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Nanometric spheres of an azopolymer are obtained by micellization from a solution. We observe
photoinduced deformation of the individual nanospheres under white light illumination. The
diameter expands up to 35% parallel to the substrate surface. The magnitude of the force that is
necessary to produce the same effect is estimated. © 2010 American Institute of Physics.
�doi:10.1063/1.3409123�

Azobenzene chromophore containing materials are stud-
ied since a long time1,2 and currently continue to capture
researcher’s attention.3 Substantial changes in material prop-
erties during light irradiation were investigated. The potential
of these materials as active components for a variety of ap-
plications from holography to nonlinear optics was studied.
The mechanism involved in these photoinduced changes in-
volves the photochemical excitation of the azobenzene group
that undergoes a trans to cis isomery and then relaxes back to
the trans state with some energy dissipation. By repetition of
trans-cis-trans isomerization cycles, a substantial portion of
the initially homogeneous distribution of azobenzene groups
escapes from its initial position. A large scale mass transport
phenomenon occurs and results in surface relief gratings as
well as various materials’ modifications.

In usual experiments, an azopolymer film is illuminated
by an interference pattern, inducing a directed mass migra-
tion effect, resulting in a surface pattern consisting in mi-
crometer deep stripes that are stable over long time periods.
It was shown more recently that a self-organized structura-
tion effect could be achieved using a single laser beam with
controlled polarization.4 The phenomenon was also observed
by using near-field optical techniques in which surfaces
could be patterned with a resolution much smaller than the
optical wavelength.5 Further studies demonstrated that the
use of an incoherent light source was also efficient in print-
ing a well organized pattern at the surface of an azopolymer
thin film.6 Li et al.7 have decreased the size of the surface
exposed to light by using colloidal spheres of azopolymer.
Light irradiation could deform the azopolymer colloidal
nanospheres. In view of the above previous results we used
incoherent white light to induce the azo molecules’ motion
and to distort nanometer polymer spheres.

Nanospheres are fabricated from a highly photo-
active azobenzene derivative containing heterocyclic sul-
fonamide moieties: 3-��4-��E�-�4-���2,6-dimethylpyrimidin-
4-yl� amino� sulfonyl�phenyl� diazenyl�phenyl�-
�methyl�amino�propyl 2-methylacrylate. Characteristics of
the polymer �inset in Fig. 2� are Mn=10750 Da, Mw
=15800 Da, glass transition temperature Tg=344.1 K, �max

=448 nm, absorbance �dm3 mol−1 cm−1� log10���=4.38.8

The azopolymer was dissolved at 50 mg/ml in tetrahyd-
ofurane �THF�. The nanospheres were prepared following
the method used for aggregate formation from polystyrene-
poly�acrylic acid� block copolymers micelles.9 Deionized
water was added dropwise into the THF solution. When mi-
cellization occurs, the nanospheres are dropped on a glass
substrate. Density of the nanospheres on the surface is about
9 �m−2. Figure 1 presents a scanning electron microscope
�SEM� image of the nanospheres dispersed on the surface of
a microscope glass slide. We can estimate their external di-
ameter by statistical analysis of the image �Fig. 2�: it is
84�10 nm.

We configured an atomic force microscope �AFM� with
an inverted microscope in order to illuminate and probe the
nanospheres. A single bulb incandescent lamp with broad
continuous spectrum is used to shine the nanospheres. Its
light is totally incoherent and its polarization random. The
lamp spectrum overlaps the blue absorption band of the
azopolymer with peak at 438 nm. Lamp power is set to 2.2
mW at the sample location. A microscope objective with
magnification �40 �0.6 numerical aperture� focuses the light
beam on the sample surface. We calculate a full-width at
half-maximum spot size �xFWHM=0.42 �m. The sample
surface is scanned at the beam spot location with the AFM in
the noncontact mode every 5 min. During AFM scan, white
light is blocked to avoid multiple reflections from the scan-
ning head.

a�Electronic mail: nunzijm@queensu.ca. FIG. 1. SEM image of nanospheres dispersed on a glass substrate.
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The white light power was not intense enough onto the
sample to melt the nanospheres. Figure 3 shows an AFM
image of two nanospheres before and after irradiation of the
sample surface with the incoherent white light. Absolute res-
olution of the image is actually limited by the tip size. After
irradiation, the nanosphere width has expanded. Figures 4�a�
and 4�b� show a cross section in the horizontal and vertical
directions of nanosphere surface profiles before and after ir-
radiation. Spheres expanded almost uniformly in the film
plane, with a recorded increase of 20% for the horizontal
cross section and 35% for the vertical cross section in the
substrate plane �Fig. 4�. We attribute the difference to the
acentric position of the nanosphere into the beam waist. For
exposure times larger than 15 min the morphology of the
nanospheres remained stationary. Under the same experi-
mental conditions the results are reproducible from sphere to
sphere. We notice also that irradiation pulls the nanospheres
upwards. Interestingly, we see the same trend as following
the excitation of an azopolymer surface by the evanescent
wave from a near-field microscope.5 The effect is similar
also to the irradiation of azopolymer nanotubules.10

The uniaxial compression of polymer spheres was stud-
ied previously.11,12 The force F needed to exert an elastic
deformation on an incompressible sphere is derived from
Hertz theory which considers the contact deformation of
elastic spheres under normal loads in the absence of adhesion
and friction. For small deformations, it is as follows:

F = 4
3GD0

0.5�D1.5, �1�

where G is the elastic modulus, �D=D0−D the deformation,
D0 and D the initial and final diameters. For poly�methyl-
methacrylate� �PMMA�, G is given in the range 1.8–3.1

GPa.13 Taking the same 1 GPa low bound as Saphiannikova
et al.,14 we get the force F�1 �N. It is an order of magni-
tude larger than typical forces needed for the deformation of
hollow polyelectrolyte microcapsules using an atomic force
microscope,15 actually the same order as for filled microcap-
sules, and an order of magnitude lower than the force that
was used to indent silicon surfaces.16 The axial force in the
generalized Lorenz–Mie theory �GLMT� is derived within
the geometrical optics approximation considering that mo-
mentum exchange between the light and the particle exerts
an optical force. The axial force in the GLMT is:17

Fz =
nm

c

2P

��0
2Cpr,z, �2�

where Cpr,z is the cross section for radiation pressure and �0
is the waist radius of the focused beam as defined in Ref. 18.
Equation �2� yields an axial radiation pressure force Fz
�20 pN, larger than gravity �4.7 pN�. Toshchevikov et al.19

calculated the stress that is exerted on a polymer during sur-
face relief grating formation. It yields a force Fz�2 �N
onto the nanospheres, rather close to the estimation from
Eq. �1�.

In conclusion we presented a simple scheme which ren-
ders possible the modification of the shape of colloidal par-
ticles made out of azopolymers. The photoinduced deforma-
tion effect is restricted to a very small surface, which
produces a different behavior than in thin films. A white light
incoherent beam can be used for mass motion. This light-
driven process can be used in photonics and biotechnology
applications. The use of polymer nanospheres presents some
obvious advantages. For instance, nanospheres permitted to
implement a new optical storage principle.20 Interestingly, it
was also shown that as the nanoparticle diameter increases,
the interaction area between protein and nanoparticle

FIG. 2. �Color online� Distribution of nanosphere diameters. Mean nano-
sphere diameter is 84�10 nm. Inset is the chemical formula of the azoben-
zene copolymer with 20% butyl-methacrylate monomer ratio.

FIG. 3. �Color online� AFM images of nanospheres illuminated by an inco-
herent white light: �a� before irradiation; �b� after 15 min irradiation under
white light.

FIG. 4. �Color online� AFM profiles of a nanosphere before and after irra-
diation with the incoherent white light in the X direction �a� and in the Y
direction �b� along the substrate plane.
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increases.21 Most importantly, whatever the origin of the
force that is exerted onto the nanospheres, huge pressure will
be transmitted to the interior of the particles or to the sur-
rounding material, a cantilever for instance, opening up the
possibility with light to induce and control effectively me-
chanical motion at the nanoscale.
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