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ON THE NUMBER OF PLANAR EULERIAN ORIENTATIONS

NICOLAS BONICHON, MIREILLE BOUSQUET-MÉLOU, PAUL DORBEC, AND CLAIRE PENNARUN

Abstract. The number of planar Eulerian maps with n edges is well-known to have a simple
expression. But what is the number of planar Eulerian orientations with n edges? This
problem appears to be difficult. To approach it, we define and count families of subsets
and supersets of planar Eulerian orientations, indexed by an integer k, that converge to
the set of all planar Eulerian orientations as k increases. The generating functions of our
subsets can be characterized by systems of polynomial equations, and are thus algebraic.
The generating functions of our supersets are characterized by polynomial systems involving
divided differences, as often occurs in map enumeration. We prove that these series are
algebraic as well. We obtain in this way lower and upper bounds on the growth rate of planar
Eulerian orientations, which appears to be around 12.5.

1. Introduction

The enumeration of planar maps (graphs embedded on the sphere) has received a lot of
attention since the sixties. Many remarkable counting results have been discovered, which were
often illuminated later by beautiful bijective constructions. For instance, it has been known1

since 1963 that the number of rooted planar Eulerian maps (i.e., planar maps in which every
vertex has even degree) with n edges is [54]:

mn =
3 · 2n−1

(n+ 1)(n+ 2)

(
2n

n

)
. (1)

A bijective explanation involving plane trees can be found in [15]. The associated generating
function M(t) =

∑
n≥0mnt

n is known to be algebraic, that is, to satisfy a polynomial equation.
More precisely:

t2 + 11t− 1− (8t2 + 12t− 1)M(t) + 16t2M(t)2 = 0.

Figure 1. A rooted Eulerian map and a rooted Eulerian orientation.

Beyond their enumerative implications, bijections involving maps have been applied to encode,
sample and draw maps efficiently [11, 21, 31, 51]. More recently, they have played a key role
in the study of large random planar maps, culminating with the existence of a universal scaling
limit known as the Brownian map [44].
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Planar maps equipped with an additional structure (e.g. a spanning tree [45], a proper
colouring [56, 57], an Ising or Potts configuration [4, 12, 13, 16, 18, 22, 25, 40]...) are also much
studied, both in combinatorics and in theoretical physics, where maps are considered as a model
for two-dimensional quantum gravity [23]. However, for many of these structures, we are still in
the early days of the study, as even their enumeration remains elusive, not to mention bijections
and asymptotic properties.

Recent progresses in this direction include the enumeration of planar maps weighted by their
Tutte polynomial, or equivalently, maps equipped with a Potts configuration. The associated
generating function P (t) is known to be differentially algebraic. That is, there exists a polyno-
mial equation relating P (t) and its derivatives [6, 7]. The Tutte polynomial has many interesting
specializations (in particular, it counts all structures cited above, like spanning trees and colour-
ings) and several special cases had been solved earlier. One key tool in the solution is that the
Tutte polynomial of a map can be computed inductively, by deleting and contracting edges.

Another solved example, which does not seem to belong to the Tutte/Potts realm, consists of
maps (in fact, triangulations) equipped with certain orientations called Schnyder orientations.
The results obtained there have analogies with those obtained for another class of orientations,
called bipolar (which do belong to the Tutte realm). Indeed, for both classes of oriented maps:

• oriented maps are counted by simple numbers, which are also known to count other
combinatorial objects (various lattice paths and permutations, among others);

• there exist nice bijections explaining these equi-enumeration results [9, 10, 28, 33];
• for a fixed map M , the set of Schnyder/bipolar orientations of M has a lattice struc-

ture [52, 27, 46]. The above bijections, once specialized to maps equipped with their
(unique) minimal orientation, coincide with attractive bijections designed earlier for (un-
oriented) maps [5, 10];

• specializing the bijections further to maps that have only one Schnyder/bipolar orienta-
tion also yields interesting combinatorial results [5, 10].

These observations led us to wonder about another natural class of orientations, namely those
in which every vertex as equal in- and out-degree, known as Eulerian orientations (Figure 1).
Clearly, a map needs to be Eulerian to admit an Eulerian orientation. The condition is in fact
sufficient (such maps even admit an Eulerian circuit [37]). One analogy with the above two
classes is that the set of Eulerian orientations of a given planar map can be equipped with a
lattice structure [52, 27]. Moreover, Eulerian maps (equivalently, Eulerian maps equipped with
their minimal Eulerian orientation) have rich combinatorial properties: not only are they counted
by simple numbers (see (1)), but they are equinumerous with several other families of objects,
like certain trees [15] and permutations [8, 32]. And they are often related to them by beautiful
bijections.

Hence our plan to count Eulerian orientations with n edges. However, this appears to be a
difficult problem. In fact, we even lack a way to compute the corresponding numbers in, say,
polynomial time. This leads us to resort to approximation methods that are ubiquitous when
studying hard counting problems, like the enumeration of self-avoiding walks [1, 29, 36, 49], or
polyominoes [2, 39, 41]: denoting by O the set of Eulerian orientations, we construct subsets
and supersets of O, indexed by an integer parameter k, which converge to O as k increases. And
we count the elements of these sets.

One difference between our study and those dealing with tricky objects on regular lattices
(like the above mentioned self-avoiding walks and polyominoes) is worth noting. The subsets and
supersets that are defined to approximate lattice objects often have a one-dimensional structure,
and rational generating functions that can be obtained using a transfer matrix approach. A
typical example is provided by self-avoiding walks confined to a strip of fixed width. But our
subsets and supersets of orientations belong to the world of maps (or random lattices in the
physics terminology), and have algebraic generating functions. More precisely, our subsets have
a branching, tree-like structure, which yields a system of algebraic equations for their generating
functions, and a universal asymptotic behaviour in λnn−3/2 (for a growth rate λ depending on
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the index k). The generating functions of our supersets are more mysterious. They are bivariate
series given by systems of equations involving divided differences of the form

F (t;x)− F (t; 1)

x− 1
,

and we have to resort to a deep theorem in algebra, due to Popescu [50], to prove their algebraicity
for all k (we also solve these systems for small values of k). We conjecture that their asymptotic
behaviour is also universal, this time in λnn−5/2, as for planar maps (again, for varying λ).

Here is now an outline of the paper. In Section 2 we first present a simple recursive decom-
position of (rooted) Eulerian orientations, based on the contraction of the root edge, and then a
variant of this decomposition. Thanks to this variant, we can compute the number on of Eulerian
orientations having n edges for n ≤ 15 (Figure 2). By attaching two orientations at their root
vertex, we see that the sequence (on)n≥0 is super-multiplicative:

om+n ≥ omon.

This classically implies that the limit µ of o1/n
n exists and satisfies

µ = sup
n
o1/n
n . (2)

(see Fekete’s Lemma in [59, p. 103]). We call µ the growth rate of Eulerian orientations. It is
bounded from below by the growth rate 8 of Eulerian maps, and from above by the growth rate
16 of Eulerian maps equipped with an arbitrary orientation. Our data for n ≤ 15 suggest than µ
is around 12.5 (Figure 2, right). Using differential approximants [35], Tony Guttmann predicts
µ = 12.568 . . ., and an asymptotic behaviour on ∼ cµnn−γ with γ = 2.23 . . .

n on n on n on
0 1 6 37 548 12 37 003 723 200
1 2 7 350 090 13 393 856 445 664
2 10 8 3 380 520 14 4 240 313 009 272
3 66 9 33 558 024 15 46 109 094 112 170
4 504 10 340 670 720
5 4 216 11 3 522 993 656

Figure 2. Left: First values of on, for n from 0 to 15 (entry A277493 of the
OEIS [38]). Right: A plot of on+1/on vs. 1/n, for n = 4, . . . , 14, suggests that
the growth rate of Eulerian orientations, located at the intercept of the curve
and the y-axis, is around 12.5.

Sections 3 and 4 deal with two families of subsets of Eulerian orientations. The first family
uses our first recursive decomposition of Eulerian orientations, and should be considered as a
warm up. The second family uses the variant of the standard decomposition of orientations.
Its study is a bit more involved, but it gives better bounds on the growth constant. Both
families are proved to have algebraic generating functions and a tree-like asymptotic behaviour
in λnn−3/2. The next two sections deal with two families of supersets of Eulerian orientations.
Both are proved to have algebraic generating functions, and we conjecture a map-like asymptotic
behaviour in λnn−5/2. We solve our systems of equations explicitly for small values of k, and
thus obtain Table 1. All calculations are supported by Maple sessions available on our web
pages. We gather in Section 7 a few final comments and questions.
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Table 1. Growth rates and cardinalities of subsets (L(k) and L(k)) and super-
sets (U (k) and U(k)) of Eulerian orientations. The table also records the degrees
of the associated generating functions, which are systematically algebraic. The
symbol ' refers to a numerical estimate. The other growth rates are algebraic
numbers known exactly via their minimal polynomial.

degree growth 1 2 3 4 5 6 7
Eulerian maps 2 8 1 3 12 56 288 1 584 9 152

L(1) 2 9.68 . . . 2 10 66 466 3 458 26 650 211 458
L(2) 4 10.16 . . . 2 10 66 504 4 008 32 834 275 608
L(1) 3 10.60 . . . 2 10 66 490 3 898 32 482 279 882
L(2) 6 10.97 . . . 2 10 66 504 4 148 35 794 319 384
L(3) 20 11.22 . . . 2 10 66 504 4 216 37 172 339 406
L(4) 258 ' 11.41 2 10 66 504 4 216 37 548 347 850
L(5) ? ' 11.56 2 10 66 504 4 216 37 548 350 090

Eulerian orientations ' 12.5 2 10 66 504 4 216 37 548 350 090
U(5) ? ' 13.005 2 10 66 504 4 216 37 548 350 090
U(4) ? ' 13.017 2 10 66 504 4 216 37 548 350 538
U(3) ? ' 13.031 2 10 66 504 4 216 37 620 352 242
U(2) 28 13.047 . . . 2 10 66 504 4 228 37 878 356 252
U(1) 3 13.065 . . . 2 10 66 506 4 266 38 418 363 194
U (2) 27 13.057 . . . 2 10 66 504 4 232 37 970 357 744
U (1) 3 13.065 . . . 2 10 66 506 4 266 38 418 363 194

Oriented Eulerian maps 2 16 2 12 96 896 9 216 101 376 1 171 456

Let us mention that counting Eulerian orientations of 4-valent (rather than Eulerian) maps
might be simpler: in this case, the number of Eulerian orientations is a specialization of the
Tutte polynomial [60], and in fact some results exist in the physics literature [42, 61]. In the
final section, we discuss further this problem, which seems to deserve more attention.

2. Recursive decompositions of Eulerian orientations

In this section, after a few basic definitions, we recall the standard recursive decomposition
of Eulerian maps based on the contraction of the root edge, which can be traced back to the
early papers of Tutte (e.g. [55]). We then adapt it to decompose Eulerian orientations. We also
introduce a variant of the standard decomposition of Eulerian maps, based on a notion of prime
maps, and adapt it again to Eulerian orientations. This variant is slightly more involved, but
turns out to be more effective: it allows us to compute the numbers on for larger values of n,
and it also leads to better lower and upper bounds on these numbers (Sections 4 and 6).

2.1. Definitions

A planar map is a proper embedding of a connected planar graph in the oriented sphere,
considered up to orientation preserving homeomorphism. Loops and multiple edges are allowed
(Figure 1). The faces of a map are the connected components of its complement. The number
of edges of a planar map M is denoted by e(M). The degree of a vertex is the number of
edges incident to it, counted with multiplicity (e.g., a loop counts twice). A corner is a sector
delimited by two consecutive edges around a vertex; hence a vertex of degree k defines k corners.
Alternatively, a corner can be described as an incidence between a vertex and a face.

For counting purposes it is convenient to consider rooted maps. A map is rooted by choosing a
corner, called the root corner. The vertex and face that are incident at this corner are respectively
the root vertex and the root face. The root edge is the edge that follows the root corner in
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counterclockwise order around the root vertex. In figures, we indicate the rooting by an arrow
pointing to the root corner, and take the root face as the infinite face (Figure 1).

From now on, every map is planar and rooted, and these precisions will often be omitted. By
convention, we include among rooted planar maps the atomic map having one vertex and no
edge.

A map M is Eulerian if every vertex has even degree. In this case, we denote by dv(M)
the half degree of the root vertex. An Eulerian orientation is a map with oriented edges, in
which the in- and out-degrees of every vertex are equal. Note that the underlying map must be
Eulerian. We denote byM the set of Eulerian maps, and by O the set of Eulerian orientations.

2.2. Eulerian maps: standard decomposition

Consider an Eulerian map M , not reduced to the atomic map, and its root edge e. If e is a
loop, then M is obtained from two smaller maps M1 and M2 by joining M1 and M2 at their
root vertices and adding a loop surrounding M1 (Figure 3, left). The maps M1 and M2 are
themselves Eulerian (because the sum of vertex degrees in a map is even, so that one cannot
have a single odd vertex in M1 or M2). We call this operation the merge of M1 and M2.

If the root edge e is not a loop, then we contract it, which gives a smaller Eulerian map
M ′. Note however that several maps give M ′ after contracting their root edge. All such maps
can be obtained from M ′ as follows (see Figure 3, right): we split the root vertex v of M ′ into
two vertices v and v′ joined by an edge (which will be the root edge), and distribute the edges
adjacent to v between v and v′ in such a way the degrees of v and v′ remain even. This operation
is called a split of M ′, and more precisely an i-split if v has degree 2i in the larger map. Note
that if v has degree 2d in M ′, then i can be chosen arbitrarily between 1 and d.

Let M(t;x) be the generating function of Eulerian maps, counted by edges (variable t) and
by the half degree of the root vertex (variable x):

M(t;x) =
∑
M∈M

te(M)xdv(M) =
∑
d≥0

xdMd(t),

where Md(t) denotes the edge generating function of Eulerian maps with root vertex degree 2d.
The above construction translates into the following functional equation, which we explain below:

M(t;x) = 1 + txM(t;x)2 + t
∑
d≥0

Md(t)(x+ x2 + · · ·+ xd)

= 1 + txM(t;x)2 + t
∑
d≥0

Md(t)
xd+1 − x
x− 1

= 1 + txM(t;x)2 +
tx

x− 1
(M(t;x)−M(t; 1)). (3)

On the first line, the term 1 accounts for the atomic map, the next term for maps obtained by
merging two smaller maps, and the third term for maps obtained from a split.

2.3. Eulerian orientations: standard decomposition

Our recursive decomposition for Eulerian orientations is essentially the same as for Eulerian
maps: if the root edge is a loop, we delete it and obtain two orientations, which are both Eulerian
(in any oriented map, the sum over all vertices of in-degrees equals the sum of out-degrees, hence
one cannot have a single vertex with distinct in- and out-degrees); otherwise we contract the
root edge, which gives a smaller Eulerian orientation.

However, care must be taken when going in the opposite direction, that is, when constructing
large orientations from smaller ones. The first type of orientations, obtained by a merge, do not
raise any difficulty; one can orient the new root edge (the loop) in two different ways (Figure 4,
left). But consider now an Eulerian orientation O′, with root vertex v of degree at least 2i, and
perform an i-split on O′: is there a way to orient the new edge so as to obtain an orientation O
that is still Eulerian? The answer is yes if and only if the numbers of in- and out-edges in the
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} 2i− 1

v

vv′

M1 M2

M

M ′

M

Figure 3. Construction of an Eulerian map with n edges: merge an ordered
pair of Eulerian maps M1, M2 with n1 and n2 edges (n1 + n2 = n− 1) and add
a loop, or make a split on an Eulerian map with n − 1 edges. The new edge
(here thicker) is the root edge of M .

last 2i − 1 edges incident to v in O′ differ by ±1 (edges are visited in counterclockwise order,
starting from the root corner). The orientation of the root edge of O is then forced (Figure 4,
right). In this case, we say that the i-split, performed on O′, is legal. Note that the 1-split and
the d-split are always legal, where 2d is the degree of the root vertex of O′.

The fact that not all splits are legal makes it difficult to write a single functional equation
for the generating function of Eulerian orientations. However, we can write an infinite system
of equations relating the generating functions of orientations with prescribed orientations at the
root.

Let us be more precise. Given an Eulerian orientation O with root vertex v of degree 2d, the
root word w(O) of O is a word of length 2d on the alphabet {0, 1} describing the orientation of
the edges around v (in counterclockwise order, starting from the root corner): the k-th letter of
w(O) is 0 (resp. 1) if the k-th edge around v is in-going (resp. out-going). Note that this word
is always balanced, meaning that it contains as many 0’s as 1’s. We call a word w quasi-balanced
if the number of 0’s and 1’s in w differ by ±1. The length (number of letters) of w is denoted
by |w|, while the number of occurrences of the letter a in it is denoted by |w|a. We define the
balance of w to be b(w) := ||w|1 − |w|0|. The empty word is denoted by ε.

Now we can decide from the root word of O′ if the i-split of O′ is legal: this holds if and only
if the last 2i− 1 letters of w(O′) form a quasi-balanced word.

For w a word on {0, 1}, let Ow(t) ≡ Ow be the generating function of Eulerian orientations
having w as root word, counted by their edge number. Clearly, Ow = 0 if w is not balanced and
Oε = 1 (accounting for the atomic map). Now if w is non-empty and balanced,

Ow = t
∑

auāv=w

OuOv + t
∑
u
Ouws

. (4)

This identity is illustrated in Figure 4. Here, a stands for any of the letters 0, 1, and the first sum
runs over all factorisations of w of the form auāv, with ā := 1−a. This sum counts orientations
obtained by a merge. The second sum runs over all possible words u, and ws denotes the suffix
of w of length |w|− 1. This sum counts orientations obtained by a (legal) split of an orientation
having root word uws. Now the generating function O of Eulerian orientations is∑

w

Ow,

where the sum runs over all (balanced) words w.
We do not know how to solve this system. But a map with n edges has a root word of length

at most 2n, and hence we can use our system to compute the numbers on for n small. We obtain
in this way the first 11 values of Figure 2.
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} 2i− 1

v

vv′

O1 O2

O

O′

O

w(O1) = u w(O2) = v

w(O) = auāv

w(O′) = uws, |ws| = 2i− 1

w(O) = aws, balanced

Figure 4. Construction of an Eulerian orientation: merge two Eulerian orien-
tations (the loop can be oriented in either way), or split (legally) an Eulerian
orientation. Observe how the root word changes.

In Sections 3 to 6, we define subsets and supersets of O that we can generate by just looking
at the last 2k − 1 letters of the root word (for k fixed). This allows us to write finitely many
equations for the generating functions of these subsets and supersets. Solving them gives lower
and upper bounds on the growth rate of Eulerian orientations. However, we obtain more precise
bounds by using a variant of the standard decomposition of maps and orientations. We now
present this variant.

2.4. Prime decomposition of maps and orientations

A (non-atomic) map is said to be prime if the root vertex appears only once when walking
around the root face. A planar map M can be seen as a sequence of prime maps M1, . . . ,M`

(Figure 5). We say that the Mi are the prime submaps of M , and denote M = M1 · · ·M`. Note
that if M is Eulerian, then each Mi is Eulerian too.

M1

M2

M3

M

M = M1M2M3

Figure 5. Decomposition of an Eulerian mapM into prime Eulerian mapsM1,
M2, M3.

Now take a prime Eulerian map M , and apply the standard decomposition of Section 2.2,
illustrated in Figure 3: either M is an (arbitrary) Eulerian map M1 surrounded by a loop, or
M is obtained by an i-split in another Eulerian map M ′, provided the last prime submap of M ′
(in counterclockwise order) has root degree at least 2i (otherwise, the resulting map would not
be prime). Alternatively, if M ′ = M ′1 · · ·M ′`, we can obtain M by performing an i-split in the
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prime map M ′`, and attaching the map M ′′ := M ′1 · · ·M ′`−1 at the new vertex v′ created by this
split (Figure 6).

} 2i− 1

v

M ′
` (prime)

M

+

M1
M ′

vv′

M

Figure 6. Construction of a prime Eulerian map: add a loop around any
Eulerian map, or split a prime Eulerian map, and attach an arbitrary Eulerian
map at the end of its root edge.

This alternative decomposition of Eulerian maps gives a system of two equations defining the
generating function M(t;x) of Eulerian maps (still counted by edges and root vertex degree)
and its counterpart M ′(t;x) for prime maps:

M(t;x) = 1 +M(t;x)M ′(t;x),

M ′(t;x) = txM(t;x) + txM(t; 1)
M ′(t;x)−M ′(t; 1)

x− 1
.

In the first equation, the term M ′(t;x) accounts for the last prime submap attached at the
root vertex (denoted M` above). In the second equation, the divided difference (M ′(t;x) −
M ′(t; 1))/(x − 1) has the same explanation as in (3). This equation is easily recovered by
eliminating M ′(t;x) from the above system.

This decomposition can also be applied to Eulerian orientations: an Eulerian orientation is a
sequence of prime Eulerian orientations, and a prime orientation is either obtained by adding an
oriented loop around another orientation, or by performing a legal split in a prime orientation,
and attaching another orientation at the vertex v′ created by the split.

Thus, denoting again by Ow the generating function of orientations with root word w, and
by O′w its counterpart for prime orientations, we now have Ow = O′w = 0 if w is not balanced,
Oε = 1, O′ε = 0 and finally for w balanced and non-empty,

Ow =
∑

uv=w

OuO
′
v,

O′w = tOwc
+ tO

∑
u
O′uws

.

In the second equation, wc denotes the central factor or w of length |w| − 2, and O =
∑

w Ow

is the generating function of all Eulerian orientations. Recall that ws is the suffix of w of length
|w| − 1.

Using these equations, we have been able to push further the enumeration of Eulerian orien-
tations of small size, thus obtaining the values of Figure 2.
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3. Subsets of Eulerian orientations, via the standard decomposition

In this section and the three following ones, we define certain subsets and supersets of Eulerian
orientations, indexed by an integer k, which converge (monotonously) to the set O of all Eulerian
orientations as k tends to infinity. Those sets are respectively denoted by L(k) (and L(k)), U (k)

(and U(k)), as they give lower and upper bounds on the numbers on and their growth rate.
For each set, we give a system of functional equations defining its generating function: for the
subsets L(k) and L(k), these systems are algebraic, so that the associated generating functions are
algebraic series. For the supersets U (k) and U(k), the systems define bivariate series and involve
divided differences as in (3). However, we prove that the resulting series are also algebraic.

Recall from Figure 4 that planar Eulerian orientations can be obtained recursively from the
atomic map by either:

• the merge of two orientations O1, O2 ∈ O (with the root loop oriented in either way),
• or a legal split on an orientation O′ ∈ O.

Definition 1. Let k ≥ 1. Let L(k) be the set of planar orientations obtained recursively from
the atomic map by either:

• the merge of two orientations O1, O2 ∈ L(k) (with the root loop oriented in either way),
• or a legal i-split on an orientation O′ ∈ L(k) such that i ≤ k or i = dv(O′).

In other words, the only allowed splits are the small splits (i ≤ k) and the maximal split (i =
dv(O′)).

Obviously, all orientations of L(k) are Eulerian. Moreover, the sets L(k) form an increasing
sequence since more and more (legal) splits are allowed as k grows. Finally, all Eulerian orien-
tations of size n belong to L(n) (and even to L(n−2)). Hence the limit of the sets L(k) is the set
O of all Eulerian orientations.

Figure 7 shows a (random) orientation of L(1).

Figure 7. An Eulerian orientation in L(1), taken uniformly at random among
those with 20 edges.

3.1. An algebraic system for L(k)

In this section, k is a fixed integer.

Definition 2. A word w on {0, 1} is valid (for k) if there exists a balanced word of length 2k
having w as a factor. Equivalently, the balance of w satisfies b(w) ≤ 2k − |w|. This holds
automatically if |w| ≤ k.

Given a word w, it will be convenient to have notation for several words that differ from w
by one or two letters. We have already defined wc, the central factor of w of length |w|− 2, and
ws, the suffix of w of length |w|− 1. We similarly define wp as the prefix of w of length |w|− 1.
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Finally, if w is quasi-balanced, then ←−w stands for the unique balanced word of the form aw, for
a ∈ {0, 1}.

For any word w, we denote by L(k)
w (t) the generating function of orientations of L(k) whose

root word ends with w, counted by edges. In particular, the generating function counting all
orientations of L(k) is L(k)

ε (t). We denote by K(k)
w (t) the generating function of orientations of

L(k) having root word exactly w. In order to lighten notation, we often omit the dependence of
our series in t and the superscript (k).

We now give equations defining the series Lw (for |w| ≤ 2k−1) and Kw (for |w| ≤ 2k). First,
we note that Kw = 0 if w is not balanced, and that Kε = 1. Now for w balanced of length
between 2 and 2k, we have:

Kw = t
∑

w=auāv
KuKv + tLws

, (5)

where, as before, a is any of the letters 0, 1. This equation is analogous to (4): the first term
counts orientations obtained from a merge, the second orientations obtained from a split. Now
for Lw, with w of length at most 2k − 1, we have:

Lw = 1w=ε + 2tLεLw + t
∑

w=uav
LuKv + t

∑
w=auāv

KuKv

+ t (Lw − 1w=ε) + t
∑

u=vw
2≤|u|≤2k
u balanced

(Lus −Ku). (6)

This equation deserves some explanations. The first line counts the atomic map (if w = ε), and
the orientations obtained by a merge. The second (resp. third, fourth) term of this line counts
orientations such that no (resp. one, both) half-edge(s) of the root loop is/are involved in the
suffix w of the root word. Equivalently, denoting by O1 and O2 the merged orientations, those
three terms respectively correspond to |w| ≤ 2 dv(O2), 2 dv(O2) < |w| < 2+2 dv(O1)+2 dv(O2)
and |w| = 2 + 2 dv(O1) + 2 dv(O2).

The second line counts orientations O obtained by a legal i-split in a smaller orientation O′.
The first term accounts for maximal splits (i = dv(O′)), which, we recall, do not change the
root word (note also that no split is possible on the atomic map). The second term counts
orientations O obtained from a non-maximal split. The word u stands for the root word of O.
The subtraction of Ku comes from the condition that the split is not maximal.

Proposition 3. Consider the collection of equations consisting of:

• Equation (5), written for all balanced words w of length between 2 and 2k,
• Equation (6), written for all valid words w of length at most 2k − 1.

In this collection, replace all trivial K-series by their value: Kw = 0 when w is not balanced,
Kε = 1. Let S0 denote the resulting system. The number of series it involves is

f(k) =

(
2k + 2

k + 1

)
− 1 +

k−1∑
i=1

(
2i

i

)
. (7)

The system S0 defines uniquely these f(k) series. Its size can be (roughly) divided by two upon
noticing that replacing all 0’s by 1’s, and vice-versa, in a word w, does not change the series Lw

nor Kw.

Proof. To see that S0 defines all the series that it involves, it suffices to note the factor t in the
right-hand sides of (5) and (6), and to check that each series occurring in the right-hand side of
some equation also occurs as the left-hand side of another. This is readily done, as any factor of
a valid word is still valid.
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Let us now count the equations of the system. The number of non-empty balanced words of
length at most 2k is

k∑
i=1

(
2i

i

)
.

Then, all words of length at most k are valid, while the number of valid words of length k + i,
for 1 ≤ i ≤ k − 1, is

k∑
j=i

(
k + i

j

)
.

(One can interpret j as the number of occurrences of 0 in the word.) Hence the number of
equations in the system is

f(k) =

k∑
i=1

(
2i

i

)
+

k∑
i=0

2i +

k−1∑
i=1

k∑
j=i

(
k + i

j

)
.

The second sum evaluates to 2k+1 − 1. The third one is
k∑
j=1

min(j,k−1)∑
i=1

(
k + i

j

)
=

k−1∑
j=1

j∑
i=1

(
k + i

j

)
+

k−1∑
i=1

(
k + i

k

)

=

(
1 +

(
2k + 1

k

)
− 2k+1

)
+

(
k

k + 1

(
2k

k

)
− 1

)
=

3k + 1

k + 1

(
2k

k

)
− 2k+1.

The sums are evaluated using classical summation identities, or Gosper’s algorithm [47]. The
expression of f(k) given in the proposition then follows after elementary manipulations. �

Remark 4. If w is such that 0w and 1w are both valid of length less than 2k, we can define
Lw by a simpler "forward" equation, without increasing the size of the system:

Lw = Kw + L0w + L1w. (8)

This is obviously smaller than (6), and possibly better suited to feed a computer algebra system.
However, mixing equations of type (6) and (8) makes some proofs of Section 3.3 heavier.

3.2. Examples

3.2.1. When k = 1, the system S0 contains f(1) = 5 equations and reads

K01 = tKεKε + tL1,

K10 = tKεKε + tL0,

Lε = 1 + 2tLεLε + t(Lε − 1) + t(L0 −K10 + L1 −K01),

L0 = 2tLεL0 + tLεKε + tL0 + t(L0 −K10),

L1 = 2tLεL1 + tLεKε + tL1 + t(L1 −K01),

(9)

with Kε = 1. Using the 0/1 symmetry, this system can be compacted into
K01 = t+ tL0,

Lε = 1 + 2tLεLε + t(Lε − 1) + 2t(L0 −K01),

L0 = 2tLεL0 + tLε + tL0 + t(L0 −K01).

The variant mentioned in Remark 4 consists in replacing the second equation by Lε = 1 + 2L0.
The reader may check that this is consistent with the above system.
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Eliminating L0 and K01 gives a quadratic equation for the generating function Lε = L
(1)
ε of

Eulerian orientations in L(1):

2tL2
ε − Lε(1− t)2 − t2 − 2t+ 1 = 0. (10)

We defer to Section 3.3 the study of the asymptotic behaviour of its coefficients.

3.2.2. When k = 2, the system S0 contains f(2) = 21 equations, or 11 if we exploit the 0/1
symmetry:

K10 = K01 = t+ tL0,

K1100 = tK10 + tL100,

K1010 = t(K10 +K01) + tL010,

K0110 = tK10 + tL110,

Lε = 1 + 2tLεLε + t(Lε − 1) + 2t(L0 −K10 + L100 −K1100

+L010 −K1010 + L110 −K0110),

L0 = L1 = 2tLεL0 + tLε + tL0 + t(L0 −K10 + L100 −K1100

+L010 −K1010 + L110 −K0110),

L00 = L11 = 2tLεL00 + tL0 + tL00 + t(L100 −K1100),

L10 = L01 = 2tLεL10 + tL1 + t+ tL10 + t(L0 −K10 + L010 −K1010 + L110 −K0110),

L100 = 2tLεL100 + tL10 + tL100 + t(L100 −K1100),

L010 = 2tLεL010 + t(L01 + LεK10) + tL010 + t(L010 −K1010),

L110 = 2tLεL110 + t(L11 + LεK10) + tL110 + t(L110 −K0110).

(11)
The variant mentioned in Remark 4 consists in replacing the equations defining Lε, L0 and L10

by Lε = 1 + 2L0, L0 = L00 + L10 and L10 = K10 + L010 + L110 respectively.
Eliminating all series but Lε gives a quartic equation for the generating function Lε = L

(2)
ε

of Eulerian orientations in L(2):

8t3L4
ε − 4t2(3t3 + 4t2 − 6t+ 3)L3

ε + 2t(3t5 − 12t4 − 10t3 + 14t2 − 10t+ 3)L2
ε

+ (t− 1)(11t5 − 10t4 − 6t3 − 3t2 − t+ 1)Lε + (t− 1)(5t5 − 4t4 + 6t3 − 7t2 + 5t− 1) = 0. (12)

We defer to Section 3.3 the study of the asymptotic behaviour of its coefficients.

3.3. Asymptotic analysis for subsets of Eulerian orientations

Here, we apply the theory of positive irreducible polynomial systems [30, Sec. VII.6] to prove
the following asymptotic result.

Proposition 5. For k ≥ 1, let ρk denote the radius of convergence of the series L(k)
ε , which

counts orientations of L(k). Then ρk is the only singularity of L(k)
ε of minimal modulus, and it

is of the square root type: as t tends to ρk from below,

L(k)
ε (t) = α− β

√
1− t/ρk (1 + o(1))

for non-zero constants α and β depending on k.
The number `(k)

n of orientations of size n in L(k) satisfies, as n tends to infinity:

`(k)
n ∼ cλnkn−3/2,

where λk = 1/ρk and c = −β/Γ(−1/2).

Proof. We use the terminology of [30, Sec. VII.6.3]. Our first objective is to transform the
system S0 of Proposition 3 into a positive one. The obstructions to positivity come from the
expression (6) of Lw, and more precisely from the terms Lε − 1 (when w = ε) and Lus

−Ku,
where u is balanced. These terms can be written Lw − K←−w , where w = us is quasi-balanced
and ←−w is the unique balanced word of the form aw, for a ∈ {0, 1}.
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This leads us to define, for w quasi-balanced of length less than 2k, the series L+
w := Lw−K←−w .

We will also need to define, for w balanced, L+
w := Lw − Kw. These series have natural

combinatorial interpretations in terms of orientations whose root word ends strictly with w (if
w is balanced) or ←−w (if w is quasi-balanced). Then we alter the original system S0 as follows.

(i) Forw balanced or quasi-balanced, we replace the equation (6) defining Lw by an equation
defining L+

w:

L+
w = 2tLεLw + t

∑
w=uav

(Lu −Ku)Kv + tL+
w + t

∑
u=vw,u 6=w
|u|≤2k−1

u quasi-balanced

L+
u . (13)

To obtain it, either we get back to the explanation of (6) and remove from its right-hand
side the terms that count orientations with root word exactly w (if w is balanced) or ←−w
(if w is quasi-balanced). Or we simply subtract from (6) Equation (5), written for w if
w is balanced, for ←−w if w is quasi-balanced.

(ii) In the new system thus obtained, we replace every series Kw such that w is not balanced
by 0, every series Lw such that w is balanced by Kw+L+

w, and every series Lw such that
w is quasi-balanced by K←−w + L+

w. In particular, the series Lu −Ku occurring in (13)
becomes L+

u when u is balanced, Lu otherwise. The only series Lw that remain in the
system are such that the balance of w is at least 2.

We thus obtain a positive system, denoted S1, defining the following series:
• Kw, for w balanced of length between 2 and 2k,
• L+

w, for w balanced or quasi-balanced of length less than 2k,
• Lw, for w valid of length less than 2k and balance at least 2.

For instance, when k = 1, the system (9) becomes (after exploiting the 0/1 symmetry):
K01 = t+ t(K01 + L+

0 ),

L+
ε = 2t(1 + L+

ε )2 + tL+
ε + 2tL+

0 ,

L+
0 = 2t(1 + L+

ε )(K01 + L+
0 ) + tL+

ε + tL+
0 .

Similarly, when k = 2, the system (11) is replaced by:

K10 = K01 = t+ t(K10 + L+
0 ),

K1100 = tK10 + t(K1100 + L+
100),

K1010 = t(K10 +K01) + t(K1010 + L+
010),

K0110 = tK01 + t(K0110 + L+
110),

L+
ε = 2t(1 + L+

ε )2 + tL+
ε + 2t(L+

0 + L+
100 + L+

010 + L+
110),

L+
0 = L+

1 = 2t(1 + L+
ε )(K10 + L+

0 ) + tL+
ε + tL+

0 + t(L+
100 + L+

010 + L+
110),

L00 = L11 = 2t(1 + L+
ε )L00 + t(K10 + L+

0 ) + tL00 + tL+
100,

L+
10 = L+

01 = 2t(1 + L+
ε )(K10 + L+

10) + t(K01 + L+
1 ) + tL+

10 + t(L+
110 + L+

010),

L+
100 = 2t(1 + L+

ε )(K1100 + L+
100) + tL+

10 + tL+
100,

L+
010 = 2t(1 + L+

ε )(K1010 + L+
010) + t(L+

01 + L+
ε K10) + tL+

010,

L+
110 = 2t(1 + L+

ε )(K0110 + L+
110) + t(L11 + L+

ε K10) + tL+
110.

The second condition that we need is properness (again, in the sense of [30, Sec. VII.6.3]).
But the system S1 that we have just obtained is proper, thanks to the factor t occurring in the
right-hand side of (5), (6) and (13).

The next condition is aperiodicity. The coefficients of t1 and t2 in the series L+
ε (t) are both

non-zero. This implies that this series is aperiodic. Consequently, if we prove that the system
S1 is irreducible (which will be our final objective below), then it will be aperiodic [30, p. 483].
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So let us finally prove that S1 is irreducible. Recall that in such a polynomial system, a
series F depends on a series G if G occurs in the right-hand side of the equation defining F .
Irreducibility means that the digraph of dependences is strongly connected. Recall that S1

involves two families of series: the series Kw, for w balanced of length between 2 and 2k, and
Lw (or L+

w) for any valid w of length at most 2k − 1. To lighten notation, for any w we denote
by L̃w the corresponding L-series, be it Lw or L+

w.
Let us first prove that every series in S1 depends on L̃ε = L+

ε . By (6) and (13), this holds for
every L̃w. Now, each Kw depends on at least one L̃-series (see (5)), and thus by transitivity on
L+
ε .
Conversely, let us prove that L+

ε depends on all other series occurring in S1.

• First, Equation (13) applied to w = ε shows that L+
ε depends on all series L̃u such that

u is quasi-balanced.
• Let us now prove, by induction on the balance b(u), that L+

ε depends on L̃u for each
valid word u of length at most 2k−1. We have already seen this for b(u) = 1. If b(u) = 0,
then |u| ≤ 2k − 2, and for any letter a the word w := ua is valid and quasi-balanced.
The second term in (13) shows that L̃w depends on L̃u. By transitivity, this implies that
L+
ε depends on L̃u. We have thus set the initial cases of our induction, for balances 0

and 1. Now assume b(u) ≥ 2. There exists a letter a such that w := ua is valid and
has balance b(u)− 1. If b(w) = 1 (resp. b(w) > 1), the second (resp. third) term in the
equation (13) (resp. (6)) defining L̃w shows that L̃w depends on L̃u. By the induction
hypothesis, L+

ε depends on L̃w, and thus by transitivity on L̃u.
• Finally, let u be balanced of length between 2 and 2k. Then w := us is quasi-balanced.

The first term of the equation (13) defining L̃w involves Lw = Ku + L̃w, so that by
transitivity, L+

ε depends on Ku.

We have now checked all conditions of Theorem VII.6 of [30, p. 489]. Applying it gives our
proposition. �

3.4. Back to examples

We now return to the cases k = 1 and k = 2 studied in Section 3.2. We refer to [30, Sec. VII.7]
for generalities on the singularities of algebraic series, and on the asymptotic behaviour of their
coefficients. When k = 1, we have obtained for Lε the quadratic equation (10). Its dominant
coefficient only vanishes at t = 0, and its discriminant is ∆1(t) := t4 + 4t3 + 22t2 − 12t+ 1. The
radius ρ1 must be one of the roots of ∆1. The only real positive roots are around 0.1032 and
0.3998. By solving (10) explicitly, we see that the smallest of these roots is indeed a singularity
of Lε. Hence ρ1 = 0.1032 . . . and the corresponding growth rate is λ1 = 1/ρ1 = 9.684 . . ., which
improves on the lower bound 8 coming from Eulerian maps.

When k = 2, we have obtained for Lε the quartic equation (12). Its dominant coefficient does
not vanish away from 0, and its discriminant is

∆2(t) := 64t12(t− 1)(81t21 + 1863t20 + 11322t19 + 38592t18 + 101105t17 + 226631t16+

393423t15 + 532907t14 + 665167t13 + 719797t12 + 454804t11 + 355710t10 + 360159t9 − 262135t8−
239969t7 + 723151t6 − 1106764t5 + 820832t4 − 316644t3 + 65424t2 − 6780t+ 268).

The only roots in (0, 1) are 0.0984 . . . and 0.2714 . . .. The radius ρ2 must be the first one
(the other would give a growth rate smaller than 8). Hence the corresponding growth rate is
λ2 = 1/ρ2 = 10.16 . . ., which improves on the previous bound λ1.

We do not push our study to larger values of k, as we will obtain better bounds with the
prime decomposition in the next section.
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4. Subsets of Eulerian orientations, via the prime decomposition

In this section, we combine the restriction on allowed splits of the previous section with the
prime decomposition of Section 2.4 to obtain a new family of subsets of Eulerian orientations.
The results and proofs are similar to those of the previous section, and we give fewer details.
The new subsets L(k) satisfy L(k) ⊂ L(k) (Proposition 8), hence they give better lower bounds on
the growth rate µ than those obtained in the previous section. Moreover these bounds increase
to µ as k increases (Proposition 7).

Recall from Section 2.4 that an Eulerian orientation is a sequence of prime Eulerian orienta-
tions, and that a prime (Eulerian) orientation can be obtained recursively from the atomic map
by either:

• adding a loop, oriented in either way, around an orientation O1,
• or performing a legal split on a prime orientation O′ ∈ O, followed by the concatenation

of an arbitrary Eulerian orientation O′′ at the new vertex created by the split (Figure 6).

Definition 6. Let k ≥ 1. Let L(k) be the set of planar orientations obtained recursively from
the atomic map by either:

• concatenating a sequence of prime orientations of L(k),
• or adding a loop, oriented in either way, around an orientation O1 of L(k),
• or performing a legal i-split on a prime orientation O′ ∈ L(k), with i = dv(O′) or i ≤ k,
followed by the concatenation of an arbitrary orientation of L(k) at the new vertex created
by the split.

Clearly, the sets L(k) increase to the set O of all Eulerian orientations as k increases, hence
their growth rates λ̄k form a non-decreasing sequence of lower bounds on µ. But we have in this
case a stronger result.

Proposition 7. For k ≥ 1, the sequence (¯̀(k)
n )n≥0 that counts orientations of L(k) by their size

is super-multiplicative. Consequently, the associated growth rate

λ̄k := lim
n

(¯̀(k)
n )1/n = sup

n
(¯̀(k)
n )1/n (14)

increases to µ as k tends to infinity.

Proof. By definition of L(k), concatenating two orientations of L(k) at their root vertex gives
a new element of L(k), which implies super-multiplicativity and the identity (14) (by Fekete’s
Lemma [59, p. 103]).

Now since L(k) converges to O, for any n, there exists k such that on = `
(k)
n (one can take

k = n, or even k = n− 2). Hence

o1/n
n = (¯̀(k)

n )1/n ≤ λ̄k ≤ lim
k
λ̄k,

and it follows now from (2) that µ ≤ lim λ̄k. Since λ̄k ≤ µ, the proposition follows. �

Proposition 8. For k ≥ 1, the subset of orientations L(k) includes the subset L(k) defined in
Section 3.

Proof. We prove this by induction on the number of edges. The inclusion is obvious for orienta-
tions with no edge. Now let O ∈ L(k), having at least one edge.

If O is the merge of two orientations O1 and O2, then the induction hypothesis implies that
O1 and O2 are in L(k). The structure of L(k) implies that every prime sub-orientation of O2

(attached at the root of O2) also belongs to L(k). Then O can be obtained as an orientation
of L(k) by first adding a loop around O1 (this is the second construction in Definition 6), then
concatenating one by one the prime sub-orientations of O2 (first construction in Definition 6).

Otherwise, O is obtained by a legal split in an orientation O′ formed of the prime sub-
orientations P1, . . . , P`. By the induction hypothesis, O′, and its prime sub-orientations P1, . . . , P`,
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belong to L(k). Let us say that the split occurs in Pi (this means that the sub-orientations
P1, . . . , Pi−1 are attached to the new created vertex v′, while Pi+1, . . . , P` remain attached to
the original vertex v, the root vertex of O). Then the orientation O1 obtained by deleting from
O the sub-orientations Pi+1, . . . , P` can be obtained by a legal split in the prime orientation
Pi, followed by the concatenation of P1, . . . , Pi−1 at the new created vertex. This is the third
construction in Definition 6, hence O1 belongs to L(k). It remains to concatenate Pi+1, . . . , P`
at the root (first construction in Definition 6), and we recover O as an element of L(k). �

4.1. An algebraic system for L(k)

We now fix k ≥ 1. For w a word on {0, 1}, let L(k)
w (t) ≡ Lw denote the generating function of

orientations of L(k) whose root word ends with w. Let Kw be the generating function of those
that have root word exactly w. Let L′w and K′w be the corresponding series for prime orientations
of L(k). We are especially interested in the series Lε that counts all orientations of L(k).

If w is not balanced, Kw = K′w = 0, while if w = ε, Kw = 1 and K′w = 0. For w non-empty
and balanced, of length at most 2k, we have

Kw =
∑

w=uv
KuK

′
v, (15)

since an orientation of L(k) is a sequence of orientations of L(k). Now the description of prime
orientations of L(k) (Definition 6) gives

K′w = tKwc
+ tLεL

′
ws
. (16)

The first term corresponds to adding a loop, and the second to a legal i-split, where i ≤ k is the
half-length of w. The factor Lε accounts for the orientation O′′ attached at the end of the root
edge.

Now let w be a valid word of length at most 2k − 1, and let us write equations for the series
Lw and L′w. For Lw, the sequential structure of orientations of L(k) gives

Lw = 1w=ε + LεL
′
w +

∑
w=uv,v 6=w

LuK
′
v. (17)

The second (resp. third) term counts orientations in which the root word of the last prime
component ends with w (resp. is shorter than w). Finally, for the series L′w we obtain the
following counterpart of (6):

L′w = 2tLε1w=ε + tLwp
1w 6=ε + tKwc

1w 6=ε balanced + tLε

L′w +
∑

u=vw
0<|u|≤2k
u balanced

(L′us
− K′u)

 . (18)

The first three terms count orientations in which the root edge is a loop, and the last one those
obtained by a split.

Proposition 9. Consider the collection of equations consisting of:

• Equation (15), written for all balanced words w of length between 2 and 2k − 2,
• Equation (16), written for all balanced words w of length between 2 and 2k,
• Equation (17), written for all valid words w of length at most 2k − 2,
• Equation (18), written for all valid words w of length at most 2k − 1.

In this collection, replace all trivial K- and K′-series by their value: Kw = K′w = 0 when w is not
balanced, Kε = 1, K′ε = 0. Let S0 denote the resulting system. The number of series it involves
is 2f(k)− 2

(
2k
k

)
, where f(k) is given by (7). Moreover, S0 defines uniquely all these series. Its

size can be (roughly) divided by two upon exploiting the 0/1 symmetry.



ON THE NUMBER OF PLANAR EULERIAN ORIENTATIONS 17

Proof. To prove that all series are well defined by the system, we first check that every series
occurring in the right-hand side of some equation is the left-hand side of another equation. Then
we note that:

• the equations for prime orientations, namely (16) and (18), have a factor t in their
right-hand sides,

• for the other two equations, (15) and (17), every non-trivial term in the right-hand side
has a series of prime orientations as a factor.

Now the number of equations: every series that was occurring in the system S0 of Proposition 3
now has two copies (one with a prime, one without), except for the series Kw, for w balanced
of length 2k, and Lw, for w quasi-balanced of length 2k − 1, which have only one copy. Since
there are

(
2k
k

)
balanced words of length 2k, and 2

(
2k−1
k

)
=
(

2k
k

)
quasi-balanced words of length

2k − 1, the result follows. �

Remark 10. As in Remark 4, if w is such that 0w and 1w are both valid of length less than
2k − 2 (resp. 2k − 1), we can replace (17) (resp. (18)) by the simpler forward equation:

Lw = Kw + L0w + L1w (resp. L′w = K′w + L′0w + L′1w).

This does not increase the size of the system.

4.2. Examples

4.2.1. When k = 1, the system S0 contains 2(f(1) − 2) = 6 equations, or 4 of we exploit the
0/1 symmetry:


K′10 = t+ tLεL

′
0,

Lε = 1 + LεL
′
ε,

L′ε = 2tLε + tLε(L
′
ε + 2L′0 − 2K′10),

L′0 = tLε + tLε(L
′
0 + L′0 − K′10).

Eliminating all series but Lε gives a cubic equation for the generating function Lε ≡ L
(1)
ε of

Eulerian orientations in L(1):

t2L3
ε + t(t− 4)L2

ε + (2t+ 1)Lε − 1 = 0. (19)
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4.2.2. When k = 2, the system S0 contains 2(f(2)− 6) = 30 equations, or 16 if we exploit the
0/1 symmetry:

K01 = K10 = K′01,

K′10 = K′01 = t+ tLεL
′
1,

K′1100 = tK10 + tLεL
′
100,

K′1010 = tK01 + tLεL
′
010,

K′0110 = tLεL
′
110,

Lε = 1 + LεL
′
ε,

L0 = L1 = LεL
′
0,

L00 = L11 = LεL
′
00,

L01 = L10 = LεL
′
01,

L′ε = 2tLε + tLε(L
′
ε + 2(L′0 − K′10 + L′100 − K′1100 + L′010 − K′1010 + L′110 − K′0110)),

L′0 = L′1 = tLε + tLε(L
′
0 + L′0 − K′10 + L′100 − K′1100 + L′010 − K′1010 + L′110 − K′0110),

L′00 = tL0 + tLε(L
′
00 + L′100 − K′1100),

L′10 = L′01 = tL1 + t+ tLε(L
′
10 + L′1 − K′01 + L′010 − K′1010 + L′110 − K′0110),

L′100 = tL10 + tLε(L
′
100 + L′100 − K′1100),

L′010 = tL01 + tLε(L
′
010 + L′010 − K′1010),

L′110 = tL11 + tLε(L
′
110 + L′110 − K′0110).

(20)
Eliminating all series but Lε gives an equation of degree 6 for the generating function Lε ≡ L

(2)
ε

of Eulerian orientations in L(2):

2t5L6
ε−t4(t+8)L5

ε−t3(3t2−16)L4
ε+t2(2t+3)(2t−5)L3

ε−t(2t2−7t−7)L2
ε−(5t+1)Lε+1 = 0.

(21)

4.3. Asymptotic analysis for subsets of Eulerian orientations (prime de-
composition)

We now prove for the polynomial system of Proposition 9 an analogue of Proposition 5.

Proposition 11. For k ≥ 1, let ρ̄k denote the radius of convergence of the series L
(k)
ε that

counts orientations of L(k). Then ρ̄k is the only singularity of L(k)
ε of minimal modulus, and it

is of the square root type. Consequently, there exists a constant c such that the number ¯̀(k)
n of

orientations of size n in L(k) satisfies, as n tends to infinity:
¯̀(k)
n ∼ cλ̄nkn−3/2,

with λ̄k = 1/ρ̄k.

Proof. Again, we apply the theory of positive irreducible polynomial systems [30, Sec. VII.6].
The system of Proposition 9 is not positive. To correct this, we replace the series Lw (for w

balanced) and L′w (for w balanced or quasi-balanced) by their “positive” versions:

L+
w := Lw − Kw, L′

+
w := L′w − K′w (w balanced),

L′
+
w := L′w − K′←−w (w quasi-balanced).

In particular, Lε is replaced by L+
ε := Lε − 1 and L′+ε coincides with L′ε. We alter the original

system S0 as follows:
(i) For w balanced, we replace the equation (17) defining Lw by the difference between (17)

and (15):
L+
w = L+

ε L
′
w + L′

+
w +

∑
w=uv,v6=w

LuK
′
v. (22)
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(ii) For w balanced or quasi-balanced, we replace the equation (18) defining L′w by the
difference between (18) and (16) (written for w if w is balanced, for ←−w otherwise):

L′
+
w = 2tLε1w=ε + t(Lwp − Kwp)1w 6=ε + tLε

L′
+
w +

∑
u=vw,u 6=w
|u|≤2k−1

u quasi-balanced

L′
+
u

 . (23)

(iii) In the new system thus obtained, we replace every series Kw such that w is not balanced
by 0, every series Lw (resp. L′w) such that w is balanced by Kw + L+

w (resp. K′w + L′
+
w),

and every series L′w such that w is quasi-balanced by K′←−w +L′
+
w. In particular, the series

Lwp
−Kwp

occurring in (23) becomes L+
wp

when wp is balanced, Lwp
otherwise. The

series Lw (resp. L′w) that remain in the system are such that w has balance at least 1
(resp. 2).

We thus obtain a positive system, denoted S1, defining the following series:

• Kw, for w balanced of length between 2 and 2k − 2,
• K′w, for w balanced of length between 2 and 2k,
• Lw for w valid of balance at least 1 and length at most 2k − 2,
• L′w for w valid of balance at least 2 and length at most 2k − 1,
• L+

w, for w balanced of length at most 2k − 2,
• L′

+
w, for w balanced or quasi-balanced of length at most 2k − 1.

For instance, when k = 1 we obtain the following system:


K′10 = t+ t(1 + L+

ε )(K′10 + L′
+
0 ),

L+
ε = L+

ε L
′
ε
+

+ L′
+
ε ,

L′
+
ε = 2t(1 + L+

ε ) + t(1 + L+
ε )(L′ε

+
+ 2L′

+
0 ),

L′
+
0 = tL+

ε + t(1 + L+
ε )L′

+
0 .

Recall that the series we are interested in is L+
ε . But then we can drop the first equation of the

above system. This size reduction occurs for any value of k, and the positive system S2 that we
will study is finally obtained by performing one last change:

(iv) Delete the equations defining the series K′w, for w of length 2k.

Observe that all the series involved in S2 are well-defined by this system. This comes from the
fact that all the series K′u, for u of length 2k, that occurred in S0 came from the term L′us

−K′u
of (18), which now reads L′+us

.
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Here is for instance the system obtained for k = 2, which has three equations less than (20):

K01 = K10 = K′01,

K′10 = K′01 = t+ t(1 + L+
ε )(K′01 + L′

+
1 ),

L+
ε = L+

ε L
′+
ε + L′

+
ε ,

L0 = (1 + L+
ε )(K′10 + L′

+
0 ),

L00 = L11 = (1 + L+
ε )L′00,

L+
01 = L+

ε (K′01 + L′+01) + L′+01,

L′
+
ε = 2t(1 + L+

ε ) + t(1 + L+
ε )(L′

+
ε + 2(L′

+
0 + L′

+
100 + L′

+
010 + L′

+
110)),

L′
+
0 = L′

+
1 = tL+

ε + t(1 + L+
ε )(L′

+
0 + L′

+
100 + L′

+
010 + L′

+
110),

L′00 = tL0 + t(1 + L+
ε )(L′00 + L′

+
100),

L′
+
10 = L′

+
01 = tL1 + t(1 + L+

ε )(L′
+
10 + L′

+
010 + L′

+
110),

L′
+
100 = tL+

10 + t(1 + L+
ε )L′

+
100,

L′+010 = tL+
01 + t(1 + L+

ε )L′+010,

L′+110 = tL11 + t(1 + L+
ε )L′+110.

Let us now discuss properness [30, p. 489]. The system S2 that we have just obtained is not
proper. However, the right-hand sides of the equations that define series with a prime (K′, L′ and
L′

+) are multiples of t (see (16), (18) and (23)). In the remaining equations, that is (15), (17)
(for w not balanced) and (22) (for w balanced), each term on the right-hand side involves a
series with a prime: hence after one iteration of S2, one obtains a new system S3 which is positive
and proper.

Aperiodicity holds as in the previous section, and we are left with irreducibility. Note that
proving irreducibility for S2 or its iterated version S3 is equivalent, so we focus on S2. As in the
previous section, we denote by L̃w the series L+

w or Lw, depending on whether w is balanced or
not. Similarly, L̃′w denotes L′

+
w if w is balanced or quasi-balanced, and L′w otherwise. Let us

prove that all series depend on L̃ε. We first observe that this holds for every K′- or L̃- or L̃′-series
(see (16), (17), (18), (22), (23)). We are left with the series Kw: but it depends on K′w (see (15)),
and hence on L̃ε.

Conversely, let us prove that L̃ε depends on every other series in the system. By (22), it
depends on L′ε. Then by (23) applied to w = ε, it depends on every series L′u, where u is quasi-
balanced. Going back and forth between the equations defining the L- series and the L′-series
(see (17), (18), (22), (23)), and using an induction on the balance, we then see that L̃ε depends
on all series L̃u (for |u| ≤ 2k − 2) and all series L̃′u (for |u| ≤ 2k − 1). Then the first term
of (22), written as L+

ε (K′w + L′
+
w), shows that L̃ε depends on all series K′v with |v| ≤ 2k − 2.

It remains to prove that L̃ε depends on the K-series. Let u = aus be balanced of length at
most 2k − 2, and define w = usā. This word has balance 2. The second term of (18) involves
Lwp = Lus = Ku + L+

us
. Hence L′w depends on Ku, and by transitivity, L̃ε depends on Ku. This

proves the irreducibility of the system and concludes the proof of the proposition. �

4.4. Back to examples

We first return to the cases k = 1 and k = 2 studied in Section 4.2. When k = 1, we obtained
the cubic equation (19) for L

(1)
ε . The discriminant has three positive roots, which are 1, and

(approximately) 0.094 and 15.9. The second one is the radius of convergence, and we obtain the
lower bound λ̄1 ' 10.603 on the growth rate of Eulerian orientations. This improves significantly
on the growth rate λ1 = 9.68 . . . obtained from the set L(1).

For k = 2, we obtained the equation (21) satisfied by L
(2)
ε . The discriminant has two roots

in (0, 1), which are approximately 0.0911 and 0.414. The first one is the radius of convergence,
and we obtain the lower bound λ̄2 ' 10.9759 on the growth rate of Eulerian orientations.
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When k = 3, we find that L
(3)
ε satisfies an equation of degree 20 (see the Maple sessions

available on our web pages). The dominant coefficient only vanishes at t = 8, and the discrimi-
nant has only one relevant root, around 0.089. This gives the lower bound λ̄3 ' 11.2289 on the
growth rate of Eulerian orientations.

When k = 4, we did not compute the equation satisfied by L
(4)
ε , but we estimated λ̄4 from the

first 30 coefficients of L(4)
ε using quadratic approximants [19]. We predict λ̄4 ' 11.41. This value

has then been confirmed by Bruno Salvy using the Maple package NewtonGF [48], with which
he obtained 10 digits of λ̄4. This package also allows us to compute more coefficients in L

(4)
ε .

Moreover, Jean-Charles Faugère [26] has finally been able to determine the equation for L
(4)
ε ,

which has degree 258 in L
(4)
ε .

Similarly, we predict
λ̄5 ' 11.56, λ̄6 ' 11.68.

5. Supersets of Eulerian orientations, via the standard decomposition

We now want to define, and count, supersets of Eulerian orientations. Their generating
functions will be described by functional equations involving divided differences (as in (3)). The
proof of their algebraicity is non-trivial, relying on a deep result from Artin’s approximation
theory (Theorem 16).

Recall that Eulerian orientations can be obtained recursively from the atomic map by either:
• the merge of two orientations O1, O2 ∈ O (with the root loop oriented in either way),
• or a legal split on an orientation O′ ∈ O.

We now define the sets U (k). The idea is that we allow illegal i-splits, provided i is larger
than k.

Definition 12. Let k ≥ 1. Let U (k) be the set of planar orientations obtained recursively from
the atomic map by either:

• the merge of two orientations O1, O2 ∈ U (k) (with the root loop oriented in either way),
• or a legal i-split on a map O′ ∈ U (k) with i ≤ k (small split),
• or an arbitrary split on a map O′ ∈ U (k) with i > k (large split). If the split is legal, the
root edge is oriented in the only way that makes the new orientation Eulerian. Otherwise,
it is oriented away from the root vertex.

Observe that all Eulerian orientations belong to U (k). Moreover, the sets U (k) form a decreas-
ing sequence, as fewer illegal splits are performed as k grows. Finally, for k ≥ n (and even for
k ≥ n− 2), all orientations of size n in U (k) are Eulerian. Hence the limit of the sets U (k) is the
set O of all Eulerian orientations.

Another important observation is that, if the root vertex of an orientation of U (k) has degree
at most 2k, then the root word of this orientation is balanced.

5.1. Functional equations for U(k)

We now fix an integer k. For a word w on {0, 1}, let U (k)
w (t;x) ≡ Uw(x) denote the generating

function of orientations of U (k) whose root word ends with w, counted by the edge number
(variable t) and the half-degree of the root vertex (variable x). Let T (k)

w (t) ≡ Tw denote the
generating function of orientations of U (k) having root word exactly w. We do not record in this
series the root degree (which is the length of w). To lighten notation, we often denote simply by
Uw the edge generating function Uw(1) ≡ Uw(t, 1), and by Uxw the refined generating function
Uw(x) ≡ Uw(t;x).

Note that Tw = 0 if w is not balanced and that Tε = 1. Now, for w balanced of length
between 2 and 2k, we have

Tw = t
∑

auāv=w

TuTv + tUws
. (24)
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The first term counts orientations obtained by a merge. The second one counts those obtained
by a split, which is necessarily small since we have assumed |w| ≤ 2k. Note the analogy with (5).

For w valid of length at most 2k − 1, let us now prove the following identity:

Uxw = 1w=ε + 2txUxε U
x
w + tx

∑
w=uav

Uxux
|v|/2Tv + tx|w|/2

∑
w=auāv

TuTv

+ t
∑

u=vw
2≤|u|≤2k

u balanced

x|u|/2Uus
+

tx

x− 1

(
Uxw − xkUw

)
− tx

x− 1

∑
u=vw
|u|≤2k−2

Tu(x|u|/2 − xk). (25)

The first line is similar to the first line of (6): it counts the atomic map and orientations obtained
from a merge. The only difference is that we now record the root degree. On the second line,
the first sum counts orientations obtained by a small split (with root word u). Let us explain
the remaining terms, which count orientations obtained by a large split, legal or not, of an
orientation O′ whose root word ends (necessarily) with w. Given an orientation O′ with root
vertex degree 2d, with d > k, the generating function of orientations obtained from O′ by a large
split is

t1+e(O′)
(
xk+1 + xk+2 + · · ·+ xd

)
= t1+e(O′) x

d+1 − xk+1

x− 1
.

Let us underline that we cannot apply a large split to an orientation O′ whose root word u
satisfies |u| ≤ 2k. Hence the generating function of orientations obtained by a large split is

tx

x− 1

Uxw − ∑
u=vw,|u|≤2k

x|u|/2Tu

− xk
Uw −

∑
u=vw,|u|≤2k

Tu

 ,

which gives the last two terms of (25) (the terms Tu with |u| = 2k do not contribute).

Remark 13. In the proof of (25), we have tried to follow the same steps as in the proof of (6).
However, comparing (24) and (25) suggests to replace (25) by a lighter equation:

Uxw = x|w|/2Tw + 2txUxε U
x
w + tx

∑
w=uav

Uxux
|v|/2Tv

+ t
∑

u=vw
|u|≤2k−1

u quasi-balanced

x(1+|u|)/2Uu +
tx

x− 1

(
Uxw − xkUw

)
− tx

x− 1

∑
u=vw
|u|≤2k−2

Tu(x|u|/2 − xk). (26)

Proposition 14. Consider the collection of equations consisting of:

• Equation (24), written for all balanced words w of length between 2 and 2k − 2,
• Equation (26), written for all valid words w of length at most 2k − 1.

In this collection, replace all trivial T -series by their value: Tw = 0 when w is not balanced,
Tε = 1. Let R0 denote the resulting system. The number of series it involves is f(k) −

(
2k
k

)
,

where f(k) is given by (7). Moreover, R0 defines uniquely these series. Its size can be (roughly)
divided by two upon exploiting the 0/1 symmetry.

The proof is similar to the proof of Proposition 3.

Remark 15. As in Remark 4, if w is such that 0w and 1w are both valid of length less than
2k, we can replace (26) by the simpler forward equation:

Uxw = x|w|/2Tw + Ux0w + Ux1w.

This does not increase the size of the system.
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5.2. Examples

5.2.1. When k = 1, the system of Proposition 14 contains f(1) − 2 = 3 equations. Upon
exploiting the 0/1 symmetry, it reads:{

Uxε = 1 + 2tx(Uxε )2 + 2txU0 + tx
x−1 (Uxε − xUε) + tx,

Ux0 = 2txUxε U
x
0 + txUxε + txU0 + tx

x−1 (Ux0 − xU0).
(27)

The first equation can be replaced by the forward equation Uxε = 1 + 2Ux0 . We explain in
Section 5.4 how to solve this system.

5.2.2. When k = 2, the system of Proposition 14 contains f(2) − 6 = 15 equations. Upon
exploiting the 0/1 symmetry and (some) forward equations, it reads:

T10 = t+ tU0,

Uxε = 1 + 2Ux0 ,

Ux0 = Ux1 = 2txUxε U
x
0 + txUxε + txU0 + tx2(U100 + U010 + U110) + tx

x−1 (Ux0 − x2U0) + tx2T10,

Ux10 = Ux01 = xT10 + Ux110 + Ux010,

= xT10 + 2txUxε U
x
10 + txUx1 + tx2(U010 + U110) + tx

x−1 (Ux10 − x2U10) + tx2T10,

Ux00 = Ux11 = 2txUxε U
x
00 + txUx0 + tx2U100 + tx

x−1 (Ux00 − x2U00),

Ux100 = 2txUxε U
x
100 + txUx10 + tx2U100 + tx

x−1 (Ux100 − x2U100),

Ux010 = 2txUxε U
x
010 + tx (Ux01 + Uxε xT10) + tx2U010 + tx

x−1 (Ux010 − x2U010),

Ux110 = 2txUxε U
x
110 + tx (Ux11 + Uxε xT10) + tx2U110 + tx

x−1 (Ux110 − x2U110).

(28)
We explain in Section 5.4 below how to solve this system.

5.3. Algebraicity

Since the early work of Brown in the sixties on the quadratic method [20], a lot has been known
about equations involving divided differences of the form (F (t;x)− F (t; 1))/(x− 1)). However,
most of the literature deals with a single equation, not with a system [14, 34]. In order to prove
that the series U (k)

ε (t;x) that counts orientations of U (k) is algebraic, we use a deep theorem
from Artin’s approximation theory, due to Popescu [43, 50]. The form we will need is given
below. We recall that C[[z1, . . . , z`]] is the ring of formal power series in the variables z1, . . . , z`,
with complex coefficients, and that a series Z in this ring is algebraic if it satisfies a non-trivial
polynomial equation Pol(z1, . . . , z`, Z) = 0.

Theorem 16 ([50], Thm. 1.4). Consider a polynomial system of n equations in `+ n variables
over C, written as Pi(z1, . . . , z`, y1, . . . , yn) = 0, for 1 ≤ i ≤ n. Let (d1, . . . , dn) be a sequence
of integers in {0, 1, . . . , `}. Assume that there exists an n-tuple Y = (Y1, . . . , Yn) of series in
C[[z1, . . . , z`]] that satisfies the following conditions:

• the n-tuple Y solves this system, that is,

Pi(z1, . . . , z`, Y1, . . . , Yn) = 0 for 1 ≤ i ≤ n,

• for 1 ≤ i ≤ n, the series Yi does not depend on the variables zj such that j > di (if
di = `, then there is no condition on the series Yi).

Then there exists an n-tuple (Z1, . . . , Zn) of algebraic series in C[[z1, . . . , z`]] that solves the
system and satisfies the same dependence conditions as Y.

In particular, if the system has a unique solution satisfying the dependence conditions, then
this solution is algebraic.

An application. To our knowledge, this theorem has not been applied yet in a combinatorial
context. So, before we use it to prove the algebraicity of U (k)

ε (t;x), let us examine its application
to a simple equation, namely (3).
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First, observe that the algebraicity of M(t;x) is not obvious. Clearly, if we could prove
that M(t; 1) is algebraic, we would be done with M(t;x) as well, but why should M(t; 1) be
algebraic? We can apply the above theorem as follows. Let us denote t = z1 and x = 1 + z2 (we
shall explain later why we need to translate the variable x). We consider the system in z1, z2,
y1 and y2 consisting of the following (single) equation:

z2y2 = z2 + z1z2(1 + z2)y2
2 + z1(1 + z2)(y2 − y1).

Take d1 = 1 and d2 = 2. Then (3) shows that the pair (Y1, Y2) := (M(t; 1),M(t;x)) solves
the above equation. Moreover Y1 = M(t; 1) is independent of z2 = x − 1, while Y2 = M(t;x)
depends on both variables z1 and z2, in accordance with d1 = 1 and d2 = 2.

Let us now prove that there cannot be another solution of this system in the ring C[[z1, z2]]
such that Y1 is independent of z2. First, setting z2 = 0 in the equation shows that Y1 must
be the specialization of Y2 at z2 = 0. This, combined with the factor z1 occurring in every
non-initial term in the right-hand side, implies that the coefficient of zn1 in Y2 can be computed
by induction of n, starting from the constant coefficient 1. Hence the uniqueness of (Y1, Y2).
The algebraicity of M(t;x) now follows from the above theorem.

Note that, if we had used z2 = x instead of z2 = x − 1, we could not apply the last part of
Theorem 16. The equation would read

(z2 − 1)y2 = (z2 − 1) + z1(z2 − 1)z2y
2
2 + z1z2(y2 − y1),

but this equation has many solutions in the ring C[[z1, z2]] of formal power series in z1 = t and
z2 = x. For instance, one can take Y1 = 0 and

Y2 =
1− x+ tx−

√
(1− x+ tx)2 − 4tx(1− x)2

2tx(1− x)
.

Theorem 16 tells us that at least one of these solutions is algebraic, but we need uniqueness to
conclude that our solution is algebraic. The key point is that a series in C[[z1, z2]] can always
be specialized at z2 = 0, but not at z2 = 1.

We now apply Theorem 16 to the larger example of orientations of U (k).

Proposition 17. For any k ≥ 1, the generating function U (k)
ε (t;x) that counts orientations of

U (k) is algebraic.

Proof. Again, we take as variables z1 = t and z2 = x − 1. For short, we denote z2 by z. We
consider the polynomial system consisting of the following equations, which mimic (24) and (26).
For w balanced of length between 2 and 2k − 2,

Aw = t
∑

auāv=w

AuAv + tCws
,

and for w valid of length at most 2k − 1,

zBw = z(1 + z)|w|/2Aw + 2tz(1 + z)BεBw + tz(1 + z)
∑

w=uav
Bu(1 + z)|v|/2Av

+ tz
∑

u=vw
|u|≤2k−1

u quasi-balanced

(1 + z)(1+|u|)/2Cu

+ t(1 + z)
(
Bw − (1 + z)kCw

)
− t(1 + z)

∑
u=vw
|u|≤2k−2

Au((1 + z)|u|/2 − (1 + z)k), (29)

where Aε = 1. The variables Aw, Bw and Cw play the role of the yi in Theorem 16. By
construction, the series

Aw := Tw(t), Bw := Uw(t; 1 + z), Cw := Uw(t; 1)

solve the system. Moreover, Aw and Cw do not depend on z2 = z.
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By Theorem 16, it suffices to prove that the system in A,B,C has a unique solution in
C[[t, z]] satisfying these dependence relations to conclude that all our series T and U counting
orientations are algebraic.

So assume that Aw, Bw and Cw solve the system and satisfy the required dependences. Then
by setting z = 0 in (29), we see that Cw must be the specialization of Bw at z = 0, for all w
valid of length at most 2k − 1. Then the form of the system implies that the coefficient of tn
in all series can be computed by induction on n, the initial values being Bε = Cε = 1 + O(t)
and Aw = Bw = Cw = O(t) for w non-empty (recall that we have set Aε = 1). This proves the
uniqueness of the solution (with the required dependences) and concludes the proof. �

5.4. Back to examples

5.4.1. The case k = 1. Let us go back to System (27). In the first equation, replace U0 by
(Uε−1)/2 to obtain a single equation involving only Uxε = Uε(x) and Uε = Uε(1). For simplicity,
we now drop the index ε. This equation reads:

Pol(U(x), U(1), t, x) = 0,

with

Pol(x0, x1, t, x) = (x− 1)(−x0 + 1 + 2txx2
0 + tx(x1 − 1)) + tx(x0 − xx1) + tx(x− 1).

We apply Brown’s quadratic method. Its principle is the following: if there exists a formal power
series X ≡ X(t) such that

Polx0
(U(X), U(1), t,X) = 0, (30)

then this series X must be a double root of the discriminant ∆(U(1), t, x) of Pol(x0, U(1), t, x)
with respect to x0 (the notation Polx0

stands for the derivative of Pol with respect to its first
variable). The proof is elementary (see [34, Sec. 2.9] or [14]). Equation (30) reads

X = 1 + tX + 4tX(X − 1)U(X),

and has a unique power series solution X(t), whose coefficients can be computed by induction
from those of U(x) (we do not need to determine X, just to know that it exists). Thus X is a
double root of ∆(U(1), t, x), and hence the discriminant in x of ∆ must vanish. This gives the
following cubic equation for U(1) (see our Maple sessions):

64t3U(1)3 +2t(24t2−36t+1)U(1)2 +(−15t3 +9t2 +19t−1)U(1)+ t3 +27t2−19t+1 = 0. (31)

The series U(1) has a unique positive singularity τ1, around 0.0765, which is a root of 216t3 −
81t2 + 18t − 1. This gives the upper bound µ1 = 1/τ1 = 13.0659 · · · on the growth rate of
Eulerian orientations. Expanding the series near τ1 (using for instance the Maple function
algeqtoseries [53]) shows that it has a singularity in (1 − µ1t)

3/2, as the generating function
of many families of planar maps.

5.4.2. The case k = 2. We now return to the system (28). Observe that we can reduce it to a
system of three equations defining the series Uxε , Ux10 and Ux100:

Uxε = 1 + 4txUxε U
x
0 + 2txUxε + 2txU0 + 2tx2(U100 + U10) + 2tx

x−1 (Ux0 − x2U0),

Ux10 = xt(1 + U0) + 2txUxε U
x
10 + txUx0 + tx2U10 + tx

x−1 (Ux10 − x2U10),

Ux100 = 2txUxε U
x
100 + txUx10 + tx2U100 + tx

x−1 (Ux100 − x2U100),

(32)

in which we still need to plug

U0 =
Uε − 1

2
and Ux0 =

Uxε − 1

2
. (33)

To solve this system, we could develop a matrix analogue of the quadratic method, where (30)
would be replaced by the cancellation of the Jacobian of the system. However, we prefer a step
by step approach here, among other reasons because our system is not generic (its Jacobian has
a multiple root).
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From now on, we lighten notation by denoting A = Uxε , A1 = Uε, B = Ux10, B1 = U10,
C = Ux100 and C1 = U100. We will determine three polynomial equations relating the one-
variable series A1, B1 and C1, and then eliminate B1 and C1 to obtain a polynomial equation
satisfied by A1 = Uε.

We now describe the various steps of our calculation, without giving the intermediate equa-
tions: we refer to our web pages for a Maple session where the calculations are performed.

The first equation of (32), after injecting (33), involves only one x-dependent series, namely
A = Uxε = Uε(x). Once the denominators are cleared out, the degree in A is 2, and we can apply
the quadratic method of Section 5.4.1: the discriminant (in x) of a certain discriminant (in x0)
vanishes, and this gives a first equation between A1, B1 and C1.

We then move to the second equation of (32), which (after injecting (33)) involves two x-
dependent series, namely A and B. It is linear in the latter series, with coefficient:

1− x+ tx+ 2tx(x− 1)A. (34)

This coefficient vanishes for a (unique) series in t, denoted X, satisfying

X = 1 + tX + 2tX(X − 1)A2, with A2 := Uε(X).

Replacing x by X in the second equation of (32) gives another equation between X and A2,
from which we compute

2t(A1 − 2B1)X2 + (1− t− 2tA1)X = 1, (35)

A2 =
2XB1

X − 1
−A1.

We now eliminate X and A2 between the last two identities and the first equation of (32),
specialized at x = X. This gives a second equation between our three main unknown series
A1, B1 and C1.

We finally consider the third equation of (32) (after injecting (33)), which now involves all
three x-dependent series. It is linear in C, again with coefficient (34). Setting x = X in this
equation gives an expression of U10(X):

B2 := U10(X) = XC1/(X − 1).

We now get back to the second equation of (32), differentiate it with respect to x and set x = X.
Replacing B2 and A2 by the above expressions gives:

A′2 :=
∂Uε
∂x

(X) = 2
2C1t(2X − 1)(X − 1)A1 − 4Xt(2X − 1)B1C1 −B1t(X − 1)− (t− 1)(X − 1)C1

t(X − 1)2(4C1X +X − 1)
.

It remains to differentiate the first equation of (32) with respect to x, specialize it at x = X,
and plug the above values of A′2, B2 and A2 to obtain one more equation between A1, B1, C1

and X. Eliminating X thanks to (35) gives our third and last equation between A1, B1 and C1.
From this system, we eliminate B1 and C1, and obtain an equation of degree 27 for A1 = Uε.

Its dominant coefficient does not vanish away from 0, and its discriminant has three roots in
[1/10, 1/16] (where we know that the radius must be found), respectively located around 0.07509,
0.07658 and 0.07727. Following numerically the branches that start from 1 at t = 0 shows that
the radius of Uε is the second one, giving the upper bound µ2 = 13.057 . . . on the growth rate µ
of Eulerian orientations. From numerical estimates of the singular exponent, we predict that the
series has again a “planar map” singularity in (1−µ2t)

3/2. This is known to hold for many series
satisfying an equation with divided differences [24]. This leads us to complete Proposition 17 as
follows.

Conjecture 18. For every k, the algebraic series U (k)
ε (t; 1) that counts orientations of U (k) has

a unique dominant singularity τk = 1/µk which is of the planar map type: as t approaches τk
from below,

U (k)
ε (t; 1) = c0 + c1(1− µkt) + c2(1− µkt)3/2

(
1 + o(1)

)
with c2 6= 0.
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6. Supersets of Eulerian orientations, via the prime decomposition

In this section, we combine the illegal large splits of the previous section with the prime
decomposition of Section 2.4 to obtain a new family of supersets of Eulerian orientations. These
new supersets U(k) satisfy U(k) ⊂ U (k) (Proposition 20), hence they give better bounds on the
growth rate µ than those obtained from the standard decomposition. Many arguments are
similar to those of the previous section, and we give fewer details.

Recall from Section 2.4 that an Eulerian orientation is a sequence of prime Eulerian orienta-
tions, and that a prime (Eulerian) orientation can be obtained recursively from the atomic map
by either:

• adding a loop, oriented in either way, around an orientation O1,
• or a legal split on a prime orientation O′ ∈ O, followed by the concatenation of an

arbitrary Eulerian orientation O′′ at the new vertex created by the split (Figure 6).

Definition 19. Let k ≥ 1. Let U(k) be the set of planar orientations obtained recursively from
the atomic map by either:

• concatenating a sequence of prime orientations of U(k),
• or adding a loop, oriented in either way, around an orientation O1 of U(k),
• or performing a legal i-split on a prime orientation O′ ∈ U(k), with i ≤ k, followed by
the concatenation of an arbitrary orientation O′′ of U(k) at the new vertex created by the
split (small split),

• or performing an arbitrary i-split on a prime orientation O′ ∈ U(k), with i > k, followed
by the concatenation of an arbitrary orientation O′′of U(k) at the new vertex created by
the split (large split). If the split is legal, then the new edge is given the only orientation
that makes the root word balanced, otherwise the root edge is oriented away from the root
vertex.

Again, the sets U(k) decrease to the set O of all Eulerian orientations as k increases, hence
their growth rates µ̄k form a non-increasing sequence of upper bounds on µ. We do not know if
this sequence converges to µ. At any rate, the convergence appears to be rather slow, as shown
by the estimates of µ̄k in Table 1.

Proposition 20. For k ≥ 1, the superset of orientations U(k) is contained in the superset U (k)

defined in Section 5.

Proof. We prove this by induction on the number of edges. The inclusion is obvious for orienta-
tions with no edges. Now let O ∈ U(k), having at least one edge.

If O is prime and is obtained by adding a loop around a smaller orientation O1 of U(k) (second
construction in Definition 19), then O1 belongs to U (k) by the induction hypothesis, and so does
O (first construction in Definition 12).

Assume now that O is prime and is obtained by an i-split in a prime orientation O′ of U(k),
followed by the concatenation of an orientation O′′ of U(k) at the new vertex (third or fourth
construction in Definition 19). Then the orientation Õ obtained by concatenating O′ and O′′

at their root belongs to U(k) (first construction in U(k)) and hence to U (k) by the induction
hypothesis. But then one can recover O by performing an i-split in Õ, which is allowed in Õ as
it was allowed in O′. This is the second construction in Definition 12, hence O is in U (k).

Assume finally that O is obtained by concatenating a prime orientation P of U(k) and another
orientation O2 of U(k) (first construction in Definition 19). By the induction hypothesis, both P
and O2 are in U (k). If the root edge of P is a loop, deleting it from P leaves an orientation O1

which is in U (k). Then we can reconstruct O by a merge of O1 and O2 as in the first construction
of Definition 12. If the root edge of P is not a loop (Figure 8), then P was obtained by the third
or fourth construction in Definition 19: allowed split in a prime orientation P ′ of U(k), followed
by the concatenation of some O′′ ∈ U(k) at the new vertex. Let Õ be obtained by concatenating
O′′, P ′ and O2 (in counterclockwise order) at their roots. Then Õ is in U(k), but also in U (k) by
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the induction hypothesis. Then O can be recovered by a split in Õ, which is allowed in Õ as it
was allowed in P ′ (the split may have been small in P ′ and become large in Õ, because of the
orientation O2, but the converse is not possible). This is the second construction in Definition 12,
hence O is in U (k). �

O′′

P ′

O2

O′′, P ′, O2 ∈ U(k)

O = PO2 ∈ U(k) ∩ U (k)

Õ = O′′P ′O2 ∈ U(k) ∩ U (k) (ind. hyp.)

+

O2

P

{split in P ′ in U(k)

concatenation in U(k)

concatenation in U(k)

split in Õ in U (k)

O′′

O′′

P ′

O2

O2

Figure 8. Two constructions of the orientation O: (top) in U(k), via an i-split,
(bottom) in U (k), via a j-split, with j = i+ dv(O2).

6.1. Functional equations for U(k)

We now fix an integer k. For a word w on {0, 1}, let U(k)
w (t;x) ≡ Uw(x) denote the generating

function of orientations of U(k) whose root word ends with w, counted by the edge number
(variable t) and the half-degree of the root vertex (variable x). Let T

(k)
w (t) ≡ Tw denote the

generating function of orientations of U(k) having root word exactly w. We define analogous
generating functions U′w(x) and T′w for prime orientations. As in the previous section, we often
denote simply by Uw (resp. U′w) the edge generating function Uw(t; 1) (resp. U′w(t; 1)), and by
Uxw (resp. U′xw) the refined generating function Uw(t;x) (resp. U′w(t;x)).

Note that Tw = T′w = 0 if w is not balanced and that Tε = 1, T′ε = 0. For w balanced of
length between 2 and 2k, we have both a sequential equation

Tw =
∑

w=uv
TuT

′
v (36)

analogous to (15), and an equation for prime orientations:

T′w = tTwc
+ tUεU

′
ws
, (37)

analogous to (16). The factor Uε accounts for the orientation concatenated after a split.
For w valid of length at most 2k − 1, we have a sequential equation, analogous to (17) but

taking care of the root degree:

Uxw = 1w=ε + UxεU
′x
w +

∑
w=uv,v 6=w

Uxux
|v|/2T′v. (38)
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Finally, we have the following equation for prime orientations, which is the counterpart of (18)
and involves ingredients of (25) for orientations obtained by a split:

U′
x
w = 2txUxε1w=ε + txUxwp

1w 6=ε + tx|w|/2Twc
1w 6=ε balanced

+ tUε

 ∑
u=vw

2≤|u|≤2k
u balanced

x|u|/2U′us
+

x

x− 1

(
U′
x
w − xkU′w

)
− x

x− 1

∑
u=vw
|u|≤2k−2

T′u(x|u|/2 − xk)

 . (39)

The first line counts orientations obtained by adding a loop, and the second those obtained by
a split.

Remark 21. As in the previous section, we can use (37) to replace (39) by a slightly lighter
equation:

U′
x
w = x|w|/2T′w + 2txUxε1w=ε + txUxwp

1w 6=ε + tUε

 ∑
u=vw
|u|≤2k−1

u quasi-balanced

x(1+|u|)/2U′u

+
x

x− 1

(
U′
x
w − xkU′w

)
− x

x− 1

∑
u=vw
|u|≤2k−2

T′u(x|u|/2 − xk))

 . (40)

Proposition 22. Consider the collection of equations consisting of:

• Equation (36), written for all balanced words w of length between 2 and 2k − 4,
• Equation (37), written for all balanced words w of length between 2 and 2k − 2,
• Equation (38), written for all valid words w of length at most 2k − 2,
• Equation (40), written for all valid words w of length at most 2k − 1.

In this collection, replace all trivial T- and T′-series by their value: Tw = T′w = 0 when w is not
balanced, Tε = 1, T′ε = 0. Let R0 denote the resulting system. The number of series it involves
is 2f(k) − 3

(
2k
k

)
−
(

2k−2
k−1

)
1k>1, where f(k) is given by (7). Moreover, R0 defines uniquely all

these series. Its size can be (roughly) divided by two upon exploiting the 0/1 symmetry.

The proof is similar to the proofs of Propositions 3 and 9.

Remark 23. As always, we can alternatively write forward equations:

Uxw = x|w|/2Tw + Ux0w + Ux1w, U′
x
w = x|w|/2T′w + U′

x
0w + U′

x
1w.

6.2. Examples

6.2.1. When k = 1, the system of Proposition 22 contains 2f(1) − 3 · 2 = 4 equations. Upon
exploiting the 0/1 symmetry, it reads:

Uxε = 1 + UxεU
′x
ε ,

U′
x
ε = 2txUxε + tUε

(
2xU′0 + x

x−1 (U′
x
ε − xU′ε)

)
,

U′
x
0 = txUxε + tUε

(
xU′0 + x

x−1 (U′
x
0 − xU′0)

)
.

(41)

The second equation can be replaced by the forward equation U′xε = 2U′x0 .
We solve this system in Section 6.4.
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6.2.2. When k = 2, the system of Proposition 22 contains 2f(2) − 3 · 6 − 2 = 22 equations.
Upon exploiting the 0/1 symmetry and the forward equations, it reads:

T′01 = t+ tUεU
′
1,

Uxε = 1 + UxεU
′x
ε ,

Ux0 = UxεU
′x
0 ,

Ux10 = Ux01 = UxεU
′x
10,

Ux00 = Ux11 = UxεU
′x
00,

U′
x
ε = 2U′

x
0 ,

U′
x
0 = U′

x
1 = txUxε + tUε

(
xU′0 + x2(U′100 + U′010 + U′110) + x

x−1 (U′
x
0 − x2U′0) + x2T′10

)
,

U′
x
10 = U′

x
01 = xT′10 + U′

x
110 + U′

x
010,

= xT′10 + txUx1 + tUε
(
x2U′010 + x2U′110 + x

x−1 (U′
x
10 − x2U′10) + x2T′10

)
,

U′
x
00 = txUx0 + tUε

(
x2U′100 + x

x−1 (U′
x
00 − x2U′00)

)
,

U′
x
100 = txUx10 + tUε

(
x2U′100 + x

x−1 (U′
x
100 − x2U′100)

)
,

U′
x
010 = txUx01 + tUε

(
x2U′010 + x

x−1 (U′
x
010 − x2U′010)

)
,

U′x110 = txUx11 + tUε
(
x2U′110 + x

x−1 (U′x110 − x2U′110)
)
.

(42)
We explain in Section 6.4 below how to solve this system.

6.3. Algebraicity

The analogue of Proposition 17 holds for the supersets obtained via the prime decomposition.

Proposition 24. For any k ≥ 1, the generating function U
(k)
ε (t;x) that counts orientations of

U(k) is algebraic.

Proof. Again, the idea is to apply Theorem 16 to the system of Proposition 22, after writing
x = 1 + z. The proof is roughly the same as that of Proposition 17: we define a polynomial
system involving two variables, t and z, and six families of unknowns Aw, A′w, Bw, B′w, Cw,
C ′w. The equations they satisfy are those of Proposition 22, rewritten with

Tw → Aw, T′w → A′w, Uxw → Bw, U′
x
w → B′w, Uw → Cw, U′w → C ′w.

In fact, the only series Uw occurring in our system is Uε, so that the polynomial system we
construct involves Cε, but no other C-series. The prescribed dependences are that the A,A′, C
and C ′ series are independent of z. For instance, when k = 1 we convert (41) into:

Bε = 1 +BεB
′
ε,

B′ε = 2t(1 + z)Bε + tCε
(
2(1 + z)C ′0 + 1+z

z (B′ε − (1 + z)C ′ε)
)
,

B′0 = t(1 + z)Bε + tCε
(
(1 + z)C ′0 + 1+z

z (B′0 − (1 + z)C ′0)
)
.

However, this is not sufficient, because this system does not imply that Cε is Bε at z = 0 (it does
however imply that C ′ε is B′ε at z = 0, and similarly for C ′0 and B′0). Hence, in order to apply
Popescu’s theorem, we need to add to our collection of equations the case x = 1, w = ε of (38),
namely Cε = 1 + CεC

′
ε. The rest of the argument mimics the proof of Proposition 17. �

6.4. Back to examples

We first return to the system (41) obtained for k = 1. In the second equation, replace Uxε
by 1/(1 − U′

x
ε ), Uε by 1/(1 − U′ε) and U′0 by U′ε/2. This gives a polynomial equation involving

only U′
x
ε and U′ε, which can be solved by the quadratic method already used in Section 5.4. This

gives for U′ε a cubic equation. Getting back to Uε = 1/(1 − U′ε), we obtain for the generating
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function U
(1)
ε of orientations in U(1) the same cubic equation (31) as for orientations of U (1). In

fact, one can check that U(1) = U (1). Of course, the upper bound on µ is µ̄1 = µ1 = 13.0659 . . .

Let us now solve the system (42) obtained for k = 2. It can be reduced to a system of three
equations defining the series U′ε,U′10 and U′100:

U′xε = 2txUxε + tUε
(
xU′ε + 2x2(U′100 + U′10) + x

x−1 (U′xε − x2U′ε)
)
,

U′
x
10 = xt(1 + UεU

′
ε/2) + tx(Uxε − 1)/2 + tUε

(
x2U′10 + x

x−1 (U′
x
10 − x2U′10)

)
,

U′
x
100 = txUx10 + tUε

(
x2U′100 + x

x−1 (U′
x
100 − x2U′100)

)
,

(43)

in which we inject

Uε =
1

1− U′ε
, Uxε =

1

1− U′xε
and Ux10 =

U′
x
10

1− U′xε
. (44)

We lighten notation by denoting A = U′
x
ε , A1 = U′ε, B = U′

x
10, B1 = U′10, C = U′

x
100 and

C1 = U′100, and we follow the steps used in Section 5.4.2 to solve System (28). Again, we refer
to our web pages for the corresponding Maple session. The intermediate steps are as follows.
We first apply the quadratic method to the first equation. We then turn to the second one. The
equation satisfied by X is

X = 1 +
t

1− t−A1
,

(Note that it gives X explicitly in terms of A1, whereas we had a quadratic equation (35) in the
previous case.) We then derive

A2 := U′ε(X) = 1 + t
1−A1

t− 2B1(1−A1)
.

We finally consider the third equation of (43) (after injecting (44)), and derive:

B2 := U′10(X) = (1−A2)C1/t.

Then it follows from the second equation that:

A′2 :=
∂U′ε
∂x

(X) =
2(1−A1)(1− t−A1)2((1− t−A1)C1 + 2(−1 +A1)B2

1 + tB1)

(t− 2B1(1−A1))3
.

At the end, we obtain an equation of degree 28 for A1 = U′ε, and then for Uε. Its dominant
coefficient does not vanish away from 0, and its discriminant has only one root in [1/10, 1/16]
(where we know that the radius must be found), around 0.0766. This gives the upper bound
µ̄2 = 13.047 . . . on the growth rate µ of Eulerian orientations. From numerical estimates of the
singular exponent, we predict that the series has again a “planar map” singularity in (1− µ̄2t)

3/2.

For k = 3, 4 and 5, we have generated our systems of equations and computed the first 100
coefficients of U(k)

ε (t;x). From this we get the estimates of the growth rates µ̄k shown in Table 2.
The singularity still appears to be in (1− µ̄kt)3/2. We conjecture that this holds for any k.

Conjecture 25. For every k, the algebraic series U(k)
ε (t; 1) that counts orientations of U(k) has

a unique dominant singularity τ̄k = 1/µ̄k which is of the planar map type: as t approaches τ̄k
from below,

U(k)
ε (t; 1) = c0 + c1(1− µkt) + c2(1− µ̄kt)3/2

(
1 + o(1)

)
for c2 6= 0.
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7. Final comments

As mentioned at the end of the introduction, it might be easier to count Eulerian orientation
of 4-valent maps. In such orientations, each vertex has two in-going and two outgoing edges, so
that counting Eulerian orientations means solving the so-called ice-model on (random) 4-valent
maps [3, Chap. 8]. The number of Eulerian orientations of a 4-valent planar map is known to be
a third of the number of proper 3-colourings of its dual [60]. Thus counting these orientations
is equivalent to counting 3-coloured planar quadrangulations. A number of enumerative results
are already known about coloured maps. In particular, 3-coloured planar maps, and 3-coloured
planar triangulations, have algebraic generating functions [6, 17, 54, 58]. More generally, q-
coloured planar maps and triangulations have differentially algebraic generating functions. So
this could be true for 3-coloured quadrangulations as well, and hence for Eulerian orientations
of 4-valent maps. Several results on this problem appear in the physics literature, but there does
not seem to be an explicit exact solution at the moment [42, 61].

To finish, let us recall two questions left open by this paper (beyond the enumeration of
Eulerian orientations!).

• Do the growth rates µ̄k of orientations of U(k) decrease to the growth rate µ of Eulerian
orientations, or to a larger value?

• In Sections 3.3 and 4.3, we have used a general result about positive irreducible systems
of polynomial equations to prove that the generating functions of our subsets of Eulerian
orientations have a square root singularity. Could one define a notion of positive irre-
ducible system of polynomial equations with divided differences whose solutions would
systematically exhibit a singularity in (1 − µt)3/2? Hopefully this would apply to our
supersets of orientations and prove Conjectures 18 and 25. A first step in this direction,
applicable to a single equation, is achieved in [24].

Acknowledgements. We are grateful to Alin Bostan, Jean-Charles Faugère, Tony Guttmann
and Bruno Salvy for their help with the algebraic systems, various calculations and suggestions.
MBM also thanks the organizers of the workshop “Approximation and Combinatorics” in 2015
in CIRM (Luminy, F) Herwig Hauser and Guillaume Rond, for very interesting discussions on
the algebraic aspects of functional equations arising in map enumeration.

References

[1] S. E. Alm and S. Janson. Random self-avoiding walks on one-dimensional lattices. Comm. Statist. Stochastic
Models, 6(2):169–212, 1990.

[2] G. Barequet, M. Moffie, A. Ribó, and G. Rote. Counting polyominoes on twisted cylinders. Integers, 6:A22,
37, 2006.

[3] R. J. Baxter. Exactly solved models in statistical mechanics. Academic Press, Inc. [Harcourt Brace Jo-
vanovich, Publishers], London, 1982.

[4] R. J. Baxter. Dichromatic polynomials and Potts models summed over rooted maps. Ann. Comb., 5(1):17–36,
2001.

[5] O. Bernardi and N. Bonichon. Intervals in Catalan lattices and realizers of triangulations. J. Combin. Theory
Ser. A, 116(1):55–75, 2009.

[6] O. Bernardi and M. Bousquet-Mélou. Counting colored planar maps: algebraicity results. J. Combin. Theory
Ser. B, 101(5):315–377, 2011. ArXiv:0909:1695.

[7] O. Bernardi and M. Bousquet-Mélou. Counting coloured planar maps: differential equations.
ArXiv:1507.02391, 2015.

[8] M. Bóna. Exact enumeration of 1342-avoiding permutations: a close link with labeled trees and planar maps.
J. Combin. Theory Ser. A, 80(2):257–272, 1997.

[9] N. Bonichon. A bijection between realizers of maximal plane graphs and pairs of non-crossing Dyck paths.
Discrete Math., 298(1-3):104–114, 2005.

[10] N. Bonichon, M. Bousquet-Mélou, and É. Fusy. Baxter permutations and plane bipolar orientations. Sém.
Lothar. Combin., 61A:Art. B61Ah, 29, 2009/11.

[11] N. Bonichon, C. Gavoille, and N. Hanusse. Canonical decomposition of outerplanar maps and application to
enumeration, coding and generation. J. Graph Algorithms Appl., 9(2):185–204 (electronic), 2005.

https://arxiv.org/abs/0909.1695
http://arxiv.org/abs/1507.02391


ON THE NUMBER OF PLANAR EULERIAN ORIENTATIONS 33

[12] G. Borot, J. Bouttier, and E. Guitter. Loop models on random maps via nested loops: case of domain
symmetry breaking and application to the Potts model. J. Phys. A, 45:494017, 2012.

[13] D. V. Boulatov and V. A. Kazakov. The Ising model on a random planar lattice: the structure of the phase
transition and the exact critical exponents. Phys. Lett. B, 186(3-4):379–384, 1987.

[14] M. Bousquet-Mélou and A. Jehanne. Polynomial equations with one catalytic variable, algebraic series and
map enumeration. J. Combin. Theory Ser. B, 96:623–672, 2006.

[15] M. Bousquet-Mélou and G. Schaeffer. Enumeration of planar constellations. Adv. in Appl. Math., 24(4):337–
368, 2000.

[16] M. Bousquet-Mélou and G. Schaeffer. The degree distribution of bipartite planar maps: applications to the
Ising model. In K. Eriksson and S. Linusson, editors, Formal Power Series and Algebraic Combinatorics,
pages 312–323, Vadstena, Sweden, 2003. Long version on arXiv:math/0211070.

[17] J. Bouttier, P. Di Francesco, and E. Guitter. Counting colored random triangulations.Nucl. Phys. B, 641:519–
532, 2002.

[18] J. Bouttier, P. Di Francesco, and E. Guitter. Blocked edges on Eulerian maps and mobiles: application to
spanning trees, hard particles and the Ising model. J. Phys. A, 40(27):7411–7440, 2007.

[19] R. Brak and A. J. Guttmann. Algebraic approximants: a new method of series analysis. J. Phys. A,
23(24):L1331–L1337, 1990.

[20] W. G. Brown. On the existence of square roots in certain rings of power series. Math. Ann., 158:82–89, 1965.
[21] L. Castelli Aleardi, O. Devillers, and G. Schaeffer. Succinct representations of planar maps. Theoret. Comput.

Sci., 408(2-3):174–187, 2008.
[22] J.-M. Daul. q-States Potts model on a random planar lattice. ArXiv:hep-th/9502014.
[23] P. Di Francesco, P. Ginsparg, and J. Zinn-Justin. 2D gravity and random matrices. Phys. Rep., 254(1-2),

1995. 133 pp.
[24] M. Drmota and M. Noy. Universal exponents and tail estimates in the enumeration of planar maps. Elec.

Notes Discrete Math., 38:309–317, 2011.
[25] B. Eynard and G. Bonnet. The Potts-q random matrix model: loop equations, critical exponents, and rational

case. Phys. Lett. B, 463(2-4):273–279, 1999.
[26] J.-C. Faugère. Personal communication, 2016.
[27] S. Felsner. Lattice structures from planar graphs. Electron. J. Combin., 11(1):Research Paper 15, 24 pp.

(electronic), 2004.
[28] S. Felsner, É. Fusy, M. Noy, and D. Orden. Bijections for Baxter families and related objects. J. Combin.

Theory Ser. A, 118(3):993–1020, 2011.
[29] M. E. Fisher and M. F. Sykes. Excluded-volume problem and the Ising model of ferromagnetism. Phys. Rev.

(2), 114:45–58, 1959.
[30] P. Flajolet and R. Sedgewick. Analytic combinatorics. Cambridge University Press, Cambridge, 2009.
[31] É. Fusy. Transversal structures on triangulations: a combinatorial study and straight-line drawings. Discrete

Math., 309(7):1870–1894, 2009.
[32] É. Fusy. Bijective counting of involutive Baxter permutations. Fund. Inform., 117(1-4):179–188, 2012.
[33] É. Fusy, D. Poulalhon, and G. Schaeffer. Bijective counting of plane bipolar orientations and Schnyder woods.

European J. Combin., 30(7):1646–1658, 2009.
[34] I. P. Goulden and D. M. Jackson. Combinatorial enumeration. John Wiley & Sons Inc., New York, 1983.

Wiley-Interscience Series in Discrete Mathematics.
[35] A. J. Guttmann. Personal communication. March 2016.
[36] A. J. Guttmann and I. Jensen. Effect of confinement: polygons in strips, slabs and rectangles. In Polygons,

polyominoes and polycubes, volume 775 of Lecture Notes in Phys., pages 235–246. Springer, Dordrecht, 2009.
[37] C. Hierholzer and C. Wiener. Ueber die Möglichkeit, einen Linienzug ohne Wiederholung und ohne Unter-

brechung zu umfahren. Math. Ann., 6(1):30–32, 1873.
[38] OEIS Foundation Inc. The on-line encyclopedia of integer sequences. http://oeis.org.
[39] I. Jensen. Counting polyominoes: A parallel implementation for cluster computing. In P. M. A. Sloot et al.,

editor, Computational Science—Proc. ICCS 2003, Part III, volume 2659 of Lecture Notes in Computer
Science, 2003.

[40] V. A. Kazakov. Ising model on a dynamical planar random lattice: exact solution. Phys. Lett. A, 119(3):140–
144, 1986.

[41] D. A. Klarner and R. L. Rivest. A procedure for improving the upper bound for the number of n-ominoes.
Canad. J. Math., 25:585–602, 1973.

[42] I. K. Kostov. Exact solution of the six-vertex model on a random lattice. Nuclear Phys. B, 575(3):513–534,
2000.

[43] H. Kurke, G. Pfister, D. Popescu, M. Roczen, and T. Mostowski. Die Approximationseigenschaft lokaler
Ringe. Lecture Notes in Mathematics, Vol. 634. Springer-Verlag, Berlin-New York, 1978.

[44] J.-F. Le Gall. Random geometry on the sphere. In S. Y. Jang, Y. R. Kim, D.-W. Lee, and I. Yie, editors,
International Congress on Mathematicians, Plenary lectures and ceremonies, volume 1, pages 421–442,
Seoul, Korea, 2014.

http://arxiv.org/abs/math/0211070
https://arxiv.org/abs/hep-th/9502014
http://oeis.org
http://www.icm2014.org/download/Proceedings_Volume_I.pdf


34 N. BONICHON, M. BOUSQUET-MÉLOU, P. DORBEC, AND C. PENNARUN

[45] R. C. Mullin. On the enumeration of tree-rooted maps. Canad. J. Math., 19:174–183, 1967.
[46] P. Ossona de Mendez. Orientations bipolaires. PhD thesis, École des Hautes Études en Sciences Sociales,

Paris, 1994.
[47] M. Petkovšek, H. S. Wilf, and D. Zeilberger. A = B. A K Peters Ltd., Wellesley, MA, 1996.
[48] C. Pivoteau, B. Salvy, and M. Soria. Algorithms for combinatorial structures: well-founded systems and

Newton iterations. J. Combin. Theory Ser. A, 119(8):1711–1773, 2012.
[49] A. Pönitz and P. Tittmann. Improved upper bounds for self-avoiding walks in Zd. Electron. J. Combin.,

7:Research Paper 21, 10 pp. (electronic), 2000.
[50] D. Popescu. General Néron desingularization and approximation. Nagoya Math. J., 104:85–115, 1986.
[51] D. Poulalhon and G. Schaeffer. Optimal coding and sampling of triangulations. Algorithmica, 46(3-4):505–

527, 2006.
[52] J. Propp. Lattice structure for orientations of graphs. arXiv:math/0209005, 1993.
[53] B. Salvy and P. Zimmermann. Gfun: a Maple package for the manipulation of generating and holonomic

functions in one variable. ACM Transactions on Mathematical Software, 20(2):163–177, 1994. Reprint
doi:10.1145/178365.178368.

[54] W. T. Tutte. A census of planar maps. Canad. J. Math., 15:249–271, 1963.
[55] W. T. Tutte. On the enumeration of planar maps. Bull. Amer. Math. Soc., 74:64–74, 1968.
[56] W. T. Tutte. Chromatic sums for rooted planar triangulations: the cases λ = 1 and λ = 2. Canad. J. Math.,

25:426–447, 1973.
[57] W. T. Tutte. Map-colourings and differential equations. In Progress in graph theory (Waterloo, Ont., 1982),

pages 477–485. Academic Press, Toronto, ON, 1984.
[58] W. T. Tutte. Chromatic sums revisited. Aequationes Math., 50(1-2):95–134, 1995.
[59] J. H. van Lint and R. M. Wilson. A Course in Combinatorics. Cambridge University Press, 2001.
[60] D. Welsh. The Tutte polynomial. Random Structures Algorithms, 15(3-4):210–228, 1999. Statistical physics

methods in discrete probability, combinatorics, and theoretical computer science (Princeton, NJ, 1997).
[61] P. Zinn-Justin. The six-vertex model on random lattices. Europhys. Lett., 50(1):15–21, 2000.

https://arxiv.org/abs/math/0209005

	1. Introduction
	2. Recursive decompositions of Eulerian orientations
	2.1. Definitions
	2.2. Eulerian maps: standard decomposition
	2.3. Eulerian orientations: standard decomposition
	2.4. Prime decomposition of maps and orientations

	3. Subsets of Eulerian orientations, via the standard decomposition
	3.1. An algebraic system for bold0mu mumu L(k)L(k)tutte-generalL(k)L(k)L(k)L(k)
	3.2. Examples
	3.3. Asymptotic analysis for subsets of Eulerian orientations
	3.4. Back to examples

	4. Subsets of Eulerian orientations, via the prime decomposition
	4.1. An algebraic system for bold0mu mumu L(k)L(k)flajolet-sedgewickL(k)L(k)L(k)L(k)
	4.2. Examples
	4.3. Asymptotic analysis for subsets of Eulerian orientations (prime decomposition)
	4.4. Back to examples

	5. Supersets of Eulerian orientations, via the standard decomposition
	5.1. Functional equations for bold0mu mumu U(k)U(k)faugereU(k)U(k)U(k)U(k)
	5.2. Examples
	5.3. Algebraicity
	5.4. Back to examples

	6. Supersets of Eulerian orientations, via the prime decomposition
	6.1. Functional equations for bold0mu mumu U(k)U(k)drmota-noy-universalU(k)U(k)U(k)U(k)
	6.2. Examples
	6.3. Algebraicity
	6.4. Back to examples

	7. Final comments
	References

