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Abstract. Graph edit distance corresponds to a flexible graph dissim-
ilarity measure. Unfortunately, its computation requires an exponential
complexity according to the number of nodes of both graphs being com-
pared. Some heuristics based on bipartite assignment algorithms have
been proposed in order to approximate the graph edit distance. How-
ever, these heuristics lack of accuracy since they are based either on
small patterns providing a too local information or walks whose tot-
tering induce some bias in the edit distance calculus. In this work, we
propose to extend previous heuristics by considering both less local and
more accurate patterns defined as subgraphs defined around each node.

1 Introduction

Graph based representations allow to model a wide variety of data, includ-
ing protein-protein interactions, molecules, shapes or networks. However, since
graphs don’t lie in euclidean spaces, definition of a graph similarity measure
isn’t a trivial problem. Nonetheless, di↵erent approaches have been explored to
define similarity or dissimilarity measures between graphs [1, 2]. A first family of
approaches is based on graph theory, using for example the size of the maximum
common subgraph of two graphs as their similarity measure. A second family
of approaches aims to embed graphs into euclidean spaces by extracting a set
of predefined features from either graph structures [5] or spectrum of adjacency
matrices [6]. In particular, vectorial representations of graphs can be processed
using the large set of well known machine learning and statistical pattern recogni-
tion methods defined on vectorial space. However, a drawback of this approach
is that graphs encode complex objects using nodes and relationships between
nodes and a large amount of information is lost when graphs are transformed
in vectors. Hence, instead of defining an explicit embedding of graphs, an alter-
native approach consists in using graph kernels [4] which correspond to a scalar
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product between two implicit embedding of graphs. Any graph kernel, which
can be seen as a similarity measure between graphs, can then be used in any
machine learning methods which access to data only through scalar products.
Another interesting and widely used approach is the graph edit distance. Unlike
most of the existing graph similarity measures, this approach aims to define a
dissimilarity measure between two graphs directly in the graph space.

The graph edit distance corresponds to a measure of the distortion required
to transform one graph into another. The distortion between two graphs G and
G0 can be encoded by an edit path defined as a sequence of operations transform-
ing G into G0. Such a sequence may include node or edge insertions, removals
and substitutions. Given a non-negative cost function c(.) associated to each
edit operation, the sum of elementary operation’s costs composing the edit path
defines its cost. The optimal edit path is then defined as the one having the
minimal cost among all possible edit paths transforming G into G0. This mini-
mal cost corresponds then to the graph edit distance between G and G0. More
formally, the graph edit distance is defined by the following equation:

dedit(G,G0) = min
(e1,...,ek)2P(G,G0)

kX

i=1

c(ei). (1)

where P(G,G0) corresponds to all possible edit paths, each edit path consisting
in a sequence of edit operations (e1, . . . , ek). Therefore, computing graph edit
distance relies on finding an optimal edit path among all possible ones. A com-
mon approach consists in traversing the space of all possible edit paths by using
an heuristic search such as A* search. This approach, detailed in section 2, allows
to find an exact graph edit distance with the cost of an exponential complexity
which restricts it to rather small graphs, typically composed of up to ten nodes.

In order to tackle this complexity, Riesen and Bunke have proposed in [8] a
method to compute an approximation of the graph edit distance in a polyno-
mial time. This method exploits the close relationship between node mapping
and edit distance to reduce the complexity. Indeed, any mapping between the
set of nodes and edges of two graphs induces an edit path which substitutes all
mapped nodes and edges, and inserts or removes the non-mapped nodes and
edges of the two graphs. Conversely, given an edit path between two graphs such
that each node and each edge is substituted only once, one can define a mapping
between the substituted nodes and edges of both graphs. The heuristic of Riesen
and Bunke [8] builds a mapping between the sets of nodes of two graphs using
a bipartite assignment algorithm, and deduces an edit path from this mapping.
The cost associated to this possibly non optimal edit path corresponds to an
overestimation of the exact edit distance. Obviously, better is the assignment,
lower is the overestimation and thus more accurate is the approximation. The op-
timal bipartite assignment algorithm is based on a cost function defined between
the neighborhoods of each pair of nodes of the two graphs. The idea behind this
heuristic being that a mapping between nodes with similar neighborhoods should
induce an edit path associated to a low cost and thus close to the optimal one.
However, this heuristic may work poorly when the direct neighbourhood does
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not allow to easily di↵erentiate the nodes such as when considering unlabeled
graphs.

Considering this, we can distinguish two approaches which aim to improve
the approximation of graph edit distance: A first one consists in starting from the
edit path induced by the mapping computed by the original method of Riesen
and Bunke, and improve this edit path by slightly modifying it using for example
genetic algorithms [9]. A second approach consists in improving the initial node
mapping [3]. The approach proposed in [3] associates to each node of the graph
a bag of k-walks starting from this node. The mapping cost of two nodes is then
computed by an approximation of the cost of mapping their bag of walks. This
approach allows to compute a better approximation than the original approach
defined in [8], but this gain may be altered by a low accuracy induced both by
the use of walks and an approximation of mapping costs. Therefore, in order
to compute a more accurate approximation of graph edit distance, we propose
to associate each node of the graph to a subgraph including all nodes within a
radius of k edges, such graphs being denoted as k-subgraphs. These patterns may
provide a more accurate description about the surroundings of a node than a bag
of walks. In addition, we propose to evaluate mapping costs between k-subgraphs
using either an exact or an approximated graph edit distance.

Our paper is structured as follows. First, in section 2, we review the com-
putation of exact graph edit distance using the A? algorithm. We also discuss
about the Beam heuristic which allows to compute an approximate graph edit
distance by restricting the search space. Second, in section 3, we review in details
the approximation algorithm proposed by Riesen and Bunke in [8]. Then, in sec-
tion 4, we present our proposition to improve the approximation of graph edit
distance by computing a mapping cost based on k-subgraph instead of direct
neighborhood or k-walks edit distance. Finally, we present some experiments in
section 5 showing the accuracy gain obtained using our approach.

2 Graph Edit Distance Computation: Exact Approach

The problem of computing the exact graph edit distance between two graphs
can be formulated as a search problem inside an appropriate state space, as well
as for other graph matching problems [1, 2]. Considering graph edit distance
problem, the state space corresponds to the set of all complete and incomplete
edit paths transforming the source graph into the target graph. This search is
generally performed using A? algorithm.

A? is a well known search algorithm, which uses an heuristic function to
conduct the search towards an optimal solution inside a search space. It is proven
to be complete, i.e. it always find an optimal solution if it exists, and to be the
best suited algorithm to perform an heuristic search.

A? algorithm consists in finding an optimal path starting from an initial state
s0 to a goal state sg in a search space S. A? begins thus by exploring the search
space from s0. Then, for each step corresponding to a state s 2 S, the cost
corresponding to the path from s0 to s is encoded by a past-path cost function
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summing the cost of each previous steps, while an estimation of the cost form
s to sg is provided by an heuristic function. The sum of both these functions is
an approximate cost of the path from s0 to sg that passes through s. Given a
current state s, it generates a set of successor states s0 and puts non explored
ones into a frontier set, namely the Opening set. Then, the state s0 having the
lowest cost estimation to reach the goal state sg is extracted from the Opening
set and is chosen as the next state. This search process ends when a goal state
sg is reached or the Opening set is empty. It is worth noticing that under certain
conditions on heuristic function, A? always finds an optimal solution.

Time complexity of A? depends on the specific heuristic, but in the worst
case, it is exponential with respect to the length of the shortest path. In order
to reduce the complexity of A? search, a limit on the size of the Opening set
can be imposed. Clearly, in this way, the search algorithm does not guarantee
to always find the optimal solution, but only a sub optimal one. Obviously, the
probability of finding the optimal solution decreases as the limit size of Opening
set decreases. This adaptation of A? is called Beam Search.

A? algorithm can be used to find an optimal edit path between two graphs,
and thus to compute an exact graph edit distance. To this purpose, we have to
clarify the structure of the search space and how the heuristic cost function is
defined. On one hand, each state s 2 S, s 6= sg, corresponds to a partial solution,
i.e. a partial edit path which transforms a subgraph H of G into a subgraph H 0

of G0. On the other hand, a goal state sg corresponds to an optimal and complete
edit path transforming G into G0.

The heuristic cost function encodes, for each state s 2 S, an estimation of the
cost required to reach sg from s. In this paper, we used the heuristic function
defined by Riesen and Bunke in [?]. This heuristic allows to find an optimal
mapping between unused nodes and edges of G and unused nodes and edges of
G0. This optimal assignment provides a minimal mapping cost of unprocessed
sub graphs of the two graphs G�H and G0 �H 0.

As described previously, we can use a Beam Search in order to reduce the
complexity of A?. However, using a limitation on the size of Opening set, we
may not find an optimal edit path. Therefore, the computed graph edit distance
may correspond to an overestimation of the exact graph edit distance.

3 Graph Edit Distance Computation: Approximate

Approach

The graph edit distance approximation framework introduced in [8] reduces the
search problem associated to exact graph edit distance computation to a Lin-
ear Sum Assignment Problem (LSAP) which can be solved in polynomial time.
Considering two graphs G and G0, the approach proposed by [8] consists in three
steps. First, G and G0 are subdivided into two sets of elements, where each ele-
ment is defined as a node and its direct neighbourhood, i.e. incident edges and
adjacent nodes. Given these two sets, we can define a cost matrix C✏ which en-
codes the cost of mapping two elements between the two sets. Second, we resolve
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the LSAP according to C✏ by using the Hungarian algorithm. This algorithm
allows to compute an optimal assignment between the two sets associated to
each graph which corresponds to a mapping of nodes of the first graph onto
nodes of the second graph. Third, we can deduce an edit path from this optimal
mapping by inferring node and edges edit operations. The cost associated to this
edit path, which may not be optimal, corresponds to an approximation of the
graph edit distance.

More formally, let us first consider an input graph G = (V,E, µ, ⌫) together
with a set of bags of patterns B = {Bi}i=1,...,|V |. Every bag Bi is associated
to a node ui 2 V and characterizes the local structure of G around node ui.
The target graph G0 = (V 0, E0, µ0, ⌫0) and its corresponding bags of structural
patterns B0 = {B0

i}i=1,...,|V 0| are given analogously. We define a cost c(Bi ! B0
j)

for the substitution of two bags of patterns. In order to define cost for inserting
or removing bags of patterns, we introduce an empty bag of patterns ". Then,
costs c(Bi ! ") and c(" ! B0

j) encode respectively removal and insertion of a
bag. Given this cost definition, a cost matrix C"(B,B0), encoding the cost of
substitutions, insertions, and removals of bags of structural patterns, is defined
as:

C"(B,B0) =


C(B,B0) C"(B ! ")

C"("! B0) 0

�
2 [0,+1](|V |+|V 0|)⇥(|V 0|+|V |), (2)

where C(B,B0)i,j = c(Bi ! B0
j), C"(B ! ✏)i,j = c(Bi ! ") if i = j and

+1 elsewhere. In the same way, C"(" ! B0)i,j = c(" ! B0
i) if i = j and +1

elsewhere.
Given the cost matrix C"(B,B0), we can compute an optimal assignment be-

tween the sets B and B0 in O(n3) time complexity thanks to the use of Munkre’s
algorithm [7]. This algorithm allows to compute a mapping between the two
sets B and B0, which may not be unique, having the lowest cost according to
C"(B,B0). Since each bag Bi is associated to a node ui, the optimal assignment
provides an optimal assignment between the nodes of both graphs with respect
to the associated bags of patterns. That is, the optimal assignment corresponds
to a mapping  : V [ {"}|V 0| ! V 0 [ {"}|V 0| of the nodes V of G to the nodes
V 0 of G0. Due to the definition of the cost matrix, which allows both insertions
and removals of elements, the mapping  is composed of di↵erent forms of node
assignments: ui ! u0

j , ui ! ", "! u0
j , and "! ". The mapping  can be inter-

preted as a partial edit path between the graphs G and G0 which only includes
edit operations on nodes. The complete edit path is obtained by completing this
partial edit path with edit operations on edges. This set of edit operations can
be directly inferred from node edit operations since edit operations performed
on nodes induces substitution, insertion or deletion of some edges in order to re-
trieve the target graph. Hence, the set of edges operations required to transform
G into G0 is obtained from the set of node operations induced by  . The cost of
the complete edit path is finally returned as an approximate graph edit distance
between graphs G and G0.

This approach proposed by Riesen and Bunke allows to compute an approx-
imate edit distance in a polynomial time complexity with respect to the number
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of nodes. The low complexity of this approach allows then to use the graph edit
distance in pattern recognition problems, and reaches good prediction accura-
cies [8]. However, this approach lacks of accuracy in some applications where
the direct neighbourhood of graphs is not su�ciently discriminant. When con-
sidering such graphs, the mapping costs associated to each pair of nodes do not
di↵er su�ciently and the optimal mapping depends more on the initial order of
nodes than on the graph’s structure. Therefore, in order to improve the accuracy
of the approximation of graph edit distance, Gaüzère et al. proposed in [3] to
enhance the information associated to each node by considering a bag of walks
up to a length k instead of only the direct neighbourhood. This approach follows
the same scheme as the one used by [8] and described at the beginning of this
section, except that the set of bags of patterns associated to a node is defined
as the set of walks starting from this node and having a particular length k.
Considering such a bag of patterns allows to extend the amount of information
associated to each node by taking into account less local structures. The bag
of patterns associated to each node is then more discriminant and lead to a
better approximation of the graph edit distance. However, the use of bags of
walks induces some drawbacks. First, the set of computed walks su↵ers from the
tottering phenomenon which leads to consider irrelevant patterns. These irrele-
vant patterns a↵ects the mapping cost and thus the approximation of the graph
edit distance. In addition, the mapping cost between two bags of walks is only
approximated, which induces another loss of accuracy. Therefore, we propose in
the next section to tackle these drawbacks by considering k-subgraphs associated
to each node.

4 Approximate GED using K-Graphs

First, let us introduce the concept of k-subgraph (Figure 1). Given a node u 2 G
and a radius k 2 N, we define k-subgraph(u) as the subgraph of G defined by
the subset of nodes of G which can be reached from u by a path composed of
k edges. Given this concept, each node of the graph can be associated to a sub
structure of the graph which encodes a more or less local information, depending
on the value of k. However, unlike bags of walks used in [3], k-subgraphs do not
su↵er from tottering phenomenon.

Following the graph edit distance approximation scheme described in sec-
tion 3, we propose to define the bag of patterns associated to each node u 2 V
of a graph G = (V,E, µ, ⌫) as k-subgraph(u). Then, in order to compute the
optimal assignment between two sets of patterns, we propose to define match-
ing cost c(u ! v) as the exact graph edit distance between k-subgraph(u) and
k-subgraph(v). However, as explained in previous paragraph, k-subgraph(u) and
k-subgraph(v) are respectively centered around nodes u and v. In addition, the
matching cost c(u ! v) must encode the matching ability of u and v and not
only the similarity of k-subgraph(u) with k-subgraph(v). Therefore, we propose
to restrict the set of possible mappings in such a way that the two central nodes
u and v are mapped together. Using such a constraint, we force a substitution
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Fig. 1. Examples of k-graphs associated to a central node (in light grey).

operation (u ! v) to be the only node edit operation performed on u and v. This
restriction allows also to slightly reduce the complexity required to compute the
exact graph edit distance by pruning a part of possible edit paths. Therefore,
given two nodes u 2 G and v 2 G0, the cost of the substitution c(u ! v) is
defined as: c(u ! v) = d(u,v)(k-subgraph(u), k-subgraph(v)) where d(u,v) cor-
responds to the graph edit distance between k-subgraph(u) and k-subgraph(v)
with restriction on node edit operations involving u and v. The enumeration of
k-subgraph requires to perform a depth first search from each node. The com-
plexity associated to this step is in O(ndk) where n is the number of nodes of the
graph, d its maximum degree and k the radius associated to k-subgraph. There-
fore, the computational e↵ort is polynomial with the maximum degree of graphs
and is linear with the size of the graphs. It is worth noticing that this complexity
is only linear for graphs having a bounded degree. In addition, our proposition
induces to compute a graph edit distance for each pair of nodes of the graphs to
be compared. Considering two graphs having n nodes, these operations induce
n2 graph edit distance computations. Hopefully, these graph edit distances are
only computed between graphs of a limited size for reasonable values of k, which
limits computational time. However, in order to reduce this computational time,
we may use the Beam search algorithm (Section 2) and limit the queue size.

5 Experiments

Following the same test protocol as in [3], we tested our heuristic on 4 graph
datasets1 encoding molecular graphs. For all these experiments and as in [3], in-
sertion/removal costs have been arbitrarily set to 3 for both edges and nodes and
substitution cost to 1 for edges and nodes, regardless of node’s or edge’s labels.
Graphs included within the 4 datasets have di↵erent characteristics: Alkane and
PAH are only composed of unlabeled graphs whereas MAO and Acyclic corre-
spond to labeled graphs. In addition, Alkane and Acyclic correspond to acyclic
graphs having a low number of nodes (8 to 9 nodes in average) whereas MAO and
PAH correspond to larger cyclic graphs (about 20 nodes in average). Tables 5

1 These datasets are available at http://iapr-tc15.greyc.fr/links.html
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Dataset
A? Beam, 1000 Beam, 100

Gain Loss = Gain Loss = Gain Loss =

[8]

Alkane 63% 17% 20% 60% 20% 20% 56% 23% 21%
PAH 68% 17% 15% 81% 9% 9 % 81% 10% 9%
MAO 99% < 1% < 1% 98% 2% < 1% 93% 7% < 1%
Acyclic 75% 15% 10% 72% 18% 11% 68% 21% 11%

[3]

Alkane 63% 17% 21% 59% 19% 22% 54% 21% 26%
PAH 40% 41% 18% 63% 23% 14% 61% 25% 14%
MAO 76% 8% 16% 69% 16% 16% 47% 43% 10%
Acyclic 59% 22% 18% 55% 25% 19% 51% 30% 19%

Table 1. Accuracy comparison of approach versus [3] and [8].

and 2 show a comparison of the accuracy of our proposition with two state of
the art methods: the original one from Riesen [8] and an improvement of this
approach using k-walks [3], both detailed in section 3. As in [3], chosen k is the
one obtaining the most accurate results. First, Table 5 and shows the percentage
of entries of edit distance’s matrix corresponding to accuracy gain (i.e. computed
edit distance is lower), accuracy loss or equivalent accuracy obtained by our ap-
proach versus the ones obtained by [8] and [3]. These percentages are displayed
for di↵erent ways of computing graph edit distance between k-subgraphs: exact
graph edit distance (A?) and Beam search using a queue limit of 1000 (Beam,
1000) or 100 states (Beam, 100). On one hand, we can note that our approach
provides always a better approximation of graph edit distance for 63% to 99%
of molecules’ pairs when compared to the approach of Riesen and 40% to 76%
when compared to the approach based on k-walks. These observations are still
valid even if we use Beam search algorithm in order to reduce the computational
time required by our approximation. On the other hand, we observe an accuracy
loss for only < 1% to 15% when compared to the approach of Riesen and 8% to
41% when compared to the second approach. Note however that the comparison
on PAH dataset su↵ers from the fact that k is limited to 2 for A? algorithm,
versus walks composed of up to 5 nodes in [3]. This limitation is induced by
the high computational time required by A? algorithm. However, we can note
that using a faster algorithm which allows to consider larger k-subgraphs, we
obtain a better approximation of our graph edit distance. Finally, these two first
experiments shows a clear gain on the accuracy of our approximation compared
to both state of the art approaches.

Same conclusions can be drawn from the Table 2 which shows, for each
dataset and each method, the average edit distance (d̄) together with the av-
erage error of our approximation with respect to the exact graph edit distance
and the average time required to compute graph edit distance for a pair of
graphs. The average error is not available for MAO and PAH datasets since it
requires too much time to be computed. First, we can note that our approaches
require higher computational times with respect to other approximation frame-

https://www.researchgate.net/publication/222134741_Bunke_H_Approximate_graph_edit_distance_computation_by_means_of_bipartite_graph_matching_Image_Vision_Comput_277_950-959?el=1_x_8&enrichId=rgreq-87de3eb2-1a0c-4c71-bc6b-34b4b9b56256&enrichSource=Y292ZXJQYWdlOzI3NjI3NjU1MTtBUzoyMjkwNTYyMzA3MTk0ODhAMTQzMTYyMjY2OTA5OA==
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Method
Alkane Acyclic MAO PAH

d̄ ē t̄ d̄ ē t̄ d̄ t̄ d̄ t̄

A? 15 1.29 17 6.02
[8] 35 18 10�2 35 18 10�3 105 10�3 138 10�3

[3] 33 18 10�3 31 14 10�2 49 10�2 120 10�2

KG, A? 26 11 2.27 28 9 0.73 44 6.16 129 2.01
KG, Beam 1000 27.3 12.6 0.46 28.6 9.9 0.13 47 5.74 113 19.39
KG, Beam 500 27.6 12.1 0.58 28.7 9.9 0.21 54 6.43 113 19.74
KG, Beam 100 28.4 12.9 0.22 29.7 10.8 0.12 60 1.84 115 4.79
KG, Beam 50 28.8 13.2 0.15 30 11.2 0.09 76 1.10 115 2.73

Table 2. Average edit distance (d̄), average error (ē) and average time in seconds (t̄)
for each method and each dataset (KG=our method).

works. This observation is coherent with the fact that we have to compute, for
each pair of nodes to be matched, a graph edit distance between rather large
graphs when k is equals to 3 or 4. In addition, computation times obtained for
line 3 corresponds to a Matlab/C++ implementation whereas other lines have
been computed using a Java implementation [?]. The results shown in these first
three tables show the gain in accuracy induced by using k-subgraphs to com-
pute a matching cost between nodes instead of using direct neighbourhood [8]
or k-walks [3]. In addition, we can note that taking into account a large radius
for k-subgraphs increases the accuracy of our edit distance approximations (Fig-
ure 2). Conversely to the observation stated in [3], in our framework, considering
a large radius does not induce irrelevant patterns and thus the accuracy does not
decrease. The decrease in gain accuracy observed for smashed lines for larger k
is due to the fact that the limit on the number of states does not allow to find
an optimal edit path. This may occurs more often as the number of possible edit
paths increase.

6 Conclusion

In this article, we have proposed a new heuristic to enhance the approximation
of graph edit distance using the framework based on optimal bipartite graph
matching. Our proposition aims to use less local and more discriminant sub
structures, called k-subgraphs, associated to each node. Despite the high com-
putational time induced by our proposition, our approach is still less time con-
suming than computing an exact graph edit distance and we obtain a better
approximation accuracy than previous method, hence showing the relevancy of
considering larger and exact patterns with respect to previous proposition.
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