈fnl|ek〉 and applying the relevant transformations to the
structural matrices (e.g. bonding nonlinear DOFs), so as to obtain a linear system equivalent to the nonlinear
one at low level. Then, the starting point of the solver is taken equal to the linear eigenvector x̂l pre-multiplied140

by a small scalar ε to account for the low activation of the nonlinear effects, while the linear eigenvalue λl
remains unchanged:

(λn, x̂n,1, x̂n,2, . . . , x̂n,nh
)i0 = (λl, εx̂l,0, . . . ,0) (8)
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2.5. Numerical aspects

In practice, an analytical expression for the frequency components of the nonlinear forces, 〈fnl|ek〉 in
Eq. (4), as a function of the other variables x̂n,k and λn, might not be handy to determine, if ever possible.145

As an easy and flexible way to get around this difficulty when using frequency-based formulations, a so-called
alternating frequency-time (AFT) scheme is implemented here [44]. The method only requires to know the
nonlinear law in the time domain, as is usually the case, and uses direct (F) and inverse (F−1) Fourier
transforms to determine 〈fnl|ek〉 at each step of the solver, as summarized in Fig. 1 for a 1-DOF system.

1 3 5 7 9 11 13 15

harmonics

x̂n,k

0 T

time

xn(t) =
1
2

{∑
x̂n,k e

ktλn+ c.c.
}

1 3 5 7 9 11 13 15

harmonics

< fnl|ek >

0 T

time

fnl(xn, ẋn)

FF −1

nonlinear law

solver iteration

Figure 1: Alternating frequency-time scheme

150

Eventually, the initial set of nonlinear ordinary differential equations of Eq. (1) has been turned into
the nonlinear algebraic system of Eq. (4) on the complex variables x̂n,k and λn. Since most numerical solvers
only handle real arithmetics, the actual variables of the problem are usually the real and imaginary parts of
the unknowns (x̂rn,k, x̂in,k, ωn, and βn), and the set of equations solved is ∀k ∈ [[1, nh]] : [Re(rk) Im(rk)] = 0,
where the residual vectors rk are defined in Eq. (4).155

In this study, a trust-region algorithm was used [45] to solve the equations, requiring the knowledge
of the Jacobian matrix of the system, i.e. the matrix made of the partial derivatives of the residual vectors
with respect to the variables of the problem, given in Eq. (9).

J =

[
Re
(
J
)

Im
(
J
) ] with J =



j 2nh+1 2nh+2

...
...

...

k · · · ∂rk
∂x̂rn,j

∂rk
∂x̂in,j

· · · ∂rk
∂ωn

∂rk
∂βn

...
...

...

 (9)

This matrix can be numerically evaluated with a finite difference scheme, but the computational cost might160

become very significant as the number of variables and the size of the problem increases. A well-known
way around this computational burden is to provide the solver with an analytical expression of the partial
derivatives, as in Eq. (10), where the chain rule is used to determine the terms resulting from the differentiation
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of fnl. 

∂rk
∂x̂rn,j

=
[
k2λ2

nM + kλnC + K
]

+

(
〈∂fnl
∂xn
|ek〉

∂xn
∂x̂rn,j

+ 〈∂fnl
∂ẋn
|ek〉

∂ẋn
∂x̂rn,j

)
∂rk
∂x̂in,j

=
[
k2λ2

nM + kλnC + K
]

i +

(
〈∂fnl
∂xn
|ek〉

∂xn
∂x̂in,j

+ 〈∂fnl
∂ẋn
|ek〉

∂ẋn
∂x̂in,j

)
∂rk
∂ωn

=
[
2ik2λnM + ikC

]
x̂n,k +

(
〈∂fnl
∂xn
|ek〉

∂xn
∂ωn

+ 〈∂fnl
∂ẋn
|ek〉

∂ẋn
∂ωn

)
∂rk
∂βn

=
[
−2λnk

2M− kC
]
x̂n,k +

(
〈∂fnl
∂xn
|ek〉

∂xn
∂βn

+ 〈∂fnl
∂ẋn
|ek〉

∂ẋn
∂βn

)
(10)

2.6. Academic example165

In order to illustrate the concept of nonlinear complex modes for a dry friction-damped system, the whole
computation procedure presented above is applied to obtain the first nonlinear complex mode of the basic
2-DOFs model of Fig. 2, the parameters of which taking the values reported in Tab. 1. The nonlinear law is
not detailed here, but further information are provided in section 4.1.

170

The so-called backbones of the real and imaginary parts of the complex eigenvalue λn, referred to as
modal damping βn and natural frequency ωn respectively, are plotted on Fig. 3 as a function of |x1|, ampli-
tude of vibration of the mass m1. A frequency shift can be observed due to the softening effect arising from
the friction. The natural frequency varies indeed between the corresponding linear natural frequencies of
the underlying system with bonded and frictionless interface, at low and high level of |x1| respectively. The175

evolution of the modal damping βn exhibits a maximum, which accounts for an optimum nonlinear damping
arising from the friction element. Similar backbones were already obtained and thoroughly explained in
[6, 7, 40].

k1

c1

m1

k2

c2

m2

fnl(ẋ2)

x1(t) x2(t)

Figure 2: 2-DOFs dry-friction damped model

– (unit) m (kg) c (Ns/m) k (N/m)
DOF1 1 0.5 640
DOF2 0.02 0.5 40

Table 1: Structural parameters of the 2-DOFs system

3. Nonlinear component mode synthesis

The governing equations of the new reduced-order modelling technique proposed in this paper are pre-180

sented in the following sections. The method makes use of nonlinear complex modes to build a reduction
basis allowing to significantly reduce the size of the initial nonlinear system, through a substructuring ap-
proach. Owing to its similarities with standard CMS methods, this new technique is hereafter referred to as

6



3.8

3.9

4

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

|x1|

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0.2

0.4

0.6

0.8

1

|x1|

ωn (Hz)

βn (rad/s)

Figure 3: Backbones of the 2-DOFs model

Component Nonlinear Complex Mode Synthesis (CNCMS). The procedure treats independantly each sub-
structure, and can thus be used in combination with other standard CMS methods. The reduction requires185

the knowledge of at least one nonlinear complex mode, and is focused on determining the steady-state forced
response to multi-harmonic excitations of fundamental frequency Ω, in the form given by Eq. (11),

fe(t) =
1

2

(∑
k

〈fe|ek〉eikΩt + c.c.

)
(11)

where c.c. refers to the complex conjugate terms. The analytical expression of a nonlinear superelement is
first derived in section 3.1. Then, some numerical aspects of the implementation are tackled in section 3.2.

3.1. Nonlinear superelements190

As an extension of the classic Craig-Bampton fixed-interface CMS [1] to nonlinear modes, the response of
the substructure is approximated by a multi-harmonic sum of nonlinear eigenvectors ϕn,k computed for fixed
boundary conditions, and a set of linear static modeshapes ψs,k to account for the motion at the interface
between two substructures,

x(t) =
1

2

(∑
n

qn
∑
k

ϕn,k(|qn|)eikΩt +
∑
s

ps
∑
k

ψs,ke
ikΩt + c.c.

)
(12)

with qn the generalized coordinates of the nonlinear modes, ps the generalized coordinates of the static195

modes, and where c.c. refers to the complex conjugate terms. The complex eigenvectors ϕn,k are related to
the k-th harmonic coefficient of the n-th mode x̂n,k of section 2 through the complex generalized coordinates
qn according to Eq. (13).

x̂n,k = qnϕn,k (13)
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When the DOFs are partitioned into internal and boundary DOFs, the static modeshapes ψs,k are readily
obtained from the stiffness matrix K of the substructure, as in Eq. (14),200

∀k ∈ [[1, nh]] :

ψs,k = −K−1
ii Kib with K =

[
Kii Kib

Kbi Kbb

]
(14)

where subscripts i and b refer to internal and boundary DOFs, respectively. Even though the vectors ψs,k
are all equal ∀k ∈ [[1, nh]] here, the method presented in this paper allows to retain different vectors for each
k if necessary. It should be stressed that using linear static modeshapes in Eq. (12) is only relevant when
the boundaries of the substructure are free from any nonlinear forces, as in section 4. Replacing these linear
vectors by nonlinear static modeshapes is however an interesting prospect of this work.205

The modal parameters ϕn,k and λn of a given nonlinear complex mode are theoretically functions of
two independant variables [6]. In Eq. (12), it is however assumed that the amplitude |qn| of the generalized
coordinate suffices to describe the variations of the n-th mode. This assumption was already used in [6, 7]
and provided satisfactory results within a modal synthesis procedure. In the following, the dependency of210

ϕn,k and λn over |qn| is not explicitly written to improve the readability. The substitution of Eq. (12) into

the forced system of Eq. (1), followed by a Galerkin projection onto each basis function {ek = eikΩt} by
means of the inner product defined by Eq. (3) yields,

∀k ∈ [[1, nh]] :[
(ikΩ)2M + (ikΩ)C + K

]{∑
n

qnϕn,k +
∑
s

psψs,k

}
+ 〈fnl|ek〉 = 〈fe|ek〉

(15)

The projection of the nonlinear force 〈fnl|ek〉 is then approximated by the sum of the analogous projections
in each eigenvalue problem of Eq. (4) corresponding to the nonlinear modes retained, similarly to what was215

performed by Krack in [7] for establishing the modal synthesis equation of a single-resonant nonlinear mode.
This assumption allows to drop the projection of the nonlinear force in Eq. (15) and substitute instead the
opposite of the sum of all the eigenvalue problems, yielding,

∀k ∈ [[1, nh]] :∑
n

[
(ikΩ)2M + (ikΩ)C + K

]
qnϕn,k

−
∑
n

[
(kλn)2M + (kλn)C + K̃

]
qnϕn,k

+
∑
s

[
(ikΩ)2M + (ikΩ)C + K

]
psψs,k

−〈fe|ek〉 ≈ 0

(16)

Since the modes were computed for fixed boundary conditions at the interface between two substructures,
the stiffness matrix in the eigenvalue problems differs from that of Eq. (15), and is thus denoted K̃. The non-220

linear effects arising from 〈fnl|ek〉 in Eq. (15) are now accounted for by the terms on the second line of Eq. (16).

Similarly to a standard Galerkin procedure, the last step of the method is to orthogonalize the set of
algebraic equations of Eq. (16) with respect to the family of eigenvectors used to approximate the displace-
ment field, namely ϕn,k and ψs,k, by means of the standard Hermitian form on Cn. It results in the compact225

set of residual equations given in Eq. (17) governing the displacement of an arbitrary substructure,

∀k ∈ [[1, nh]] :

ρk =

[
Φ†k (ZkΦk − ξk) Φ†kZkΨk

Ψ†k (ZkΦk − ξk) Ψ†kZkΨk

]{
q
p

}
−
{

Φ†k〈fe|ek〉
Ψ†k〈fe|ek〉

}
= 0

(17)

with,

8



• Zk =
[
(ikΩ)2M + (ikΩ)C + K

]
, the linear dynamic stiffness matrix

• ξk =
[
MΦkΛ

2k2 + CΦkΛk + K̃Φk

]
, the nonlinear matrix resulting from the substitution

• Φk =
[
· · ·ϕn,k · · ·

]
, the nonlinear matrix made of the k-th nonlinear eigenvectors230

• Ψk =
[
· · ·ψs,k · · ·

]
, the linear matrix made of the k-th static modeshapes

• Λ = diag [· · ·λn · · · ], the nonlinear spectral matrix

• q = [· · · qn · · · ]T, the vector of generalized coordinates qn

• p = [· · · ps · · · ]T, the vector of generalized coordinates ps

and where the superscript •† denotes the Hermitian transpose.235

Due to the dependency of the modal properties over the moduli |qn|, an interpolation must be performed
at each iteration of the solver to get ϕn,k and λn for the ongoing value of qn. Piecewise linear interpolations
have proved good enough to converge when the variations of the modes as a function of |qn| are known with
a relatively good precision.240

Eventually, to each substructure of the system correspond nh sets of nonlinear equations such as Eq. (17),
which can then all be assembled through the static coordinates ps to build the global reduced-order model.
Since more than one harmonic must usually be kept in the series expansion of the mode in Eq. (2) to
approximate the nonlinear effects with sufficient accuracy [40], the resulting system of equations is over-245

determined. One could choose to retain all the equations and seek an approximate solution by means of
dedicated techniques, such as the Levenberg-Marquardt algorithm [46]. However, for an excitation such that
∀k 6= 1 : 〈fe|ek〉 = 0, neglecting the equations corresponding to k 6= 1 has proved to yield results in perfect
agreement with the solution of the over-determined system. The resulting system is thus square and can be
easily solved by standard Newton-like or trust-region algorithms [45].250

Neglecting these equations is equivalent neither to assuming mono-harmonic nonlinear modes (i.e. nh = 1
in Eq. (2)), nor to assuming a mono-harmonic solution in Eq. (12). The terms Φ1 and Λ of Eq. (17) are,
indeed, always computed by retaining all the harmonics in the system of equations (4), since they can be
highly dependent on the harmonic order nh, and all the harmonics of the modes are still used to rebuild255

the multi-harmonic solution from Eq. (12). In section 4, the square formulation is used since the model
is subjected to mono-harmonic excitations, with only one nonlinear mode retained per substructure. The
flowchart of the whole procedure is provided on Fig. 4.

3.2. Numerical aspects

As mentionned in section 2.5, most numerical solvers deal with real arithmetics, and will actually solve260

∀k ∈ [[1, nh]] : [Re(ρk) Im(ρk)] = 0 for the real variables qrn, qin, prs, and pis, real and imaginary parts of
qn and ps respectively. Again, since the classic algorithms used to solve nonlinear algebraic systems require
the knowledge of the jacobian matrix of the system, a tremendous benefit arises from the knowledge of the
analytical expression of the matrix. This expression was derived and provided to the solver, in order to
appraise the full potential of the proposed method. The general form of the jacobian matrix is given by:265

J =

[
Re
(
J
)

Im
(
J
) ] with J =



n s

...
...

k · · · ∂ρk
∂qrn

∂ρk
∂qin

· · · ∂ρk
∂prs

∂ρk
∂pis

· · ·

...
...

 (18)
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Figure 4: Flowchart of the CNCMS procedure
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The residuals ρk are written in the form given by Eq. (19) for readability purpose, where all the terms
can be easily identified from Eq. (17). The dependency over the moduli |qn| is explicitly reminded.

ρk =

{
A(. . . |qn| . . . )q + B(. . . |qn| . . . )p− a(. . . |qn| . . . )

C(. . . |qn| . . . )q + Dp− b

}
(19)

with270

A(. . . |qn| . . . ) = Φ†k(. . . |qn| . . . ) (ZkΦk(. . . |qn| . . . )− ξk(. . . |qn| . . . )) (20a)

B(. . . |qn| . . . ) = Φ†k(. . . |qn| . . . )ZkΨk (20b)

C(. . . |qn| . . . ) = Ψ†k (ZkΦk(. . . |qn| . . . )− ξk(. . . |qn| . . . )) (20c)

D = Ψ†kZkΨk (20d)

a(. . . |qn| . . . ) = Φ†k(. . . |qn| . . . )〈fe|ek〉 (20e)

b = Ψ†k〈fe|ek〉 (20f)

The expressions of the partial derivatives with respect to |qn| are,

∂A

∂|qn|
=

(
∂Φk

∂|qn|

)†
(ZkΦk − ξk) + Φ†k

(
Zk

∂Φk

∂|qn|
− ∂ξk
∂|qn|

)
(21a)

∂B

∂|qn|
=

(
∂Φk

∂|qn|

)†
(ZkΨk) (21b)

∂C

∂|qn|
= Ψ†k

(
Zk

∂Φk

∂|qn|
− ∂ξk
∂|qn|

)
(21c)

∂ξ

∂|qn|
= M

(
∂Φk

∂|qn|
Λ2
n + 2ΦkΛ

∂Λ

∂|qn|

)
+ C

(
∂Φk

∂|qn|
Λ + Φk

∂Λ

∂|qn|

)
+ K̃

∂Φk

∂|qn|
(21d)

∂a

∂|qn|
=

(
∂Φk

∂|qn|

)†
〈fe|ek〉 (21e)

Using the chain rule to recover the derivatives with respect to the real variables,

∂•
∂qrn

=
∂•
∂|qn|

∂|qn|
∂qrn

=
∂•
∂|qn|

qrn
|qn|

∂•
∂qin

=
∂•
∂|qn|

∂|qn|
∂qin

=
∂•
∂|qn|

qin
|qn|

(22)

and given that
∂q

∂qrn
= {0 . . . 0, 1, 0 . . . 0}T ,

∂q

∂qin
= {0 . . . 0, i, 0 . . . 0}T (23)

the partial derivatives of ρk with respect to the real variables qrn and qin are finally obtained,

∂ρk
∂qrn

=


∂A

∂qrn
q + A

∂q

∂qrn
+
∂B

∂qrn
p− ∂a

∂qrn
∂C

∂qrn
q + C

∂q

∂qrn

 ,
∂ρk
∂qin

=


∂A

∂qin
q + A

∂q

∂qin
+
∂B

∂qin
p− ∂a

∂qin
∂C

∂qin
q + C

∂q

∂qin

 (24)

When a piece-wise linear interpolation of the nonlinear modes is used in the solver, the partial derivatives of275

Φk and Λ with respect to |qn| can be approximated by the slope of the modal components between the two
points defining the domain of interpolation. If a higher order of interpolation of the modes is required, the
derivatives can then also be approximated by a piece-wise interpolation. Finally, the partial derivatives of
ρk with respect to prs and pis are given by,

∂ρk
∂prs

=


B
∂p

∂prs

D
∂p

∂prs

 ∂ρk
∂pis

=


B
∂p

∂pis

D
∂p

∂pis

 (25)
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with280

∂p

∂prs
= {0 . . . 0, 1, 0 . . . 0}T ∂p

∂pis
= {0 . . . 0, i, 0 . . . 0}T (26)

The matrix J from Eq. (18), corresponding to one superelement, can then be built. The jacobian matrix
of the whole system required by the solver is finally obtained by assembling the contributions J from each
superelement.

4. Numerical applications

This section provides a few examples to illustrate the capabilities of the CNCMS presented in section 3.285

In order to test the method, a lumped-parameter model representative of the flexural behaviour of a bladed-
disk is first defined in section 4.1. In section 4.2, the response of the perfectly tuned system is then studied
for various excitations, and the results are compared to a standard nonlinear modes superposition. In
section 4.3, some structural discrepancies are introduced between the sectors, and the procedure is applied
to this mistuned model in order to prove its efficiency in tackling such a topical problematic.290

4.1. Lumped-parameter model of bladed disk with dry friction nonlinearities

The CNCMS procedure derived in section 3 is here applied to a cyclic system consisting of 24 sectors, the
fundamental sector being showed on Fig. 5. In the following, the boundary DOFs are the right-hand-side and
left-hand-side DOFs of the disk, the interior DOFs referring to the three DOFs of the blade and the central
DOF of the disk. The viscous damping coefficients of the dashpots are tuned so as to set the linear damping

m

fe

fnl

k c

tip

middle

root

disk

ground

Figure 5: Fundamental sector of the cyclic system

295

ratio of the first mode of the sector to 0.1%. The values taken by the structural parameters, namely mass,
viscous damping, and stiffness coefficients, are reported in table 2.

DOF 1 (tip) 2 (middle) 3 (root) 4 (disk) 0 (ground)
m (kg) 0.2 0.3 0.4 1.2 –
c (Ns/m) 1.3 0.7 26.7 33.3 0.4
k (106·N/m) 2 1 40 50 0.6

Table 2: Structural parameters of the fundamental sector
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This one-dimensional lumped parameter model was already used by Laxalde [47] and Zhou [48], and aims
at being representative of the bending behaviour of an industrial bladed-disk. The evolution of the natural
frequencies of the underlying linear system with bonded interface as a function of the nodal diameters is300

reported on Fig. 6, and exhibits a standard behavior.
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Figure 6: Modal families of the underlying linear system with bonded interfaces (- first, - second, - third, - and fourth family)

The nonlinear nature of the system arises from the dry friction element between the two bottom DOFs
on Fig. 5. A regularized version of Coulomb’s dry friction law is used, and plotted on Fig. 7. The expression
of the jacobian matrix is obtained by standard differentiation, and can be provided to the solver as explained305

in section 2.5. To compute the vector of nonlinear forces fnl and the corresponding derivatives of Eq. (10),
the following equation is used:

fnl = µNtanh

(
Pẋn
ε

)
,

∂fnl
∂ẋn

=
µN

ε

(
1−

(
tanh

(
Pẋn
ε

))2
)

P (27)

with P the matrix performing the transformation from absolute to relative coordinates for the nonlinear

Figure 7: Coulomb’s dry friction law (- -) and regularized friction law (-)

DOFs, and setting other components to zero for the linear DOFs. The hyperbolic tangent function in Eq. (27)
is then applied element-wise on the resulting vector to obtain the vector of nonlinear forces fnl. The friction310
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coefficient µ and the normal load at the interface N are set equal to 0.3 and 1000N, respectively, and the
regularization parameter ε to 0.1%. More sophisticated contact and friction formulations have proved to
be perfectly applicable with the nonlinear complex modes computation thanks to the AFT procedure, for
instance, taking account of wear or microslip phenomena [49].

315

The maximum harmonic order nh in Eq (2) is of the utmost importance in the calculation of the nonlinear
complex modes (ωn, λn, and x̂n,k), on which relies the accuracy of the solution computed by CNCMS. For
this type of systems, it was shown that retaining five harmonics yields satisfactory results [40]. Therefore, in
the following computations, the series expansion of Eq. (2) is truncated to nh = 5.

320

The first nonlinear complex mode of the fundamental sector with fixed boundary DOFs is computed by
means of the methodology presented in section 3, and the two static modeshapes are derived from Eq. (14),
allowing to build the superelement from Eq. (17). The backbones of the mode at different levels of nonlin-
earity are provided on Fig. 8. The evolution of the natural frequency ωn and modal damping βn are similar
to Fig. 3, and standard for this type of nonlinearity [6, 7, 40]. A close-up of the modeshape at low and high325

amplitude of vibration is also provided, so as to point out the change in displacement for the nonlinear DOFs
3 and 4, which are stuck at low level whereas a relative motion can be observed at high level. The two local
maxima of the modal damping can be explained by a change in the pattern of relative displacement between
DOFs 3 and 4 over a period of vibration, as already observed in [40].
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Figure 8: Backbones of the nonlinear complex mode of the fundamental sector

330

Travelling wave excitations are ubiquitous in bladed-disk dynamics. They originate from the pertur-
bations in the gas flow arising from the static parts of the turbomachine, which are seen as pressure waves
travelling clockwise or anti-clockwise in the frame of reference of the rotating components. As a consequence,
in the following subsections, the external load vector fe(t) of Eq. (1) consists of one or more travelling waves
applied at the blade-tip of the sectors, as defined by the following equation for the m-th sector:335

fm,nd
e (t) =

F

2

(
ei(Ωt+2πmnd/ns) + c.c.

)
· {1, 0, 0, 0, 0}T (28)

where ns is the number of sectors, nd the number of nodal diameters of the travelling wave, F the amplitude
of the excitation, and c.c. refers to the complex conjugate term.
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4.2. Forced response synthesis of the tuned model

Owing to the perfect cyclic symmetry of the system, the same superelement is used here for all the
substructures, built from one fixed-interface nonlinear complex mode and the two static modeshapes of the340

fundamental sector. A standard travelling wave excitation with 10 nodal diameters is first applied at the
blade-tips to generate a high modal contribution from the modes with 10 nodal diameters, and the response
is computed for various excitation amplitudes F ∈ [[1, 5]]N in order to sweep the nonlinear domain up to the
optimum nonlinear damping point. The response of the blades calculated by CNCMS is plotted on Fig. 9,
together with a standard HBM computation to serve as a reference. It can be seen that the proposed method345

allows in this case to perfectly rebuild the solution.
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Figure 9: Forced response to a travelling wave excitation with 10 nodal diameters ∀F ∈ [[1, 5]]N (CNCMS - and HBM - -)

As mentioned in the introduction, not only does the method aim at significantly reducing the num-
ber of DOFs retained in the reduced-order model, but it also allows to handle cases of neighboring resonant
modes, where standard nonlinear modes superposition is known to fail [50, 51]. When mode superposition is350

used to compute the response, the generalized coordinates corresponding to the nonlinear modes are assumed
to vary independently of each other, hence the poor accuracy of the method when two close modes have a
significant contributions and can interact through the nonlinearities. The equation used to synthesise the
forced response by mode superposition is:

x(t) =
1

2

(∑
n

qn

nh∑
k=0

φn,k(|qn|)eiΩt + c.c.

)

with qn =
φ†n,1(|qn|)f1

µn(|qn|) (ω2
n(|qn|)− Ω2 + 2iβn(|qn|)Ω)

(29)

with f1 the amplitude of the forcing on the whole system, and µn the modal mass. It must be understood355

that in Eq. (29), the modal parameters ωn, βn, and φn,k are obtained by computing the nonlinear complex
modes of the whole system, without substructuring. The interested reader is referred to [50, 51, 6, 7] for
further information concerning nonlinear mode synthesis.
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To illustrate the different capabilities between the CNCMS and a standard nonlinear modes superpo-360

sition, the tuned system is now subjected to an excitation made of the superposition of two travelling waves
with different number of nodal diameters, and for different excitation levels, so as to generate simultaneously
a significant contribution from the modes exhibiting these diameters. This is performed for 5 and 12 nodal
diameters, the corresponding modes of the first family having close natural frequencies (see Fig. 6), and for
different excitation levels. The response is plotted on Fig. 10 together with the solutions obtained by CNCMS365

and HBM. The response obtained by CNCMS appears to provide satisfactory results despite the complex-
ity arising from the two close nonlinear resonances, especially compared to the mode superposition method
which dramatically fails at synthesising the response, unable to accurately take account of the simultaneous
contribution of the two modes as soon as the system is brought in the nonlinear domain.
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Figure 10: Forced response to a travelling wave excitation with 5 and 12 nodal diameters ∀F ∈ [[1, 5]]N (CNCMS -, HBM - -,
and nonlinear modes superposition - · -)

4.3. Forced response synthesis of the mistuned model370

As already pointed out in the introduction, the development of new reduced-order modeling techniques
allowing to efficiently compute the response of mistuned bladed-disks in the presence of nonlinearities is of
tremendous importance for both researchers and industrials. The method presented here is devised in order
to answer this problematic, and as a consequence its capabilities to deal with such systems must be validated.

375

In this section, the method is used to synthesise the response of the system defined in section 4.1 when
some structural discrepancies break the cyclic symmetry of the structure. A new type of sector is defined, by
modifying the tip and middle stiffness coefficients of the fundamental sector 5, resulting in a 5% frequency
shift of the first mode. The structural parameters of the new sector are reported in table 3. The fundamental
sector of the tuned system (defined in table 2) and this newly defined sector, hereafter referred to as sector380

A and sector B, are then randomly distributed around the disk according to the pattern provided in table 4.
The backbones of the first mode of both sectors with clamped boundary conditions are compared on Fig. 11.
The 5% frequency shift mentioned hereabove can be clearly seen on the top plot. The forced response of this
mistuned system is then computed by CNCMS and compared to the HBM reference for various excitations.

385

Figures 12, 13, and 14 show the response of all the blades when subjected to a travelling wave exci-
tation with 6 nodal diameters at low (F = 1N), medium (F = 5N), and high (F = 10N) level of nonlinearity,
respectively. Again, the computation is validated with a standard HBM performed on the full system, re-
ported in dashed lines. Even though some small differences can be observed, the results are satisfactory and
meet the authors’ expectations, especially considering the complexity of the response being synthesised.390
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– (unit) Tip Middle Root Disk Ground
m (kg) 0.2 0.3 0.4 1.2 –
k (106·N/m) 1.8 0.9 40 50 0.6

Table 3: Structural parameters of sector B

Sector 1 2 3 4 5 6 7 8 9 10 11 12
Type A B B A B B B A A A B B

Sector 13 14 15 16 17 18 19 20 21 22 23 24
Type A A B B A A A A A A B B

Table 4: Random mistuning pattern
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Figure 11: Backbones of the first mode of the two types of sectors with clamped boundary conditions (sector A - and sector
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Figure 12: Response of the mistuned system to a travelling wave with 6 nodal diameters and F=1N (CNCMS -, HBM - -)
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Figure 13: Response of the mistuned system to a travelling wave with 6 nodal diameters and F=5N (CNCMS -, HBM - -)
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Figure 14: Response of the mistuned system to a travelling wave with 6 nodal diameters and F=10N (CNCMS -, HBM - -)

5. Discussion

This section summarizes the performance and limitations of the reduced-order modeling technique derived
and tested in the present paper.

5.1. Computational performance

In order to evaluate the performance of the proposed method, the evolution of the computation time395

required to obtain the mistuned responses by HBM, ∀F ∈ [[1, 10]]N , is plotted on Fig. 15a, normalized by the
computation time required by the CNCMS for comparison purpose. It can be observed that at very low acti-
vation of the nonlinearities (F=1N), the CNCMS already outperforms the HBM by a ratio of about 25, which
goes up to 77 when the friction is strongly activated (F=10N). Near the optimum nonlinear damping point
(F=5N), the CNCMS is 54 times faster than the HBM. Such a drastic reduction could prove tremendously400

interesting for large-scale models and statistical investigations, usually involving hundreds or thousands of
computations. For information, the order of magnitude of the computational time required for each CNCMS
calculation of Fig.15 is about 10 seconds on a single 3.4GHz CPU, for all excitation levels.

This first observation highlights the advantage of the proposed method compared to standard HBM405

procedures, but the benefit could also be pointed out in terms of speed of convergence. Figure 15b shows
the evolution of the total number of iterations required by the solver to compute the whole response, as a
function of F , and exhibits a behaviour similar to the computation time. The number of iterations close to
the linear domain is about 2.5 smaller for the CNCMS, and up to 8.5 smaller at very strong nonlinear level,
which illustrates the lesser computational effort of the solver.410

Even though significant, this decrease in the number of iterations is not the only cause to the overall
reduction of the computation time. The performance of the HBM is indeed highly dependent upon the speed
of evaluation of the nonlinear forces fnl, whereas for the CNCMS procedure, this term only needs to be
evaluated during the computation of the modes, and on a much smaller system than the global structure. As415

a consequence, a great benefit arises from the CNCMS when a significant part of the computational effort is
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dedicated to the evaluation of the nonlinear forces, for instance in case of intricate, non-smooth nonlinearities
such as contact and dry friction.
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Figure 15: Comparison of the computational effort between the CNCMS and the HBM

The comparison of both methods on Fig.15 does not take into account the computational cost of building420

the reduced-order model, which can yet be an important parameter. For the CNCMS, this cost amounts
to the time required to compute the nonlinear complex modes of the substructures, which takes about 6
seconds on the lumped parameter model of section 4.1. In [6] and [7], Laxalde and Krack have shown that
the computation of the nonlinear complex mode of an industrial finite element model, such as a bladed-disk
sector with contact and friction nonlinearities, can still be performed at a reasonable cost.425

5.2. Order reduction

Furthermore, the computational saving pointed out so far should be put in persective with the actual
order reduction obtained thanks to the CNCMS. On the lumped-parameter model studied in section 4.1, the
procedure results eventually in a relatively small reduction of the overall number of DOFs, owing to the small
number of nonlinear DOFs of each substructure. The number of DOFs of the HBM after condensation is430

equal to 240, whereas the number of generalized coordinates of the reduced-order model, with one nonlinear
complex mode and two static modeshapes per substructure, is equal to 48. As a consequence, the procedure
can be expected to be even more efficient on large finite element models comprising many more nonlinear
DOFs, compared to standard fixed-interface CMS methods which require to retain all the nonlinear DOFs
as master coordinates.435

5.3. Limitations

This work was initiated in response to the need of efficient reduced-order modeling techniques to tackle the
problematic of mistuning of bladed-disks in the presence of nonlinear phenomena. Although the substructur-
ing procedure detailed in the present paper is quite general and applicable to all kind of nonlinear structures,
the method should be expected to be accurate only within a framework verifying the assumptions made in440

section 3 to derive the expression of the superelements in Eq. (17). In particular, it should be recalled that
the motion of the interface between two substructures is approximated by linear static modeshapes, which
seems fairly reasonnable when it comes to blade-disk joint friction, but may be less relevant when dealing
with some other types of structures. Actually, owing to the dry friction element being directly linked to
the boundary DOFs, the lumped-parameter model of section 4.1 does not verify very well this assumption,445

hence the slight differences observed between the responses computed by CNCMS and the reference when the
nonlinearities are strongly activated on Fig. 13 and Fig. 14. The results proved very satisfactory nevertheless,
thus highlighting the robustness of the proposed method.
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In section 3.1, the derivation of a nonlinear superelement resulted in a set of coupled equations, equiva-450

lent to an over-determined system when the harmonic order nh is larger than 1. In case of mono-harmonic
excitations, it was suggested to neglect the equations corresponding to harmonics different from that of the
excitation, so as to deal with a square system. However, in the presence of sub-harmonic or super-harmonic
resonances, this assumption could become problematic, because the interactions between harmonics may not
be captured by the equations retained. Furthermore, the ability of the nonlinear superelement to account for455

such phenomena cannot be ensured at this stage, even when the whole over-determined system is solved by
means of dedicated algorithms. This would indeed require further investigation, and appears as an interesting
prospect of the present work.

6. Conclusion

The reduced-order modeling technique derived in this paper, referred to as CNCMS, has been presented460

and succesfully used to synthesise the forced reponse of a lumped-parameter model of nonlinear bladed-
disk. The procedure is quite general and could be used to tackle different kind of structures, but the results
obtained here makes it very promising in the study of mistuned bladed-disks subjected to blade-disk joint
nonlinearities. The method has proved to significantly outperform standard HBM, especially when nonlinear
resonances occur throughout the frequency range of interest, reducing the computation time by a factor of465

about 50 close to the optimal damping point. The method also proved to provide interesting results in case
of neighboring nonlinear modes, where classic nonlinear modes superposition dramatically fails.

In this paper, the CNCMS makes use of fixed-interface nonlinear modes, and is thus the analog of the clas-
sic Craig-Bampton CMS [1]. Future prospects include the extension of the method to other CMS techniques,470

such as free-interface or hybrid CMS [2], or other type of nonlinearities such as large deformation and large
displacement. The authors are currently working on the application of the method to a three-dimensional
finite element model, in order to appraise its efficiency in dealing with large-scale systems, paving the way for
future statistical investigations and robustness analyses in the presence of random and intentional mistuning
patterns.475
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