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Uncovering the specificities of CAD tools for industrial design with 

design theory – style models for generic singularity 
 

 

 

 

 

Abstract 
 

According to some casual observers,computer-aided design (CAD) tools are very similar. These 

tools are used to design new artifacts in a digital environment;hence, they share typical software 

components, such as a computing engine and human-machine interface. However, CAD software 

is dedicated to specific professionals—such asengineers, three-dimensional (3D) artists, and 

industrial designers(IDs)—who claim that, despite their apparent similarities, CAD tools are so 

different that they are not substitutable. Moreover, CAD tools do not fully meet the needs of IDs. 

This paper aims at better characterizing CAD tools by taking into account their underlying 

design logic, which involves relying on recent advances in design theory. We show that 

engineering CAD tools are actually modeling tools that design a generic variety of products; 3D 

artist CAD tools not only design but immediately produce single digital artefacts; and IDCAD 

tools are neither a mix nor an hybridization of engineeringCAD and 3Dartist CAD tools but have 

their own logic, namely to create new conceptual models for a large variety of products,that is, 

the creation of a unique original style that leads to a generic singularity. Such tools are useful for 

many creative designers beyond IDs.  

 
Keywords:computer-aided design (CAD); industrial designers; engineers; 3D artists; conceptual 

models 
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1. Introduction 

 

This paper is based on a dual motivation. First, there is an industrial motivation.It is now 

wellknown that design processes should integrate different design professionals, such as 

industrial designers, engineers, and graphic designers. It is also wellknown that this integration 

must be supported by contemporary computer-aided design (CAD) tools that are currently at the 

basis of almost every design process. However, at the present time, every profession has, to some 

extent, its own CAD tools, with only limited compatibility. The question is whether it is possible 

tointegrate these tools.Initially, all these professional CAD tools appear very similar;in the 

literature on CAD, the focus is mostly oriented toward the technologies and algorithms for 

generating the artifact (Stergiopoulos et al. 2003; Dyn et al. 2009; Mandil et al. 2011; Bodein et 

al. 2012).Despite these apparent similarities, there are great discrepancies in professional CAD 

development. Engineering CAD and three-dimensional (3D)artist CAD are wellestablished and 

improve continuously whereas, in a type of blurred middle ground, industrial designers (IDs) are 

at the center of a great number of proposals and innovative tools (e.g., Rhino3D and Alias), but 

there are still debates about the inadequacy that IDsencounter when they try to use CAD tools 

(Tovey 2002; Dorta et al. 2008). IDs tend to use tools that were not made for them and 

consequently struggle to maintain their creativity and be integrated into industrial processes. 

Hence,it is difficult to fully understand the specificities of ID CAD compared with engineering 

CAD and graphical CAD.Moreover, it is unclear how these different tools might be made 

compatible.  

The second motivation for this paper relates to design science and design theory.Recent 

advances in design theory provide us with an ecology of theories that might be powerful enough 

to bridge the gap between different professional approaches to design (Le Masson et al. 2013). 

However, research on CAD tools very rarely buildsanalytical framework on design theory.Many 

research works actually use more generic notions, such as ―boundary objects‖ or ―artifacts,‖ 

which are inherited from sociology or management, that tend to hide the specificities of design 

reasoning and barely account for the variety of CAD tools and the incompatibilities that were 

recorded in the use of these tools by professionals. 

Given these two motivations, this paper aims to account for the design logic at the root of 

CAD tools used by engineers, 3Dartists, and IDs by using design theoryto model the reasoning 

steps of designers using these tools. More precisely, this paper intends to understand the 

specificities of ID CAD in comparison with engineering CAD and 3Dartist CAD. 

To summarize, this paper clarifies:  

(1) Thedifferences in the missions of professional CAD tools: engineering CAD supports the 

design of product models so that they are compatible with a ―physical‖ environment and generic 

conditions; 3Dartist CAD tools support the design of a single object to be included in a ―virtual‖ 

world;and ID CAD tools support the design of a singularity for genericity—that is, a singular 

original style to be applied in generic conditions. 

(2) The design logic behind each professional CAD tool: engineering CAD relies on modeling, 

that is, finding a parametric product model by combining existing design parameters (DPs) to 

address existing functional requirements (FRs). 3Dartist CAD relies on the immediate design of 

the object, similar to sculpting or making art more generally.It directly creates the virtual object 

and is not a ―representation‖ of something that would exist somewhere else. Instead, it is a 

―presentation‖—the object is ―made present‖by the 3D artist using CAD. Finally, ID CAD aims 

at designing styles models, which is very specific and different from modeling (i.e., fitting a 
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general model to a particular environment) and art making (which does not necessarily require 

models). 

We start by identifying the tendencies of the literature when analyzing such tools. We 

formulate a generic framework to model the reasoning of CAD tools based on design theories. 

We then use our framework to analyze the following:(1) how it accounts for the differences 

between contemporary professional CADs (synchronic approach);and (2) how it accounts for the 

long-term evolution of professional CAD software (diachronic approach). 

 

 

2. Literature review 
 

The literature clearly distinguishes between threegroups of professionals whouse CAD 

tools: (1) engineers who work in the manufacturing industry and use CAD tools to design 

industrially produced physical objects; (2) 3D artists who work in the entertainment industry and 

use CAD tools to design virtual environments and content for animation, movies, and video 

games; and (3) IDs who work in industry and concentrate on the user experience of 

manufactured products. For each of these groups, the literature in computer science, engineering 

design, and design creativity is distributed along the following two axes:(1) the modeling 

capacities of the geometric kernels, which define what type of objects can be created; and (2) the 

tools’ interfaces, that is, man-machine interfaces (MMI). 

 
2.1 CAD tools for engineers 

 

The first identified category in CAD tool literature isengineering CAD tools, such as 

SOLIDWORKS, Pro/ENGINEER, AutoCAD, and NX. Over 20 years ago, a special issue of 

Research in Engineering Design(Rosen and Peters 1993) underlined the paradigm shift in CAD 

from drafting to product data modeling. It proposed hypotheses for the future of engineering 

CAD modeling based on the emergence and potential generalization of ―features‖ in CAD(Rosen 

1993). According to these hypotheses, a common set of subfeature element types, element–

element relations types (spatial, logical, etc.),and design features associated to the subfeatures 

and relations can:enable performance, cost, and other lifecycle analyses; embody physical 

principles; and enable checks for consistency with design principles. For example,(Shah and 

Rogers 1993) developed concepts for product modeling with a uniform set of structures and 

relationships, and developed approaches to derive the assembly location from high-level 

specifications. It appeared that no single feature set could satisfy all engineers, so the ―features‖ 

used in modern CAD are only a limited approximation of the CAD tools based on a feature-

based representation as imagined by Rosen et al.
1
Retrospectively, it appears that this special 

issue was quite visionary in two aspects:  

(1) It insisted on the modeling aspect of CAD, where a CAD tool finds a model (for example, 

of an object, parts, components) that can be considered as ―satisfying‖ the composition of 

―features‖ to meet requirements. 

(2) It identified a trend in CAD in that the design of new relations was not limited to 

geometric relations, as in parameterized drafting, but could be extended to relations 

between several types of entities and, in particular, functional entities. 
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This was confirmed by subsequent research: for a summary, see (Zeng and Horváth 2012). For 

instance,works on CAD modeling aim to integrate conceptual design (Brunetti and Golob 2000); 

extend parametric design to complex products,such as cars (Salehi and McMahon 2011); support 

constraint identification for more efficient optimization logic (Bettig and Shah 2001);enable 

modeling with heterogeneous solids (Liu et al. 2004a); work on a language of part modeling to 

enable higher compatibility (Xu et al. 2013); or create multi-level assembly models for CAD 

(Chen et al. 2012). 

This modeling logic structures the computer science literature on engineering CAD, 

which is oriented toward improving the geometric model kernel and interfaces of the tools. 

 

2.1.1 Geometric model kernel forengineering CAD tools 

 

The geometric model kernel is the engine of the CAD tool. It determines what type of objects 

can be modeled and managed by the software during the design process. This category of the 

literature is globally evolving toward more functions and the ability to solve more problems of 

various natures, while being able to handle new classes of objects. It takes into account cognitive 

efforts of designers (Nguyen and Zeng 2014). As shown in (Liu et al. 2014), CAD systems aim 

to ―recognize, interpret and process human emotions‖ to integrate the potential bias that can 

arisein the process of designing a concept that is ―right first time.‖ Some scholars, such as 

(Mandil et al. 2011),modify the geometric kernels to describe new attributes, such as geometric 

dots and line segments, to depict early design-stage mechanisms. (Dyn et al. 2009)proposed 

replacing uniform parameter values by chordal and centripetal values to achieve nonlinear 

schemes that are invariant under solid body and isotropic scaling transformations. These papers 

have shown the progressive implementation of capacities for the modeler to handle more types of 

objects, such as functional specifications depicted geometrically. The functions and capacities of 

the software are also affected by the ability to manage more constraints, some of them of a 

different and totally new type, such as user preferences(Kelly et al. 2011). CAD can even be used 

to ―automate the procedure of customization‖ while using standardized components (Kwok and 

Wang 2014).Because of increasing data and knowledge generated during the design and 

manufacturing processes, (Ouertani et al. 2011; Bodein et al. 2012)proposed a new framework 

for the exploitation and curation of knowledge. (Goel et al. 2012)summarized these trends by 

stating that future CAD should be ―cognitive, collaborative, conceptual and creative,‖ where 

―creative design‖ is actually a capacity to access ―systems functionally and at different levels of 

abstraction,‖ remaining in a ―search‖ paradigm where the designer looks for solutions to a given 

problem (p. 897).  

 

2.1.2 Interfaces for manipulating digital engineered content 

 

Interfaces enable interaction with machines. The growing demand for experiencing 

products at the early stages of design has created a strong need for new interfaces with extended 

sensory-motor capacities. There is a progressive shift from old interfaces, such as the mouse and 

keyboard, toward immersive ways of interacting, such as touch, multi-touch, and virtual reality, 

to propose enriched interactions (Stergiopoulos et al. 2003; Deschênes et al. 2004). (Kang et al. 

2013)focused on the step of transferring contentto new portable devices, that is, tablets and 

smartphones with multi-touch. (Liu et al. 2004b)proposed a system for direct interaction and 

modification with a haptic device (see also Fuge et al. 2012). 
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To summarize, publishedpapers on CAD tools for engineers seek to increase the 

capacities of geometric modeling kernels to handle more functions, algorithms, and properties of 

the underlying design concept throughout the entire design process,which includes the factory’s 

design, manufacturing, and maintenance. The digital object tends to become the most perfect 

model of the future real product, up to the chosen tolerances. Furthermore, the literature aims to 

increase interactions between the user and model, for example, with immersive technologies. 

 
2.2 CAD tools for 3D artists 

 
The second identified category in the literature is artistic CAD design tools, such as 3ds 

Max, Maya, and ZBrush. 3D artists produce 3D models required for video games, animated 

films, and special effects in movies, known as computer-generated imagery (CGI). This family of 

products evolves within a galaxy of other services, such as animation, rigging, texture mapping, 

unfolding, and rendering. The literature again stresses two aspects: the geometric model kernels 

and the interfaces for manipulating them. 

 

2.2.1 Geometric model kernel of artistic CAD tools 

 

The geometric model kernel for artistic CAD tools is usually designed to manage the 

highest number of polygons. The more polygons, the greater the density of detail that can be 

achieved.In most cases, artists need tools that allow the direct manipulation of the rendering 

result. The most advanced technique in this domain is generically called voxel, and pixolin 

ZBrushterminology. New models have been introduced to address the specific needs of the 

entertainment industry, such as video gaming, which often encounters the issue of computing 

collisions inside real-time environments(Mishkinis et al. 2012).(Loop and Schaefer 2008; Loop 

et al. 2009)introduced a new method of approximating subdivision surfaces,which are the most 

used modeling technique of 3D artistic CAD tools, with hardware accelerated parametric 

patches, which improve the memory bandwidth requirements for patch control points. This 

allows an extension of the number of polygons displayed by the computer to add more detail to 

the model. (Kowalski et al. 1999)proposed building on the ability of artists and illustrators to 

evoke the complexity of fur or vegetation with relatively few strokes on the boundaries of 

objects. This reduces the total number of polygons while increasing the richness and density of 

detail. Walt Disney Studios recently published the process it used for its Oscar-winning animated 

short filmPapermanin 2012.In their SIGGRAPH talk, Whited et al. (Whited et al. 2012) 

explainedhow a hand-drawn appearance can be achieved with computer-generated models to 

make final animated movies look similar to old animated movies that were drawn by hand. 

 

2.2.2 Interfaces for manipulating artistic digital content 

 

Software designers and researchers have proposed new types of interfaces specially 

designed for 3D artists. The most visible strategies are the imitations of the sketch and clay 

modeling designing steps. For example, as early as 1996, (Gross and Do 1996)proposed a system 

that could recognize and interpret drawings. (Igarashi et al. 2007; Nealen et al. 2007) worked on 

a project for creating 3D shapes from sketched two-dimensional (2D) input. This technique 

allows the user to add, remove, and deform control curves, which then generate free-form 

surfaces. The curves can have arbitrary topologies and do not need to be connected to one 
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another, which allowsthe system to manage both curve deformation and the subsequent surface 

optimization. Other researchers, such as (Keefe et al. 2001),have explained how new 3D 

immersive interfaces can be used to generate artistic 3D content. They proposed an artistic 

medium that uses a 3D analog of 2D brush strokes to create 3D works of art in a fully immersive 

environment. (Zhang et al. 2009)proposed a virtual clay modeling system by which users can 

directly manipulate the shape of a virtual object as they can do with a clay model. 

In papers on CAD tools for 3D artists, researchers havesought methods that increase the 

capacities of geometric modeling kernels to optimize real-time and recalculated visualization 

with the best resolution possible. This focus is required because the design exists and 

evolvesinside a virtual environment for which it must be optimized. Designers want to make the 

model plausible inside its environment. The profusion of details creates a backstory, past, and 

context. Conversely, the literature proposes interactions with rich interfacesthat have a strong 

focus on sketch-based interfaces and clay modeling metaphors.They imitate the artist’s studio 

and ancient techniques. Natural and direct interfaces are intended to help the designer control an 

appearance and a final rendering result so that the model can blend within the virtual 

environment. 

This first review shows how similar issues—such as modeling kernels and interfaces—

are addressed differently by the literature when considering engineering CAD or artistic CAD 

tools. We now provide an example of such a dichotomy with the issue of textures. 

 

2.3Textures 

 

Engineering CAD and artistic CAD tools require an appropriate rendering of the 3D-

designed product inside its environment, but for different purposes. Engineers require good 

rendering engines and libraries of materials to assess the object. Engineering CAD tools integrate 

a library of materials with properties as close to the real materials as possible. (Choi and Cheung 

2005)proposed upgrading the fit between the model and the real product, once manufactured. 

Engineering CAD tools integrate libraries of industrial materials with properties such as color, 

stiffness, and weight, and take into account these properties for the entire object, for example, the 

effect of surface material stiffness and surface material weight on the entire stiffness and weight. 

3D artists need to assessthe future aesthetic properties of the future virtual product inside 

its virtual environment. (Lasram et al. 2012)proposed a new algorithm to simultaneously 

optimize the quality and rendering speed for procedural textures, and for their control and 

parameterization. Artistic CAD tools integrate libraries of natural appearances, such as skin, 

trees, fur,and sketch strokes, in addition to libraries of ―virtual‖ appearances in areas such as 

fantasy, science fiction, and cartoons. 

Thus, we can characterize two contrasting CAD families. Both have a requirement to 

―design a new artifact in a digital environment,‖ but have the same apparent issues regarding the 

computing engine and MMIin a similar way to any software, such as statistics software, office 

software, or enterprise resource planning. The literature helps to characterize some differences. 

The action logic is different: it ismodeling in the case of engineering CAD and designing one 

single artifact in the case of3D artist CAD. Hence, the issues with the computing engine are 

different: they are to increase model fidelity in engineering CAD and increase singularity and 

details in 3D artist CAD. Additionally, the MMI issues are also different: in engineering CAD,a 

MMI tends to increase the number of available features and combinations and the capacity to fit 

into multiple environments, such asa factory, logistics, retail, andwith end-users, whereas in3D 
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artist CAD, MMI attempts to enrich the virtual environment, the artifact rendering, and the fit 

between the virtual environment and the artifact itself. 

 

 
2.4CAD tools for ID 

 

The questions are why and how ID CAD should be different and not simply a 

personalization or hybrid of the two types we have already identified.(Tovey 1997)explained the 

precise differences between the needs of IDs and their engineer colleagues. According to Tovey, 

IDs have the dual needto have tools for working on the aesthetic properties of products and their 

meaning,and to integrate with industrial firms and therefore work with 3D models intended for 

use in manufacturing objects,in the same way as engineers. (Fuge et al. 2012)confirmed this dual 

need. On the issue of ―shape design‖, IDs require a tool that has ―to provide designers with the 

maximum flexibility in exploring a variety of shapes‖ and simultaneously to provide a 

―representation of the underlying surface.The authors finally proposed a direction for a renewed 

family of tools based on sketching and clay modeling techniques transposed into CAD 

environments (Tovey 2002). 

Similarly,(Bae et al. 2008) proposed ILoveSketchsoftware, which encourages IDs to 

express themselves with glyphs and pen–paper metaphors. This project is an attempt to introduce 

within a virtual environment animitation of the traditional sketching process. (Thurgood and 

Clark 2001)used immersive interfaces to create services close to clay modeling, similar to those 

used by 3D artists. However, transferring from a CAD model to another type of data requires 

large computational efforts and breaking the link to the source file, where the design tree and all 

the design features are stored, to obtain what is called a ―dead skin.‖ Another model conversion 

will be required if the designed prototype is validated.Thus, adding ―free-form‖ modules to 

engineering CAD does not solve the issue of the compatibility with engineering CAD logic. 

Finally, the literature on ID CAD tools underlines the mismatch between the needs of IDs 

and the digital tools they can access. Even with tuned-up engineering environments with specific 

interfaces, IDs still lack the capacity to express themselves freely because of the specific modeler 

kernels. Althoughcreative prototypes have been proposed, the models they generate can be 

integrated into industrial environments only after data conversions (Thurgood and Clark 2001) 

that involve heavy losses of information. These data conversions are called the “design-

gap”(Tovey 2002 ; Dorta et al. 2008). After more than 15 years of development, very few of 

these tools are used by IDs on a daily basis. 

The challenge of making simple modifications to existing families of CAD tools to meet 

the needs of IDs appears impossible to solve. IDs lack dedicated tools that can address their 

specific reasoning and design processes while integrating them into industrial environments. 

Over the 15 years that have passed sincethe first papers on the use of CAD in industrial design, 

IDs are still struggling inside companies to find the right tools, to express themselves,and to 

communicate with other designers and fully participate in the entire design process. 

 

2.5 Research question  

 

This literature review helps to reject two common but too-simple hypotheses regarding 

ID CAD tools.CAD tools for IDs cannot be adapted from engineering CAD tools and CAD tools 

for IDs cannot be adapted from 3D artist CAD tools. 
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This results in theresearch question: what is the specific design logic of IDCAD? As 

seen with engineering CAD and 3D artist CAD, CAD software is coherent with the design action 

logic of the user.
2
One uses CAD to create ―a new artifact in a digital environment,‖and the 

literature helped us to clarify the meaning of ―new‖ and ―artifact‖ in each case. ―New‖ for 

engineering CAD means a new combination of known features, whereas ―new‖ for 3D artist 

CAD means an original single digital object. In engineering CAD, the user designs a model of 

the future product, whereas in 3D artist CAD, the user directly designs the final digital object. In 

ID CAD, it remains for us to determine the meaning of ―artifact‖’ and ―new.‖ 

 

3. Method 
 

3.1 Analytical framework 

 

To differentiate between the families of CAD software, we rely on recent findings in design 

theory that allow a better characterization of the specificities of design processes and the CAD 

tools mobilized for them. Recent advances in design theory help to characterize an ontology of 

design (Hatchuel et al. 2013 ; Hatchuel et al. 2011a): 

(1) Design involvesmanaging the unknown. In design, there is a language of the unknown 

(Le Masson and Weil 2013). Design is a situated activity that implies the manipulation of 

knowledge about the known and concepts, which are the management of the 

unknown(Hatchuel and Weil 2009). 

(2) Design is a generative process. It allows the progressive creation of new objects, values, 

products, uses, or technologies, and the creation of new knowledge, which may or may 

not be related to the final artifact. 

(3) Design theories offer a characterization of the evolution between the known and the 

unknown. From the known, it is possible to organize the unknown, and the explorations 

of the unknown can generate new knowledge. 

(4) The performance of the design is, very generally, 2D: generativity of the design (is it new, 

original, etc.) and robustness (feasibility, domain of validity, etc.). 

These results help us to build an analytical framework for CAD. CAD is a media to help 

move from one known–unknown estate to another through a generative process. We need a way 

to characterize the known and unknown. Many theories provide models for the structure of the 

known and unknown in design(Le Masson and Weil 2013 ; Hatchuel et al. 2011a). For this paper, 

we rely on classical language: DPs, FRs, and their relationships. This language, or a variant of 

it,can be found in many formal theories,such as general design theory (Yoshikawa 1981), 

axiomatic design (Suh 1990),and the coupled design process (Braha and Reich 2003). Zeng and 

Gu showed that this language of DPs and FRs could be useful for describing the design process 

and evolution of the artifacts in the design process (Zeng and Gu 1999a, b). DPs are the means of 

action of the designers;that is, these are what they can choose or parameterize, and where 

degrees of freedom exist. For example, DPs can be a form factor, dimension, material, or specific 

painting technique. FRsare the design targets of the designer. FRsare used to describe the 

                                                 
2
This is even ifengineering CADor 3Dartist CAD tools do not cover all facets of the action. For 

instance, engineering CAD tools support conceptual design quite poorly. In fact, future 

engineering CAD might try to address these design steps (see for instance Goel et al. 2012, Zeng 

and Horváth 2012).  



10 

 

expected performance of the design. They can be a tolerance, mass, dimension, specific meaning, 

or style.  

The design process is characterized by the progressive exploration of the unknown and the 

expansion of the known. In FR-DP language, for instance, at the beginning of the design process, 

some FRscan be known, but how to obtainitis unknown, even if some potential DPsareknown. 

Hence, the relationship between FRs and DPs is partly unknown.
3
In the end of the process, one 

knows how to obtain the FRswith the known DPs.Moreover, often the relationship between FRs 

and DPs might take the form of a rule that has a certain domain of validity, so that at the end of 

the design process, one can actually design the entire object in the validity domain. 

This simple framework helps us to characterize the design process steps, according to 

Table 1. 

 

Table 1.Framework to analyze a CAD design process. 

 

Category of CAD 

tool 

Inputs Outputs Criteria of success of 

the considered 

design step 

 DP: known/unknown 

FR: known/unknown 

Relationships 

between DP and FR: 

known/unknown 

DP: known/unknown 

FR: known/unknown 

Relationships 

between them: 

known/unknown 

 

Note: For each CAD tool, one characterizesknowns and unknowns at an initial stage and knowns 

and unknowns and the final stage, and characterizes the type of performance that is targeted 

during the process. 

 

The language of DPs, FRs, and their relationships helps us to characterize many design 

situations. For instance:(1) in engineering design, at the starting point, FRs are provided, but not 

the DPs to achieve them; (2) in industrial design, a brief is provided as a starting point andis a 

fuzzy FR (e.g., ―a smart shopping cart,‖ see for instance Hatchuel et al. 2011b), and the design 

process progressively enriches the FR, for example,designinga new FR that can be associated to 

a smart shopping cart;and (3) in machine design, there are often many FRs given by the customer 

and many DPs to be used to address these FR (available processes, available material, etc.), but 

the relationship between the given FRs and the given DPs is partly unknown. 

Our framework helps us to address our research question by characterizing the design 

situations to which each CAD tool is adapted.We proceed in two phases:  

(1) We first conduct an experimental comparison to characterize the design logic of CAD tools.  

(2) We then show that this design logic helps usto explain general trends in the development of 

CAD tools. 

In the following, we provide detailed methods for each phase. 

 

3.2 Case study 

 

                                                 
3
In some cases,such as adaptive/variant design, the designers already know a large part of the 

relationship between DPs and FRs and they use CAD to fix the final details of this relationship.  
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Our experiment is based on the design of a new motorbike tank. The general brief was to 

design a ―dynamic, muscular‖ tank.This was then evolved into three design briefs, each of which 

was adapted to be managed by the professional using particular CAD software. This product was 

chosen because it could be designed by any of the three categories of professionals. It exhibits 

technical, style, use, and aesthetic constraints. 

This design exercise was applied to three specific CAD tools that are considered archetypal 

by designers and used by professionals on a daily basis: 

(1) The use case for the engineering CAD tool was implemented using SOLIDWORKS 

software. This CAD tool was developed for engineers working in various industries, such 

as robotics and musical instruments. It is based on the paradigm of procedural modeling. 

It is connected with many ―workshops‖ for design analysis, such as resistance, weight 

measurement, and mechanical animation. 

(2) The use case forthe artistic CAD tool was implemented using ZBrushsoftware. This CAD 

tool was developed for 3D artists working in entertainment. It is specialized for the 

precise modeling of biological materials and original objects for virtual environments. It 

is based on the paradigm of clay modeling and connected with many ―workshops,‖ such 

as rigging foranimation and deformations, and rendering. 

(3) The use case for the ID CAD tool was implemented using CATIA Imagine &Shape 

software. This workshop was developed,with IDs involvement,for IDs working on the 

form and aesthetics of products in several industries. It is specialized for the modeling of 

qualitative shapes and draws from the entire CATIA environment. It is connected with 

many ―workshops‖ suited for every step of the design process and most of the types of 

technical expertise (e.g., mechanics, electrics, and hydraulics), from ideation to design 

refinement and production. As mentioned above, very few CAD tools meet IDs’ 

expectations;however, previous experiments have shown that the CATIA Imagine 

&Shape kernel, interface, and integration have specific capacities that make itamong the 

very few CAD tools that meet at least some IDs’ expectations (Arrighi et al. 2015). 

Regarding the professionals, we had to avoid bias resulting from the user’s personality and 

education. Our issue was the comparison of the CAD tools and not the comparison of the 

professional users themselves. To avoid this type of bias and to focus on the comparison issue, 

we had to control the designer using the CAD software. Ideally, we needed the ―same‖ 

professional user (same personality, tastes, etc.), but someone who was capable of using 

engineering,3D graphic, and ID CADs with comparable and high capacity. We had the 

opportunity to rely on one such ―ideal‖ participant.We identifieda professional designer that was 

educated in all three professions and capable of using all three software systems. Thus, in this 

experimental study, we could compare the different software systems andminimize the bias 

introduced by different users. Note that there is no statistical relevance in the comparison, but 

analytically, we ensure that the differences we see are a result of different software systems used 

by this particular user and not the result of different users. We could not identify all the 

differences between the CAD software systems, but the differences we do identify can be 

attributed to those systems. 

Because the same user conducted the three exercises, there might be a form of learning 

involved. This form of learning was maximized: the user performed the tasks in parallel, 

beginning with one CAD software system, then movingto another, and returning to the initial 

system. In fact, the designer worked in this way to be betterable to determine the differences 
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between the three software systems. The experiment enabledthe designer to characterize the 

differences between all three systems. 

During the process and at the end, the designer was interviewed.The designercontributed to 

the comparison and differentiation of the three processes and three resultsthat followed the 

analytical framework in Table 1. 

 

3.3 Historical perspective 

 

In the first phase, we characterized the design logic of CAD tools. This result was 

obtained with a specific use case and software systems. To generalize this result, in a second 

step, we validatedour findings with a study of the historical developments of the CAD software 

systems. Relying on specific milestones in the development of the precursors of the cutting-edge 

contemporary software tools,we trackedhowthese specific categories of tools have evolved over 

time. 

We conducteda historical analysis on each of the three software families:engineering 

design tools;graphic art tools, which included, for these broad categories, tools from 2D graphic 

creation to 3D animation tools and technologies; and industrial design tools. 

 
4. Results 
 

4.1 Design logic of CAD tools for engineers, 3D artists, and IDs 

 

4.1.1 Designing with an engineering CAD tool 

 

In the case of designing a ―dynamic, muscular tank‖ using engineering CAD, the designer could 

not begin with the general brief. First, he had to translate it into known FRs. He explained that he 

considered that the tank had to achieve a specific volume, weight, and stiffness properties. He 

also took into account that the motorcycle tank would be manufactured and assembled;thus, it 

would have to encounter real-world constraints, such as rain, sun, and gravity, and would have to 

be compatible with norms, rules, and legal obligations. Regarding DPs, the designer relied on a 

set of materials and manufacturing processes that are available in the engineering CAD library. 

Thus,before using CAD, the DPs and FRs were fixed. 

 During the design process, the engineer configured a pre-established and mandatory 

set of DPs to achieve known FRs. The engineer used commands and functions step by step to 

construct the virtual mock-up, and by doing this generated what is known as a design tree. The 

design tree contained the functions and parameters, and the relationships among the different 

geometric entities. For instance, the designer specified certain dimensions of the tank to meet the 

volume criteria.The design tree also specified certainthickness parameters, for example, the 

position of ribs, to ensure the stiffness criteria (see Figure 1). A single product was not designed; 

instead,a parameterized and reconfigurable base of rules were produced that could generate a 

family of products.The result of the design in engineering CAD wasnot a single product but 

rather an algebra of rules. This algebra of rules defines how the components are spatially 

positioned,in addition to the links between them, the functions, and their parameters. This 

algebra can be mapped to an infinity of solutions. The engineer guaranteed that the set of created 

rules was robust to variations in DPs (e.g., different materials or manufacturing methods) or even 

FRs (e.g., modified volume requirements or a new legal regulation created during the design 
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process).Clearly, the designer could use irrelevant parameters so that the CAD tool allows 

parametric variations, but these variations are poorly related to important topological variations. 

Digital engineeringappears to be a design process of generalization.The artifact is one 

representation of a ―genre,‖ that is, it helps to address ―generic variety.‖ The product is robust to 

changes in its DPs (components, dimensions, etc.) and its FRs (environment, etc.) – one simple 

illustration of this is the logic of tolerances in engineering design.  

 

 
Figure1. Four design steps of the engineering CAD tool, with finite element analysis (FEA) 

capability included: (a)sketching on 2D planes with a non-uniform rational basis spline; 

(b)general aspect of the final result; (c)stiffness simulation inside the tool, with FEA capability of 

the software system; and (d)volume and mass assessment inside the tool. 

 

4.1.2 Designing with an artistic CAD tool 

 

Using 3D artist CAD, the designerbegan with a brief for a ―dynamic, muscular tank‖. The 

designer noted that the design brief for the artistic 3D profession could also be a 2D sketch or 

illustration. The initial sketch providedindications ofthe environment and the object tobe 

designed—the motorbike on which the tank would be installed, the environment into which the 

motorbike would be inserted, and so on.The designer then extendedthese elementsso the artifact 

created was unique. The motorbike would never be manufactured; it stayed inside a virtual, 

controlled environment. 

To obtain a muscular tank, the designer exaggerated the muscular aspect of his design; he 

added extra refinements and features.To address the FR ―dynamic and strong,‖ he thought of a 5-

year-old motorcycle that was used in the desert, and generated a specific DP: ―there are impacts 

on the front lens, the paint is worn off and decolorized.‖ This motorbike wasmade specifically 

for a video game and driven by a specific character in a special environment, under specific 

lighting, and with a detailed paint job, including the detail ofa specific little scratch on the side 

caused by a collision. This list of FRs was addressed by a combination of DPs: the driver, joints 

between the surfaces, number on the side, and color of the paint. 
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At the beginning, the designer thenhad a collection of DPs and FRs. He freely 

manipulated the DPs and FRs, adding some and suppressing others, under the guidance of an 

artistic director. Unlike his approach to the engineering experiment, he did not generate a generic 

relationship between DPs and FRs with a large validity domain. He created a unique 

correspondence between a list of new DPs and new FRs, with the longest list possible that 

includedmany ―details.‖ Each detail had to convey meaning and intention to animate the virtual 

object. 

Digital artistic design is a design process of congruence with the initial list, that is, the 

verbal brief or 2D sketched example, and extension,which adds a profusion of details to obtain a 

unique artifact, that is, to achieve a form of singularity. 

 

 

 
Figure2.Six design steps of the 3D artist CADtool: (a)muscle reference, (b) import a low 

resolution primitive, (c)raw deformation of the low definition primitive, (d)sculpting the ribs at 

low definition, (e)sculpting additional ribs at high definition, and (f)final result with chrome 

material applied. 

 

4.1.3 Designing with an ID CAD tool 

 

Using the ID CAD tool, the designer began with a ―dynamic and muscular tank,‖ but he 

also added other elements, such as global dimensions, the process of fabrication, and 

manufacturing cost. The designer beganwith references, such as sketches, pictures, or photos. 

Similar to the engineering CAD experiment, the designer took into account that the tank would 

have to encounter real-world constraints, such as rain, sun, and gravity, and that it must be 

compatible with norms, rules, and legal obligations. Simultaneously, it had to satisfy specific 

usage and aesthetic constraints that were difficult to measure. 

The design process required the creation of details. For the first step, the designer 

explored a high density of details in a similar way to a3D artist working with CAD tools. For the 

second step, the designer omittedsome details to fit into a small set of parameters in the data 
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format of a manufacturable file, thereby creating a conceptual modelfor the tank very similar to 

the type of files produced by engineering CAD. 

This conceptual model synthesized and simplifieda large variety of DPs, such as points, 

lines, curves, surfaces, and their parameters,into a smaller set that wascompatible with the 

constraints of engineering design and manufacturing. This limited set was intended to convey the 

dynamism and muscularity of the tank. In our case (see Figure 3), the conceptual model is the 

instruction about the character lines of the tank that make it dynamic and muscular, in addition to 

how the character lines respect the surface quality: their position, thickness, orientation, style, 

and artistic influences. Software requires the ability to extend the list of DPs and FRsand 

synthesize the explorations into a conceptual model. 

In the analytical framework (see Table 2), the design process generates new DPs and FRs 

and it also generates new relationships between these DPs and FRs.This process creates a new 

algebra that can be activated and parameterized on demand once characterized. 

 In the case of ID CAD, the result is not only the particular shape obtained but also the 

conceptual model that underlies this particular shape,that is,it helps to create this shape but also 

a family of shapes sharing a common character. Hence, it possesses some of the properties of 

engineering CAD (i.e., model and genericity) and some of artistic CAD (i.e., generation of FRs 

and DPs, and singularity). The capacity to create conceptual models makes this type of tool 

suited for what we call generic singularity. The artifact designed by the ID is a specific 

configuration of his conceptual model. 

 There is the question ofwhat is ―new‖ in this process.Similar to his role as a 3D artist, 

when working as an ID, the designerused CAD to express himself freely to create an original 

artifact. But he also had to take into account the constraints of the development of the real object 

(development, production, retail, marketing, etc.). Newness is then defined as the capacity to 

make an original model and not only a single digital tank under the industrial constraints. Ideally, 

this model would be valid not only for the tank of the motorbike, but also it might be a model of 

―muscularity‖ that would be valid for a large set of objects, for example, the tank, wheels, 

helmet, and motorcyclist'sjacket.The performance of the designer using ID CAD creates a 

conceptual model that is valid on the largest domain possible. 

 Finally,there is the question ofwhat comprises a conceptual model is that is new and valid 

for a large set of objects. This corresponds to what is usually called a ―style,‖ for example, the 

style of an artist or time period. We finally determine a deep and critical identity feature of an ID: 

an ID creates a personal style or the style of the age. Additionally, this style corresponds to a new 

but stabilized, constant relationship between new or old DPs and new or old FRs.Whilethe 3D 

artist creates a singular object with CAD and the engineer creates a generic variety of objects 

with CAD, an ID creates a generic singularity by creating a new style, which is a new 

conceptual model. 
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Figure3.Six design steps of the ID CAD tools: (a)reference, (b)importing a primitive, (c)playing 

with the shape manipulators, (d)applying constraints over the manipulation cage, (e)editing the 

parameters of the rib, (f)final result inside an urban environment. 

 

4.1.4 Conclusions on the archetypal CAD design tools 

 

Table 2.Characterization of the three archetypal CAD tools. 

 
Category of CAD 

tool 

DP-input FR-input and 

relationships between 

them 

DP-output FR-output 

andrelationships 

between them 

Criteria of success of the 

considered design step 

Engineering 

(SOLIDWORKS) 
 Mandatory DP-input 

 Mandatory FR-input 

 Partial relationships 

between known DP 

and FR 

 DP-output = DP-input 

 FR-output = FR-input 

 Robust domain of 

solutions linking FR 

and DP 

 Size of the domain 

 Degree of performance of 

the local optimums 

 Robustness of the domain to 

both DP and FR 

modifications 

Artistic (ZBrush)  List of desired DP-

input 

 List of desired FR-

input 

 List of imbricated 

DP and FR that 

describe a unique 

prescription 

 New list of DPs, some 

similar to DP-input, 

others different 

 New list of FRs, some 

similar to FR-input, 

othersdifferent 

 New list of imbricated 

DP and FR with more 

details and meaning 

 Extension of the list 

 Density of details 

 Unicity of the list 

 Superfluous DP responds to 

superfluous FR giving the 

next designer the most 

unique intention 

 Congruence between initial 

and final list 

Archetypal 

industrial design 

(CATIA Imagine 

 List of desired or 

mandatory DP-input 

 List of desired or 

 New list of FR, 

including mandatory 

FR 

 Fabrication of the conceptual 

model 

 Robustness of the conceptual 
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& Shape) mandatory FR-input 

 Partial relationships 

between known DP 

and FR 

 List of imbricated 

DP and FR that 

describe a unique 

prescription 

 New list of DP, 

including mandatory 

DP 

 New conceptual 

model 

model to both DP and FR 

modifications 

 Degree of performance and 

originality of the optimal 

conceptual model 

configuration  

 Congruence between initial 

prescription and final model 

 

 After completing the analysis based on the use cases of archetypal tools, we can 

characterize, from a design perspective, the differences among the categories of CAD tools and 

why they are suited to their specific design users. 

 Engineering CAD tools seek to generate the best possible algebra of rules between the 

prescribed FRs and DPs. This algebra must be valid on a domain of DPs and FRs; the 

wider and more robust this domain, the better.Thus, there is a logic of genericity in 

engineering CAD. 

 Artistic CAD tools seek to generate the most detailed, refined,and unique list possible of 

coherent FRs and DPs.This list must be as long and as original as possible, in congruence 

with the prescription. There is no modeling logic;there isa logic of singularity. 

 ID CAD tools can work with an incomplete set of DPs and FRs;they help to extend the 

list, creatinga sense of ―muscularity‖ and DPs that can be associated with ―muscularity‖ 

and they help create the associated conceptual model by linking DPs and FRs that are 

valid on a large validity domain,which can be referred to as a new style. There is a logic 

of generic singularity. 

 
4.2 Historical evolution of CAD tools 

 

We now verify whether this hypothesis is correct from a much wider perspective. There 

are many works on the history of CAD tools(Arrighi and Kazakçi 2013)(Fridenson 2015). We 

rely only on some main milestones in each profession. 

 

4.2.1 Evolution of engineering practices 

 

We summarize the history of engineering CAD in Table 3. Engineering CAD was a 

technique to help to relate known FRs and known DPs,such as shape and material. The evolution 

is marked by the need to increase the list of available DPs and FRs, and the capacity to relate 

complex sets of DPs and FRs. 

 

Table 3.Historical evolution of engineering CAD from the design theory point of view. 

 

Types of engineering 
CAD 

DPs FRs Issues 

CADCAM (1970s, early 
1980s) 

2D-draughting 
Wire-frame and surface 
modeling 
Deformation modeling 
(Bezier logic, see 

Specific shapes to meet 
product and process 
requirements 

Capacity to 
automatically redesign 
Data compatible with 
computerized 
numerical 
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Fridenson 2015) controlmachines 

Solid modeling (late 
1980s) 

Parametric models 
Associative model 
Feature-based model 

Manufacturability 
Composition 
Tolerances 

 

Digital mock-up (1990s) Multiple engineering 
sciences and skills 

Multiple engineering 
sciences and skills 

Mix multiple 
engineering languages 

Product life cycle 
(2000s) 

Process assembly 
After-sales 
Maintenance 
Retail 

Process assembly 
Maintenance 
After-sales 
Retail 

Integrate new 
languages 

 

 

4.2.2 Evolution of 3D artist practices 

 

The history of 3D artist CAD shows how 3D graphic CAD has beenprogressively open to 

be able to integrate denser details and new ―types‖ of details. We summarize the steps in Table 4. 

 

Table 4.Historical evolution of 3D graphic CAD from the design theory point of view. 

 

Types of engineering 
CAD 

DPs FRs 

Wireframe (1960s) Wireframe Only contours 

Polygons (1960s) Polygons: deformable 
polygons, calculates 
reflection angles 

Surfaces; deformable, 
animated surfaces, 
Lighting 

Tessellation (1970s) Tessellation and 
skinning  

Texture 

Subdivision (1980s) Subdivision techniques: 
uniform basis-spline 
curves from artist’s 
work 

Smooth surface 
rendering 

“Clay modeling” 
(1990s–2000s) 

Voxel Rich details on organic 
surfaces 

 

 

4.2.3 Evolution of ID CAD tools 

 

For some time, there were very few dedicated tools for IDs.Despite this, the following challenges 

have progressively been overcome by some software systems for IDs: 

 translatingbetween the different data formats used by engineering design tools and 

industrial design tools; 

 representing objects with a very high surface quality, which is required especially to 

achieve high levels of precision in manufacturing;and 

 maintainingboth a holistic view of the object being designed and the ability to work in 

very local detail. In practice, this implies being able to realize modifications that need 

to be propagated only locally.  
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Finally,ID CAD tools support the creation of conceptual models (i.e., ID styles) in two ways:  

(1) ID CAD tends to hybridize engineering CAD logic and 3D artist CAD in a two-step 

process: the designer first uses 3D artist CAD to have great freedom of exploration, 

which is possible with artistic CAD tools. For the second step, the ID uses engineering 

CAD to apply constraints. Some current software prototypes allow the designer to 

explore every dimension while designing and then the user activates constraints,such as 

the surface quality or process of manufacturing. 

(2) ID CAD provide a specific environment where IDs are aware of the constraints and are 

bound to make only models of a given surface quality,Hence with ID CAD, IDs can 

concentrate on the generation of the conceptual model and its originality becausethey 

have the guarantee that his model will fit the industrial manufacturing constraint.  

This corresponds to two strategies to generate a style with IDCAD:  

Strategy 1:maximal extension, then generation of a conceptual model.  

Strategy 2:modeling inside the constrained environment. The conceptual model is created by the 

embedded constraint inside the tool. 

 

 

4.2.4 Conclusions on the historical study of CAD design tools 

 

This historical analysis supports the previous findings (see Table 5): 

(1) Engineering CAD relies on genericity: designers design a product, for mass production or 

one-offs, that have to fit into complex, real external conditions, such as users’ behavior, 

robustness to external events, and conditions,and the trend consists of widening the set of 

rules to be managed with CAD.  

(2) For3D artist CAD tools, the DP are mainly graphic and the issue is to obtain denser and 

more precise shapeswhile addressing all the facets of an object in its environment to 

convey the meaning of the FR. CAD tools help to design and control as many dimensions 

as possible to obtain a unique and original design. 

(3) IDs, with both technical and artistic competencies, have been trapped between these two 

worlds until very recently. New ID CAD tools help at the present timeto address a large 

variety of FRs inside industrial environments and to have the capacity to generate new 

conceptual models, that is, to act in a “style making” logic. They combine the singularity 

of personal style with the genericity of a style applied to many different artifacts. 

 

Table 5.Characterization of the three archetypal CAD tools. 

Category of CAD tool Remarkable evolutions 

Engineering Variety and number of DP and FR 

Complexity of the base of rules and their 

robustness 

Artistic Variety and number of DP and FR 

Density and unicity of the combination of DP 

and FR 

Capacity to add an infinite number of relevant 

details when needed 

Industrial designer Manage the ―style making‖ logic, such as 

compatibility and rules  
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Extend the notion of style to other dimensions, 

(e.g., use scenario and emotion) 

 

 

5. Discussion and conclusion 
 

5.1 Characterization of CAD tools 

 

We have characterized the underlying design processes of the CAD tools for three 

professions using our design theory model. 

 

5.1.1 Engineering CAD tools 

 

For engineering CAD tools, the design expansion is the making of a rule defining the 

relationship between DPs and FRs. The target for this class of designers is to ensure that the 

design fits within a variety of external conditions, that is,it will be generic for these 

conditions.The designers create a set of rules and not one single object. The global tendency of 

this type of software is the capacity to generate rules addressing more types of DPs and FRs, 

which implies more heterogeneous disciplines, and to validate them across wider and more 

precise domains. We call this tendency generic variety. 

 

5.1.2 CAD tools for 3D artists 

 

3D artists require the ability to expand the list of DPs and FRs. There are no rules and 

domains, only a unique result that must be as dense as possible in detail and meaning. The target 

is a singular and original realization. The global tendency of this type of software is to make 

more FRs achievable as a result of an increase in the number of DPs available. We call this 

tendency maximal singularity. 

 

5.1.3 CAD tools for ID 

 

IDs seek new and original DPs and FRs, and simultaneously try to generate new rules 

between those DPs and FRs. This process is different from engineering design because the rule is 

not the unique target: the DP and FR must also be formulated and generated. It is also different 

from 3D artist CAD tool design because the expansion of DPs and FRs is not sufficient: there is 

a need to converge on a stabilized relationship between DPs and FRs on a large validity domain. 

The target is to obtain a generic singularity, which is generic because the new rule is suitable on a 

validity domain anda singularity because it relies on new DPs and new FRs; it is the design of a 

new conceptual model, or a new style. ID uses CAD to obtain generic singularity. 

 

5.2Perspectives 

This work helps to explain CAD and, more specifically, CAD for ID, by relying on advances 

in design theory.  

(1) It helps to clarify what is designed with CAD and to which of the design situations each 

is adapted. 
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(2) It shows that ID CAD has to be coherent with ID design logic, not the creation of a single 

artifact, but the creation of ―the style of their age,‖ as claimed by Bauhaus, one of the 

most famous design schools(Le Masson et al. 2015). 

(3) Moreover, it helps to clarify two IDCAD logics: expansion and then selection, or 

expansion driven by constraint;that is,managing with constraints creatively. 

More generally, it appears that IDCAD confronts the critical issue of creating a style in software. 

This issue appears as new and critical for CAD: engineering CAD uses existing rules, DPs, and 

FRs to instantiate generic models (modeling logic), and the 3D artist actually designs a single 

artifact. IDCAD invents dimensions and also ensures that their creation has a large validity 

domain, that is, that the new ―style‖ can be applied to a large set of ―objects.‖ 

In further research, this effort to create models might be related to contemporary issues in 

other domains:  

 Contemporary machine learning now extends beyond identifying known patterns and 

tends to use big data to discover unknown patterns (Kazakçi 2014). Hence, linking 

IDCAD and contemporary machine learning might be fruitful.Other areas of interest 

include IDCAD applied to big data issues or, conversely, machine learning algorithms 

applied to IDCAD. 

 IDs are not the only professionals to create models. Creative scientists also try to 

extend beyond the validation of hypotheses and aim at creating new theories for new 

hypotheses. Thus, software that helps to create models might be relevant to them.  

Thus, we have shown that the issue of IDCAD is far from being the orphan issue of one single 

profession; instead, it echoes the contemporary issues of science: invention of styleand model 

creation. 
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