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In recent automated design studies, optimal design methods were introduced to successfully reduce the often
excessive heat loads that threaten the divertor target surface. To this end, divertor coils were controlled to im-
prove the magnetic configuration. The divertor performance was then evaluated using a plasma edge transport
code and a “vacuum approach” for magnetic field perturbations. Recent integration of a free boundary equilib-
rium (FBE) solver allows to assess the validity of the vacuum approach. It is found that the absence of plasma
response currents significantly limits the accuracy of the vacuum approach. Therefore, the optimal magnetic
divertor design procedure is extended to incorporate full FBE solutions. The novel procedure is applied to ob-
tain first results for the new WEST (Tungsten Environment in Steady-state Tokamak) divertor currently under
construction in the Tore Supra tokamak at CEA (Commissariat à l’Energie Atomique, France). The sensitivities
and the related divertor optimization paths are strongly affected by the extension of the magnetic model.
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1 Introduction

At present, several plasma boundary codes exist that attempt to describe the complex interactions in the divertor
SOL (Scrape-Off Layer) [1, 2, 3, 4]. The predictive capability of these edge codes at present is still very limited.
Yet, in parallel to major efforts to mature edge codes, we face the design challenges for next step fusion devices.
One of them is the design of the helium and heat exhaust system. Recently, automated design methods were
introduced for the purpose of divertor design. While these were initially oriented to improve the shape of the
divertor targets for more equal distribution of the target heat load [5], the methods were later applied to magnetic
configuration design [6]. To this end, divertor coils were controlled to improve the magnetic configuration.
Results of these studies indicated large potential reductions in peak heat load by an increased magnetic flux
divergence towards the target structures [6, 7].

The model used to achieve these results combines a magnetic field model using the so-called “vacuum ap-
proach” (VA) with a plasma edge transport model. In the VA it is assumed that magnetic field changes due to
small coil perturbations can be sufficiently described by analyzing the effect of external coil changes in vacuum.
The influence of altering plasma currents and their position is hereby neglected for the small changes concerned.
Another application of the VA is to assess the effect of resonant magnetic perturbations [8].

Because of the rather large magnetic field changes that were found in past automated design studies, the
legitimacy of the perturbation approach has to be questioned. Therefore, a MATLAB version of the CEDRES++
free boundary magnetic equilibrium (FBE) solver [9] was recently included into the simulation framework to
improve the magnetic field model and its in parts adjoint sensitivities were validated [10]. The evident research
question asked in this paper is if at all and under which conditions the VA is an acceptable substitute for the FBE
model. Furthermore, the question arises how the optimal design is affected by this change in models.
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The paper is structured as follows. In section 2, we analyze under which conditions the simplified pertur-
bation approach is legitimate by comparing both models. Afterwards, the plasma edge transport model and the
optimization approach are briefly outlined in section 3. Finally, first results are shown in section 4 for an opti-
mized heat exhaust of the new WEST (Tungsten Environment in Steady-state Tokamak) divertor currently under
construction in the Tore Supra tokamak at CEA (Commissariat à l’Energie Atomique, France) [11, 12].

2 Poloidal magnetic flux models
2.1 Description of the magnetic flux models

The magnetic field in tokamaks is constituted by the coils around the vacuum chamber as well as the field induced
by the plasma currents themselves. Considering a cylindrical coordinate system (R,�, Z), the poloidal magnetic
flux per radian  is everywhere (in and outside the vacuum vessel) governed by the toroidal component of
Ampères law
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with p and F flux functions associated to the pressure and the R-scaled toroidal magnetic field component,
respectively, and where the accent denotes a differentiation with respect to the poloidal flux  . I
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with  ̄ the normalized magnetic flux, which equals 0 at the magnetic axis (MA) and 1 at the LCFS. The physical
meaning and choice of the profile parameters ↵,�, � is dealt with in [15]. � is a scaling variable that assures
that the total plasma current IP is kept constant. In the CEDRES++ framework, these equations are spatially
discretized using a first order finite element (FE) method and solved for  using a Newton method. It is clear
that the nonlinear dependence of the plasma boundary ⌦

p

on  contributes to the complexity of this code. More
information can be found in [9].

The vacuum approach essentially assumes that in the linearization � of the FBE solution  =  0 + � all
plasma currents changes �JP can be neglected at the one hand and, at the other, that the magnetic permeabilities
µ of surrounding materials can be approximated as µ0. The Biot-Savart law can then be used to calculate the
magnetic field. Moreover, if one assumes additionally that the conductors can be modelled as being of infinites-
imal size, a semi-analytical expression for the poloidal magnetic flux change � due to a single coil at location
(r0, z0) is obtained [16]:
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�I
�,ext is the additional external conductor current and K and E are complete elliptical integrals of the first and

second kind that can be evaluated fast numerically. It is obvious that the reduced complexity and increased speed
are the main assets of this approach. The latter approach will be referred to as the perturbation model (PM).
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2.2 Analysis of model assumptions

In this subsection, we show that the FBE model and PM are indeed equivalent if the assumptions introduced
in the former section are made. As such, the correctness of implementation is verified and the effect of the
different assumptions can be estimated. We demonstrate this using the reference equilibrium  0 from the “far”
configuration of [17]. The WEST tokamak, for which the study in this paper is performed, is shown in figure
1a with coils, iron and the vacuum chamber clearly indicated. The divertor coils (numbered 10-19) will be
of specific importance further on to control the magnetic configuration in the vacuum chamber. The reference
magnetic equilibrium  0 is obtained using the FBE code described in section 2.1, with ↵ = 1, � = 1.5, � = 0.9,
I
p

= 0.47 MA. The magnetic fields of both approaches will now be compared for an increase by 1 kA of all
lower divertor coils (coil numbers 14-17).

Fig. 1 a) The WEST machine. Coils are numbered and iron structures are indicated in light gray b-e) Close-up of the
magnetic field change � at a perturbation of 1kA of coils 14-17 at the vacuum vessel (black line) using: b) the FBE FE
simulation, c) the FE simulation with �JP = 0, d) the FE simulation with �JP = 0 and neglecting permeability of iron, e)
PM (numerical evaluations of equations (4) and (5)).

Comparing the change in flux function � =  � 0 of the FBE model (figure 1b) with that of the PM (figure
1e) gives a significant difference. Especially in the core region of 1b, a clear difference in magnetic field is
present that can be attributed to the absence of the nonlinear interaction with plasma currents in the PM. This can
be confirmed by evaluating � with the FE code for input parameters IP = 0 and the coils loaded with a current
�I

�

(figure 1c), so that the additional plasma currents �JP are put to zero. The comparison between FE code and
PM is now in better agreement. Removing the relative permeability of iron finally gives a good agreement of
the FE code with the PM (figure 1d). The local effect of supposing infinitesimal coil currents for the PM can be
clearly seen when comparing (figure 1d) and (figure 1e), but the latter assumption has almost no consequence on
the magnetic field in the vacuum chamber.

2.3 Comparison of sensitivities

Next, we compare the first order behavior of the stationary points of  for both models. Indeed, X-points are
an important characteristic of the magnetic field. The sensitivities @~p/@' of the movement of such a point
with respect to the coil current magnitudes is found by using a simple forward finite difference approach on
both magnetic models, where the perturbation size k�'k = ✏

1/3
m

is linked to the machine precision ✏
m

, ~p =
R e

R

+Z e
Z

is the position vector in the poloidal plane and '
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(105A) are the dimensionless

control variables.
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Fig. 2 a) Comparison of the sensitivities of the lower and upper X-point and MA positions with respect to the divertor coil
currents (FBE: plain symbols, PM: empty symbols, R-component: squares, Z-component: triangles). Coil numbers as given
in figure 1. b) Simplified analysis of the movements in the VA. The magnetic field change at the X-point due to a positive coil
perturbation �I is shown in red and the corresponding movement of the X-point with a double arrow.

The results of this study are shown in figure 2. Remark that overall, big discrepancies are found in the sen-
sitivity analysis and that both models sometimes even have sensitivity contributions of opposite sign. However,
reasonable agreement is found for the sensitivities of the lower X-point with respect to coils 14-17 and those of
the upper X-point with respect to coils 10-13. This is a logical consequence of the fact that these coils are in the
direct vicinity of these respective X-points under consideration. The magnetic field caused by a current decreases
approximately with the squared distance from the current source, so that close enough to the coils the effect of
the coil current dominates that of the plasma currents.

We now illustrate the discrepancies between the models with a simple example. Suppose that X-points, MA
and a divertor coil are aligned as illustrated in figure 2b. One can then study the first order effect of plasma
currents on the X-point location. The displacement ~�p = [�p
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where the latter equality holds because @ /@~p ⌘ 0 at a stationary point of  . The X-point movement caused by
a small change in coil current �I (in positive �̂ direction) is then given by
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are in this case of
the form H

x

= diag (�a1, a2) and H
ma

= diag (�a3,�a4), respectively, with coefficients a1, a2, a3, a4 2 R+.
The well-known right hand rule can be used to find the direction of @ ~B/@I �I at the lower X-point caused by a
positive perturbation �I1. Hence, equation (7) retrieves an upwards movement � ~p

x

= @ ~p
x

/@I �I of the lower X-
point. If one involves the plasma current IP, the conclusion is less straightforward. Suppose the plasma currents
can be represented using a single coil tied to the MA. The movement of the MA and therefore that of the plasma
current can then be analyzed using equation (7). One finds that the MA moves in the opposite direction of the
X-point (downwards) and thus creates a counteracting magnetic field at the lower X-point. The direction of the
X-point movement now depends on the current IP, the mutual distances of the variables and the coefficients a2
and a4. The resulting movement direction becomes less predictable because of this indirect effect.

Looking again at figure 2, one sees that this simplified analysis without plasma current indeed shows the right
tendency for coils 14-17 of the lower X-point and for coils 10-13 at the upper X-point for the PM. One also sees
that all other sensitivities using the PM are relatively close to zero because of the large distance between coil and

1 The right hand rule follows directly from Ampères law.
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stationary point. One may thus conclude that in those cases, the indirect effect of the plasma currents dominates,
since the plasma currents are closer to those stationary points then the perturbed coil. Finally, it appears from
figure 2 that the movement of the MA in the FBE model is not correctly predicted by the simplified analysis,
since the reduction of the plasma currents to a coil at the MA is not a good approximation. Although further
examination of alternative perturbative models with preprocessed determination of the plasma current “gravity
center” are possible, the authors have decided to incorporate the FBE model in the optimal design approach.

3 Optimal magnetic divertor design
The FBE model for magnetic flux simulation is combined with a plasma edge grid generator and plasma edge
transport code for optimization of the target heat load in an optimal design approach. The plasma edge model can
be found in [6] and features ion continuity and momentum conservation, a neutral pressure diffusion equation,
and an internal energy equation, solved for a combined ion-electron-neutral temperature T . The aim is to avoid
heat peaks at the target surface, by minimizing the objective functional

Î (') =
1

2
�
Q

Z

S

t

(Q?(')�Q
d,t

)2 d� +
1

2
�
'

'>' (8)

using the dimensionless coil currents ', where the surface integral with elementary surface vector d� integrates
over the target surface area S

t

. Q? is the heat flux density perpendicular to the target surface and Q
d,t

a desirable
spatially constant heat flux profile. The second term is a Tikhonov regularization term, which physically penalizes
excessive Joule losses. �

Q

and �
'

are both a normalization and a weighting factor for their corresponding terms.
Furthermore, the optimization is augmented with design constraints of the form ĥ(')  0. Constraints

are imposed on the coil currents to represent the conductor and current source limits. Additionally, a minimal
distance is set between X-point and target surface to guarantee the existence of a divertor configuration and avoid
excessive flux of impurities to the core region. Other constraints are imposed but are not discussed, since they
do not influence the results presented in section 4. The optimization is then solved using gradient based descent,
where the sensitivities of the objective functional with respect to the coil currents @' Î are calculated using an
in parts adjoint method presented in [7] and elaborated and verified for the FBE model in [10]. The sequential
quadratical programming method used for optimization is discussed in [6].

4 Results and discussion
The optimization algorithm is used to find an improved magnetic configuration of the WEST configuration pre-
sented earlier in section 2.2, by making use of the coil currents in coils 10-17 (see figure 1a)2. A core input
power of 7.93MW is imposed together with a fixed density at the core boundary of 2.7 · 1019 m�3. For further
information about plasma edge transport parameters and boundary conditions we refer to [10], were the same
set-up was used. The optimization algorithm was stopped when it settled after five optimization cycles. More-
over, 92% of the changes in cost functional was realized in the first two cycles. The entire optimization came at
the cost of roughly twelve plasma edge simulation equivalents, with free boundary equilibrium calculation and
grid generation cost negligible to that of a plasma edge simulation. Remark that this can be easily reduced to six
plasma edge simulation equivalents for practical design purposes.

In figure 3 a and b, the heat load and magnetic field change resulting from the optimization are given, respec-
tively. It is observed in figure 3a that the peak heat load is reduced by 56% and in 3b that this is realized by a
significantly enlarged projected area through flux expansion. The latter effect on the heat load clearly dominates
the effect of the reduced connection length in the current plasma regime. Note that a detached configuration
might hold a different balance between these two means to spread the heat flux. Moreover, the total coil current
was reduced by 94 kA. Nevertheless, the current in coil 14 was increased to 75 kA to accommodate for the large
flux expansion. The increase and decrease of neighbouring coils 14 and 15, respectively, has a clear similarity
with the X-divertor [18] in the way the flux expansion is realized.

The optimization was also repeated with the perturbation model. A similar tendency was found there. Again,
the movement of the X-point towards the target accompanied flux expansion and a decreased heat load. Yet, the

2 Notice that this is an illustrative test case, since in reality coils 10-13 and 14-17 are connected in series.
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Fig. 3 a) Heat load profile on the target surface in comparison to the desired profile Qd, before (dotted) and after optimization
(solid line). b) Close-up of the magnetic configuration change at the divertor region from initial (dashed) to optimized (solid).
The colorbar indicates the change in current magnitudes �I . The dotted line represents the design constraint.

optimal currents were different and changes in currents had to be significantly larger to realize a similar change
in magnetic configuration. Due to the design constraints on the current sizes, the peak heat load was only reduced
by 34 % in the optimal configuration. We conclude that by ignoring plasma currents, the perturbation model
significantly underestimates the effect coil currents can have on the magnetic configuration.

5 Conclusion
In the comparative study of a perturbation model with VA and a full FBE model to simulate the magnetic flux
function, it is found that the use of the perturbation model only gives a reasonable estimation of the poloidal
magnetic flux in the divertor region in the direct vicinity of the divertor coils. In a first optimal magnetic divertor
design study that incorporates the FBE solver, significantly different optimal currents were found. The integration
of a FBE solver is therefore indispensable for realistic magnetic field design. In ongoing work, we attempt to
maximize the heat load under a restricted target temperature. Thus, we aim to assist the WEST project, which
attempts to create circumstances similar to those of the future ITER tests. In first trials it was found that a direct
maximization of the objective functional used in this paper induces a physically irrelevant maximum. Model
assumptions and objective functional will therefore have to be revised to achieve the former goal.
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