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Abstract

During the last ten years, the discontinuous Galerkin time-domain (DGTD) method has progressively emerged as a viable
alternative to well established finite-di↵erence time-domain (FDTD) and finite-element time-domain (FETD) methods for
the numerical simulation of electromagnetic wave propagation problems in the time-domain. The method is now actively
studied for various application contexts including those requiring to model light/matter interactions on the nanoscale. In
this paper we further demonstrate the capabilities of the method for the simulation of near-field plasmonic interactions
by considering more particularly the possibility of combining the use of a locally refined conforming tetrahedral mesh
with a local adaptation of the approximation order.

Keywords: computational electromagnetics, nanophotonics, plasmonics, time-domain Maxwell equations,
discontinuous Galerkin method, local adaptivity

1. Introduction

1.1. Generalities about the DGTD method

The DGTD method can be considered as a finite el-
ement method where the continuity constraint at an ele-
ment interface is released. While it keeps almost all the
advantages of the finite element method (large spectrum of
applications, complex geometries, etc.), the DGTDmethod
has other nice properties which explain the renewed inter-
est it gains in various domains in scientific computing:

- It is naturally adapted to a high order approxima-
tion of the unknown field. Moreover, one may in-
crease the degree of the approximation in the whole
mesh as easily as for spectral methods but, with a
DGTD method, this can also be done locally i.e. at
the mesh cell level. In most cases, the approxima-
tion relies on a polynomial interpolation method but
the method also o↵ers the flexibility of applying local
approximation strategies that best fit to the intrinsic
features of the modeled physical phenomena.

- When the discretization in space is coupled to an ex-
plicit time integration method, the DG method leads
to a block diagonal mass matrix independently of
the form of the local approximation (e.g the type of
polynomial interpolation). This is a striking di↵er-
ence with classical, continuous FETD formulations.
Moreover, the mass matrix is diagonal if an orthog-
onal basis is chosen.
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- It easily handles complex meshes. The grid may be
a classical conforming finite element mesh, a non-
conforming one or even a hybrid mesh made of var-
ious elements (tetrahedra, prisms, hexahedra, etc.).
The DGTD method has been proven to work well
with highly locally refined meshes. This property
makes the DGTD method more suitable to the de-
sign of a hp-adaptive solution strategy (i.e. where
the characteristic mesh size h and the interpolation
degree p changes locally wherever it is needed).

- It is flexible with regards to the choice of the time
stepping scheme. One may combine the discontin-
uous Galerkin spatial discretization with any global
or local explicit time integration scheme, or even im-
plicit, provided the resulting scheme is stable.

- It is naturally adapted to parallel computing. As
long as an explicit time integration scheme is used,
the DGTD method is easily parallelized. Moreover,
the compact nature of method is in favor of high
computation to communication ratio especially when
the interpolation order is increased.

As in a classical finite element framework, a discontinuous
Galerkin formulation relies on a weak form of the contin-
uous problem at hand. However, due to the discontinuity
of the global approximation, this variational formulation
has to be defined at the element level. Then, a degree of
freedom in the design of a discontinuous Galerkin scheme
stems from the approximation of the boundary integral
term resulting from the application of an integration by
parts to the element-wise variational form. In the spirit of
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finite volume methods, the approximation of this bound-
ary integral term calls for a numerical flux function which
can be based on either a centered scheme or an upwind
scheme, or a blend of these two schemes.

1.2. DGTD methods for nanophotonics/plasmonics

Numerical modeling of electromagnetic wave propaga-
tion in interaction with metallic nanostructures at optical
frequencies requires to solve the system of Maxwell equa-
tions coupled to appropriate models of physical dispersion
in the metal. In general, the Drude and Drude-Lorentz
models are adopted although there are practical situations
for which these models can fail to describe correcly the
behavior of some materials (e.g. transition metals [1]-[2]
and graphene [3]). Furthermore at some scales, non-local
e↵ects starts to play an important role [4]. The FDTD
[5] method is a widely used approach for solving the sys-
tems of partial di↵erential equations modeling nanopho-
tonic applications. In this method, the whole computa-
tional domain is discretized using a structured (cartesian)
grid. In spite of its flexibility and second-order accuracy in
a homogeneous medium, the Yee scheme su↵ers from seri-
ous accuracy degradation when used to model curved ob-
jects or when treating material interfaces. Indeed, the so-
called stair-casing approximation may lead to local zeroth-
order and at most first-order accuracy; it may also pro-
duce locally non-convergent results [6]. Furthermore, for
Maxwell’s equations with discontinuous coe�cients, the
Yee scheme might not be able to capture the possible dis-
continuity of the solution across the interfaces [6].

Thus, with all its above-listed features, the DGTD
method seems to be well suited to the numerical simu-
lation of complex time-domain ectromagntic wave propa-
gation problems. As a matter of fact, the DGTD method
for solving the time domain Maxwell equations is increas-
ingly adopted by several physics communities. Concerning
nanophotonics, unstructured mesh based DGTD methods
have been developed and have demonstrated their poten-
tialities for being considered as viable alternatives to the
FDTD method. The most remarkable achievements in the
nanophotonics domain since 2009 are due to Busch et al.
Busch [7]-[8]-[9] has been at the origin of seminal works on
the development and application of the DGTD method in
this domain. These works not only deal with the exten-
sion of the DGTD method with regards to the complex
material models and source settings required by applica-
tions relevant to nanophotonics and plasmonics [10]-[11]-
[2], but also to core contributions aiming at improving the
accuracy and the e�ciency of the proposed DGTD solvers
[12]-[13]-[14]-[15].

Noteworthy, all these studies adopt a di↵usive DGTD
formulation based on upwind numerical fluxes. We have
recently adapted the non-dissipative DGTD method ini-
tially introduced in [16] to deal with various local disper-
sion models for metallic nanostructures. An ADE formu-
lation has been adopted. The resulting ADE-based DGTD
method is detailed in [17] where we also study the stability

and a priori convergence of the method. We first consid-
ered the case of Drude and Drude-Lorentz models and,
further extend the proposed ADE-based DGTD method
to be able to deal with a generalized dispersion model
in which we make use of a Padé approximant to fit an
experimental permittivity function. The numerical treat-
ment of such a generalized dispersion model is also pre-
sented in [17]. The possibility of using non-conforming hy-
brid structured/unstructured (cubic/tetrahedral) meshes
in the nanophotonics context has been considered in [18].
More recently, a high order di↵usive DGTDmethod formu-
lated on curvilinear tetrahedral meshes has been studied
in [19].

1.3. Objectives of the present study

In most of the existing works on the development of
high order DGTD methods for the numerical modeling of
light/matter interactions on the nanoscale, the formula-
tion of the method is derived assuming a uniform distribu-
tion of the polynomial order to the cells of the underlying
mesh. However, in the case of a mesh showing large vari-
ations in cell size, the time step imposed by the smallest
cells can be a serious hindrance when trying to exploit high
approximation orders. Indeed, a potentially large part of
the CPU time is spent in the update of the physical field
inside small cells where high polynomial orders might not
be essential, while they are necessary in the larger cells.

To overcome this limitation, several strategies can be
considered. The first one consists in replacing the explicit
scheme by an implicit scheme. This, however, is at the
expense of the resolution of a large linear system at each
time step [20]. In [21], the authors consider a hybrid for-
mulation, where only the smallest cells are treated via an
implicit scheme, while keeping an explicit time integra-
tion for the rest of the tesselation, thus limiting the time
step constraint. Although this strategy provides very in-
teresting results in terms of CPU speedup, maintaining
high order time integration is di�cult. Another possiblity
is to exploit local time stepping combined to an explicit
scheme: based on the size of the elements, the mesh is di-
vided in regions, each of which being assigned an appropri-
ate timestep for an explicit time integration (see [22]-[23]-
[24]-[25]-[15]). As shown for example in [23], high order
convergence in time can be preserved with such explicit
local time stepping strategies. However, it seems di�cult
to ensure a good load balance in the case of a parallel im-
plementation, given that the natural repartition is based
on a time step criterion, instead of a parallel-related one.

A complementary strategy which is considered here re-
lies on the use of non-uniform distribution of the polyno-
mial order in the framework of a global time step DGDT
method. By imposing low orders in small cells and high
orders in large cells, it is possible to significantly allevi-
ate both the global number of degrees of freedom and the
time step restriction with a minimal impact on the method
accuracy. Strategies exploiting locally adaptive (LA) for-
mulations usually combine both h- and p-adaptivity in or-
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der to concentrate the computational e↵ort in the areas of
high field variations. Here, the adopted point of view is
quite di↵erent: starting from a given mesh and an uniform
distribution of the polynomial order P

k

, the LA strategy
exploits all the polynomial orders P

p

with p  k to obtain a
solution of similar accuracy with a reduced computational
cost.

In section 2, a DGTD formulation is presented that ac-
count for a variable polynomial order. In section 3, the re-
sulting DGTD is tested for convergence, and an extended
performance study is provided, both for sequential and
parallel executions. Finally, in section 6, the CPU gains
are evaluated on two configurations relevant to nanopho-
tonics.

2. DGTD formulation

2.1. Problem statement

For the sake of simplicity, we consider the non-dispersive
time-domain Maxwell equations for this presentation. The
extension of the formulation presented below to the case
of a local dispersion model is straightforward. The contin-
uous, normalized Maxwell system is

µ
r

@H

@t
= �r⇥E,

"
r

@E

@t
= r⇥H� J.

(1)

2.2. Notations

Let ⌦ ⇢ R3 be a bounded convex domain, and n the
unitary outward normal to its boundary @⌦. Let ⌦
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where P
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) is the space of polynomials of maximum de-
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One now seeks the approximations E
h

and H
h

of E and
H in space V

h

. The contribution of each cell is therefore
defined as E

i

= E
h

T

i

. Here, one must notice that, for a
3D system, E
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is actually a vector that has 3 components
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each of which is locally expanded on the chosen set of basis
functions
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Therefore, for practical purpose, one defines three vectors
of d
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as well as the following 3d
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2.3. Discretization in space

We consider the system of time-domain Maxwell equa-
tions (1) with no current source term. The starting point
is the following weak formulation
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We recall that the i subscript refers to the cell T
i

of the un-
derlying tetrahedral mesh where a P

p

polynomial approxi-
mation of the field components is used. Exploiting the lo-
cal field expansions from (2), one can cast the first volumic
integral of the above system as the following matrix-vector
products
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In a similar fashion, the curl integral can be cast as
Z

T

i
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Here, the three sti↵ness matrices were introduced

(Kv

i

)
jk

=

Z

T

i

�
ij

@�
ik

@v
for v 2 {x, y, z} ,

with (j, k) 2 J1, d
i

K2. From the latter definition, we define
the general 3d

i

⇥ d
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sti↵ness matrix that will be used in
the final system
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The flux integral, however, must undergo a di↵erent treat-
ment. For the sake of simplicity, the centered flux is con-
sidered, the generalization to other fluxes being straight-
forward. Consider a neighbor cell T

l

of T
i

with a P
m

poly-
nomial expansion. The flux integral on their common face
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side for the x component is
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Consider the following expansions for Hy
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Plugging (4) in (3) leads to
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We introduce the flux or interface matrices
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The derivation (3) easily extends to the other components,
as well as other flux choices. We recall one of the most
spread flux formulation
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where {A}
il

= A
i

+A
l

is twice the mean value of A across
the interface, JAK

il

= A
l

� A
i

is the jump of A across the
interface, and Y and Z are respectively the inductance and
impedance of the considered materials. ↵ 2 [0, 1] is a tun-
able parameter that allows to vary between the centered
flux for ↵ = 0, to a fully upwind flux for ↵ = 1.

To summarize, the flux integral is cut in two parts: (i)
the part corresponding to local information, which is in-
tegrated via the regular flux matrix S

il

, and (ii) the part
corresponding to the neighbor information, which is inte-
grated via the S⇤

il

matrix. In the case of a conformous
interface (i.e. p = m), S⇤
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= S
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. However, for a P
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is a non-conforming rectangular matrix of
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2

). From
this point, the remaining of the derivation is similar to
the standard case (see for example [19]). The final semi-
discrete scheme is
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with the following definitions
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2.4. Time integration

In this work, we use the optimized 14 stages fourth-
order low-storage Runge-Kutta scheme developped by Nie-
gemann et al. [14], hereafter designated as LSRK4 scheme.
Its stability region is optimized for the upwind DG eigen-
spectrum, and is thus an e�cient time-integration scheme
for our needs. The reader can refer to the aforementionned
reference for more details.
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3. Numerical study of the h-convergence

In this section, we perform a preliminary validation
of the LA-DGTD (Locally Adaptive DGTD) method by
studying its numerical convergence. For this purpose, we
consider the test problem of the propagation of an eigen-
mode in a cubic PEC cavity. Four meshes of increasing
refinement, M1 to M4, are used. Unless stated otherwise,
a fully upwind flux is used, coupled to the LSRK4 time
scheme. In the present case, the used meshes are uniform,
and the mesh cells all have the same size. To begin, we sep-
arate the computational domain into two vertical stripes
of equal sizes, with di↵erent values of the polynomial order
(see figure 1(a)). The obtained results are given in table
1. As expected for a P

k

�P
l

configuration, the asymptotic
h-convergence order is min(k, l) + 1.

PlPk

(a) Test configuration for
h-convergence

Pk PlPk Pl

(b) Influence of the num-
ber of non-conformeous in-
terfaces

P3 P4P1 P2

(c) Influence of the type
of non-conformeous inter-
faces

Figure 1: Order distribution for the h-convergence valida-
tion. To test convergence, the domain is arbitrarily cut in two halves,
each part receiving a di↵erent order (figure 1(a)). In order to assess
the impact of non-conformeous interfaces, the domain is cut in four
equal stripes, thus doubling the number of P

k

� P
l

faces while keep-
ing the same number of tetrahedron per order (figure 1(a)). Another
test is conducted by setting a di↵erent order in each quarter (figure
1(c)).

In order to evaluate the impact of non-conforming in-
terfaces, the computational domain is now distributed into
four equal size stripes (see figure 1(b)). Hence, the total
number of tetrahedra for each value of the interpolation
order remains the same as in figure 1(a), but the number
of interfaces is twice as high. As can be seen in table 1, for
the coarsest meshes the higher amount of non-conforming
faces yields a slightly higher (but still acceptable) L2 error.
However, this error overhead vanishes for refined meshes.
In a last numerical test, another four stripes division of the
computational domain is used, where each part receives a
di↵erent order (see figure 1(c)). As in the previous cases,

and since all the cells are of same size, the numerical error
is driven by the lowest approximation order.

4. Order distribution strategy

Starting with a given unstructured mesh, it is clear
that the distribution of the interpolation order to the mesh
cells will have a major impact on the obtained accuracy,
as well as on the time required to obtain the numerical
solution. Let us assume that the solution is obtained on
the given mesh with a homogeneous polynomial order P

k

.
The point is here to see how, with a good distribution
of polynomial orders P

l

with l  k, a solution of similar
accuracy can be obtained at a lower computational e↵ort.
At first glance, it seems that configurations including small
geometrical details, or small gaps between two structures,
could benefit from such a strategy. For this reason, for any
given mesh, we define the following quantity

h =
h
max

h
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,

which represents the heterogeneity in terms of cell size of
the mesh. In the following, �t

i
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corresponding to the cell T

i

, computed following the for-
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represents the e↵ective time step ob-
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is discretized with a P
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polynomial expan-
sion
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where �t
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,
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where V
T

i

and A
T

i

are respectively the volume and
the area of cell T

i

, and c
p

is an order-dependant constant.
The normalized time step includes a rough estimate of the
computational charge induced by the polynomial order,
and is defined as
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=
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i

n(p)
=

CFL(p)�t
i

n(p)
,

where n(p) is the number of degrees of freedom inside a
P
p

cell. Finally, we define p
min

and p
max

the minimal
and maximal user-authorized orders in the mesh. We also
add the following constraint: non-conforming faces cannot
connect cells with an order jump higher than one (the
allowed configurations are presented on figure 2). Indeed,
it is preferable to restrain the number and size of matrices
in memory in order to improve data locality. Additionaly,
it leads to a robust distribution strategy, as will be shown
hereafter.

The first step of the algorithm consists in computing
the local time steps �t

i

and sorting them by ascending
order. The cell with the smaller �t receives order p

min

and we compute its normalized time step �t pmin

1

. Two
temporary variables, p

loc

and �t
loc

, respectively store the
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Table 1: Error levels and convergence rates of the cubic cav-
ity case for mixed orders of approximation on meshes of increasing
refinement. In the case of mixed orders P

k

�P
l

, 1 refers to a domain
cut in two halves (see figure 1(a)), and 2 to a domain cut in four
stripes (see figure 1(b)). The case P1 � P4 corresponds to a domain
cut in four quarters, as depicted on figure 1(c). All simulations were
run with upwind fluxes and LSRK4 time integration.

M1 M2

kE�E
h

k r kE�E
h

k r

P1 – 2.87⇥ 10�1 – 6.05⇥ 10�2 2.25

P2 – 1.47⇥ 10�2 – 1.36⇥ 10�3 3.43

P3 – 9.24⇥ 10�4 – 5.87⇥ 10�5 3.98

P4 – 9.45⇥ 10�5 – 3.11⇥ 10�6 4.92

P1 � P2
1 2.65⇥ 10�1 – 3.38⇥ 10�2 2.97
2 2.07⇥ 10�1 – 3.55⇥ 10�2 2.54

P2 � P3
1 8.50⇥ 10�3 – 9.21⇥ 10�4 3.21
2 8.70⇥ 10�3 – 9.16⇥ 10�4 3.25

P3 � P4
1 6.73⇥ 10�4 – 4.41⇥ 10�5 3.93
2 6.81⇥ 10�4 – 4.47⇥ 10�5 3.93

P1 � P4 – 2.65⇥ 10�1 – 3.38⇥ 10�2 2.97

M3 M4

kE�E
h

k r kE�E
h

k r

P1 – 8.66⇥ 10�3 2.80 1.46⇥ 10�3 2.57

P2 – 1.75⇥ 10�4 2.96 2.19⇥ 10�5 3.00

P3 – 3.72⇥ 10�6 3.98 2.33⇥ 10�7 4.00

P4 – 1.98⇥ 10�7 3.97 1.15⇥ 10�8 4.11

P1 � P2
1 6.15⇥ 10�3 2.46 1.42⇥ 10�3 2.12
2 6.30⇥ 10�3 2.49 1.43⇥ 10�3 2.14

P2 � P3
1 1.18⇥ 10�4 2.96 1.48⇥ 10�5 3.00
2 1.17⇥ 10�4 2.97 1.48⇥ 10�5 2.98

P3 � P4
1 2.80⇥ 10�6 3.98 1.76⇥ 10�7 4.00
2 2.85⇥ 10�6 3.97 1.79⇥ 10�7 3.99

P1 � P4 – 6.15⇥ 10�3 2.46 1.42⇥ 10�3 2.12

Figure 2: Authorized interfaces in the local order of approxi-
mation implementation. Order jumps are limited to one, yielding
three types of interfaces for (p

min

, p
max

) = (1, 4).

current order assigned to the cells and the current restric-
tive normalized time step. For a given cell, the normalized
time step for increased order p

loc

+ 1 is compared to the
current limiting normalized time step �t

loc

. In the case
where the first is higher than the second, switching to the
higher order is assumed to have a limited impact on the
final time step. Hence, p

loc

is increased by one, and �t
loc

is updated. The procedure is summarized in algorithm 1,
whose performances are assessed in next section.

5. Order distribution strategy

5.1. Single-core speedup

To evaluate the gains provided by the LA-DGDT strat-
egy, we consider the three meshes M1, M2 and M3 shown
on figure 3. These meshes are obtained by the tesselation
of a cubic PEC cavity corresponding to the test problem
considered previously, a local refinement being imposed on
one side of the box. The characteristics of these meshes are
summarized in table 2. For each mesh, the cavity mode is
computed sequentially for 5 periods. As before, CPU time
and maximum L2 error are stored. The results obtained
for homogeneous and mixed orders are presented in table
3.

Table 2: Characteristics of the locally refined cubic cavity
meshes. n

s

is the number of vertices, n
t

the number of tetrahedrons
and r is the ratio between the largest and the smallest cells in the
mesh.

M1 M2 M3

n
s

427 1429 11975

n
t

1513 5042 42652

r 10.2 100.9 1000.8

First, we note that the memory occupation has not
been optimized in the present implementation of the LA-
DGTD strategy. Hence, we can expect that mixed order
computations will require the same memory occupation
than homogeneous order ones. For mixed order solutions,
the speedup of a P

k

�P
l

computation is obtained by com-
paring its CPU time with that of a full P

max(k,l)

com-
putation. For the three considered meshes, mixing two
polynomial orders leads to speedups ranging from 1.5 to
2.2. One can remark that there exists a relation between
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Algorithm 1 Polynomial order distribution

1: for i 1, n
t

do . Compute timestep for each cell
2: Compute �t

i

3: end for

4: Sort cells by ascending �t
i

5: p(1) p
min

6: �t
loc

 �t pmin

1

7: p
loc

 p
min

8: for i 2, n
t

do . Go over cells by ascending order of �t
i

9: if p
loc

+ 1 > p
max

then . Check that we do not exceed p
max

10: p(i) p
max

11: else
12: Compute �t ploc

+1

i

13: if �t ploc

+1

i

> �t
loc

then . Check if it is worth changing order
14: �t

loc

 �t ploc

+1

i

. Update the limiting timestep
15: p(i) p

loc

+ 1
16: p

loc

 p
loc

+ 1 . Update the current order
17: else
18: p(i) p

loc

19: end if
20: end if
21: end for

(a) M1, r = 10 (b) M2, r = 100

(c) M3, r = 1000

Figure 3: Meshes for the cubic cavity mode with local refine-
ment on one side.

r and the obtained speedup. An interesting point is that
the obtained L2-errors are less than 1% higher than those
of the homogeneous polynomial order computations. Mix-
ing three orders does not provide any improvement for
the M1 mesh, i.e. the distribution algorithm did not map
the highest polynomial order to a cell of the mesh. This
can be easily understood by looking at the compared �t
distribution of the three meshes (see figure 4). Since the
algorithm imposes the lowest order for the cell of smallest
�t, a certain range for the �t is required to exploit the
highest polynomial orders. For example, the P

1

� P
4

dis-
tribution is shown on the same figure for mesh M3. For
meshes M2 and M3, however, very interesting gains are ob-
tained, with speedups ranging from 3 to 4.5. In this case,
it seems that a higher r implies a higher benefit from the
LA-DGTD strategy based on the distribution algorithm 1.
Finally, mixing polynomial orders 1 to 4 roughly provides
a speedup of 6, while increasing the global L2 error by less
than 1%.

5.2. Parallel load balancing

Parallel computing is a mandatory path for reducing
the cost of simulations of complex electromagnetic wave
propagation problems such as those pertaining to nanopho-
tonics and plasmonics. In this section, we present the re-
sults obtained when trying to balance the computational
load for a parallel implementation of the LA-DGTDmethod.
The MeTiS [26] graph partitioning tool is used to split
the computational domain in subdomains, each of which
is then mapped on a core of parallel system. The com-
munications between the cores are handled via the MPI
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(a) �t distribution for meshes M1, M2 and M3
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(b) Order distribution for mesh M3

Figure 4: Compared time-step distribution in M1, M2 and
M3 (left), and order distribution for the P1 �P4 case on M3 (right).

standard. At the end of each computation, each CPU core
returns its own CPU time, excluding the time spent in the
MPI communication routines. Hence, a good load balance
between the cores will manifest as nearly-identical CPU
times for all cores. To reach this result, the partitioning
algorithms of the MeTiS package can be provided with a
weight w

i

for each cell T
i

. During the partitioning, this
weight is taken into account so that the total weight of
the various subdomains are as close as possible. Here, the
following definition of the weight is used

w
i

= n(p
i

) +
X

l2V
i

max(s(p
i

), s(p
l

)) (11)

This weighted partitioning is applied to the test problem
considered in section 5.1 using the M3 mesh and running
100 time iterations. Given the small number of tetrahe-
dra in the mesh, the study is limited to 4 and 8 subdo-
mains partitions. For a simpler comparison between the
two partitionings, the relative deviation � (in %) to the
mean value is computed for each core. First, the e↵ect of
the weighting is assessed by comparing relative deviations
obtained from weighted and non-weighted partitions. The
results for P

1

� P
4

approximation with 4 and 8 CPUs are
shown on figure 5. As can be seen, the use of a weight-
ing pattern is mandatory to preserve good parallel per-
formances. For both 4 and 8 cores, applying the weighted
partitionning results in a maximal relative imbalance lower

than 5%. To further explore the behavior of the algorithm
in parallel, the CPU load balances with 4 and 8 cores are
re-plotted with matching scales. As expected, increasing
the number of cores also increases the maximal imbalance
between cores, though in reasonable bounds.

6. Plasmonic simulations

6.1. Plasmonic nanolens

This section presents the computation of the field en-
hancement obtained in a plamonic nanolens device. To
overcome the limitation of the di↵raction limit, it is pos-
sible to exploit the focusing e↵ect provided by coupled
surface plasmons [27]. A typical nanolens is composed of
a chain of metallic nanoparticles (nanospheres being the
most common) of decreasing size, aligned with the polar-
ization direction of the incident field (see figure 6). When
the nanospheres are of significantly di↵erent sizes, the lo-
cal field enhancement of the first particle is not perturbed
by the second one because of its small relative size. As a
result, the locally enhanced field of the first particle acts as
an incident field for the second particle, resulting in a sec-
ond enhancement, and so on. Eventually, the strongest en-
hancement is obtained in the gap between the two smaller
particles [28].

Here, we consider a nanolens made of three gold spheres.
The geometry is taken from [28]. The respective radii are
45, 15 and 4.5 nanometers, while the spacings between the
sphere surfaces are respectively 4.5 and 1.5 nanometers.
Gold is described by a Drude model of parameters "1 =
3.7362, !

d

= 1.387⇥ 107 GHz and �
d

= 4.515⇥ 104 GHz.
The Drude model is a basic model used to describe the
response of free electrons in metal in the THz regime [29].
The nanolens is illuminated via a total-field/scattered-field
(TF/SF) interface, with a wideband plane wave of central
frequency 700 THz, whose polarization is aligned with the
natural axis of the lens (here, the x+ direction). The
domain is terminated with a complex frequency-shifted
perfectly-matched layer (CFS-PML) [30]. Finally, a probe
point is set at half distance between each pair of spheres.
At these positions, the discrete Fourier transform of the

field is computed, and the field enhancement g =
| ˆE

x

|
| ˆE

i

| is

deduced. To obtain a proper resolution of the geometry,
very small elements must be used on the surface of the
smallest sphere, as well as in the smallest gap, while the
rest of the geometry (largest sphere, vacuum and PMLs)
are meshed with much coarser elements (see mesh on fig-
ure 7). As a result, the r factor is here superior to 800.
To obtain convergence with an homogeneous order over
the whole mesh, P

3

approximation is required. The cor-
responding numerical solution is obtained in 49 hours 48
minutes on 16 cores, and is taken as a reference. To exploit
the LA-DGTD method, P

1

to P
3

approximations are used.
The order distribution with respect to time step is shown
on figure 8(a). To further understand the behavior of the
repartition algorithm, a visual representation is added on
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� (%)
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Figure 5: Weighted against non-weighted parallel load bal-
ance on 4 and 8 cores with M3 mesh. Each bar corresponds to
the relative imbalance of a single CPU to the average value computed
over all processors. As can be seen, the weighting restores a good
balance of the CPU loads, with no relative imbalance exceeding 5%.

Figure 6: Nanolens composed of three metallic spheres.

Figure 7: Mesh setup for a metallic nanolens. The gray cells
correspond to the metallic spheres, the blue cells to vacuum, while
the red cells constitute the PML region. For this mesh, the ratio r
is above 400.

figure 8(b). As expected, first order polynomials are as-
signed to the elements lying on the surface of the smallest
sphere, while second order approximation is used in its
vicinity and for the surface of the second sphere. The rest
of the mesh is discretized with third order polynomials.

The computed field enhancements are presented on fig-
ure 9. As stated in the litterature, particularly intense
fields are obtained between the two smallest sphere, where
enhancements up to 700 are observed. The P

1

�P
3

solution
is obtained in 19 hours and 17 minutes on 16 cores, hence
providing a speedup of 2.6 over the full P

3

solution. The
observed error over the frequency range of interest is less
than 1 %. Field maps of the E

y

component are presented
on figure 10 for P

1

, P
1

�P
3

and P
3

polynomial approxima-
tions. As expected, the field intensity between the spheres
is underestimated for the full P

1

computation, while they
are almost identical for P

1

� P
3

and P
3

approximations.

6.2. Bowtie nanoantenna

As a second application, we consider here the compu-
tation of the extinction cross section of a metallic bowtie
nanoantenna. These structures are actively studied for
the very strong field enhancement they provide between
the tips of the two triangular nanoparticles (see figure 11),
which is known to be inversely proportionnal to the size of
the gap. Hence, bowtie nanoantennas are good candidates
for surface-enhanced Raman spectroscopy (SERS) appli-
cations [31]. Recent advances in lithography techniques
allowed the creation of structures with gaps as small as
3 nm [32], while the typical size of the full structure can
get close to 200 nm. Additionally, realistic geometries of
such antennas include small roundings at the edges and
tips, whose typical size is between a few to a few tens of
nanometers [33].

In the present case, we consider a pair of 10 nm thick,
equilateral prisms of edge length 100 nm, with a spacing
gap of 3 nm. The rounding radius is 2 nm, and is uniform

9



0 20 40 60 80 100

10�10

10�9

10�8

P1 P2 P3

% of total tetrahedra

c 0
�
t

(a) Order distribution for the nanolens mesh
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Figure 8: Polynomial order repartition for the nanolens mesh
with respect to time-step (top), and geometrical repartition (bottom)
for the P1 � P3 case. The red elements correspond to P1 approxima-
tion, the green ones to P2, and the gray ones to P3.
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Figure 9: Field enhancement in the vicinity of the smallest
sphere of a self-similar nanolens obtained with P1, P3 and P1�P3

approximations. Less than 1 % of relative error is observed between
full P3 and P1 � P3 computations, for a speedup factor of 2.6.

(a) P1

(b) P1 � P3

(c) P3

�15 0 15

Figure 10: E
y

field map in the nanolens device at t = 10 fs.
For the three views, the field values are scaled to [�15, 15].
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Figure 11: Bowtie nanoantenna with rounded edges.

Figure 12: Mesh setup for a bowtie nanoantenna. The gray
cells correspond to the nanoantenna, the blue cells to vacuum, while
the red cells constitute the PML region. For this mesh, the ratio r
is close to 275.

for all edges and tips. The considered material is gold,
described by a Drude model of parameters "1 = 3.7362,
!
d

= 1.387⇥ 107 GHz and �
d

= 4.515⇥ 104 GHz. The
nanoantenna is enclosed in a TF/SF surface, and the do-
main is terminated by a layer of CFS-PML tetrahedra.
As can be seen on figure 12, the typical setup for such
computations requires very small elements (geometrical
details of the nanoantenna) as well as very large ones (vac-
uum and PML cells), and could therefore make good use
of the LA-DGTD formulation presented before. To com-
pute the exctinction cross-section, the bowtie is illumi-
nated from above with a wide-band plane wave of central
frequency 500 THz, polarized along the major axis of the
antenna. With an homogeneous polynomial order on the
whole mesh, convergence is obtained for a P

3

approxima-
tion, requiring 30 hours and 37 minutes on 16 cores. This is
taken as a reference for the LA-DGTD strategy, for which
P
1

to P
3

approximations are used. The repartition of or-
ders with regards to the time-step is presented on figure 13,
along with a visual representation of the order selection in
the mesh. As expected, the first order is attributed to the
small cells of the edges and tips, which are then enclosed
into a second layer of P

2

elements. All the remaining cells
(not represented) receive a third order interpolation.

The computed exctinction cross sections are presented
on figure 14. A single very large resonance is observed
around 418 THz. As can be seen, the P

1

� P
3

solution
properly fits the full P

3

solution, with a deviation of less

0 20 40 60 80 100

10�9

10�8

P1 P2 P3

% of total tetrahedra

c 0
�
t

(a) Order distribution for the bowtie mesh

(b) Order selection in the vicinity of the an-
tenna

Figure 13: Polynomial order repartition for the bowtie mesh
with respect to time-step (top), and geometrical repartition (bottom)
for the P1 � P3 case. The white elements correspond to P1 approxi-
mation, while the purple cells are second-order. The remaining cells
(not represented) receive third order approximation.

than 2 %. For further comparison, the full P
1

solution is
also plotted. In terms of performance, the P

1

�P
3

solution
is obtained in 13 hours and 59 minutes on 16 cores, hence
yielding a 2.2 speedup factor, which is lower than what was
observed in section 6.1. The di↵erence can be attributed to
the lower proportion of high-order (P

3

) elements compared
to low-order ones (less than 20 % of P

3

elements here,
against 40 % for the nanolens case). However, this remains
an appreciable gain for a solution of similar accuracy. As
an illustration, a field map of |E| is plotted on figure 15
for P

1

� P
3

approximation.

7. Conclusion

In this paper, the use of local polynomial approxima-
tion in the DGTD method is presented. The convergence
of the algorithm is demonstrated on a standard PEC cav-
ity case. Then, an order repartition algorithm is proposed
that proved to be e�cient, both for textbook and real-
istic nanophotonics-related cases. Although the obtained
speedups are lower for realistic cases (between 2 and 2.6 for
P
1

�P
3

) than for academic cases (up to 4.5 for P
1

�P
3

and
6.15 for P

1

�P
4

), the LA-DGTD strategy represents an in-
teresting gain in speed for long time simulations. However,
the repartition algorithm being based on the time step, it
also implicitely relies on a basic knowledge of the physical
behavior of the computed system (the preliminary grasp
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(a) Lateral view

(b) Top view

0 10

Figure 15: |E| field map in the nanolens device at t = 12.3 fs, obtained with a P1 � P3 approximation. The field values are scaled to
[0, 10].
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Figure 14: Extinction cross-section of the bowtie nanoan-
tenna obtained with P1, P3 and P1 � P3 approximations. Less than
2 % of relative error is observed between full P3 and P1 �P3 compu-
tations, for a speedup factor superior to 2.

of the positions of intense fields, basically). A good rem-
edy would consist in a coupling of the algorithm with an
a posteriori error estimate, in order to dynamically adapt
the polynomial order in the mesh.
Acknowledgements. The authors gratefully acknowl-
edge support from the Direction Générale de l’Armement
(DGA) which partially supports the doctoral thesis of Jona-
than Viquerat.

References

[1] R. Ulbricht, E. Hendry, J. Shan, T. Heinz, M. Bonn, Carrier dy-
namics in semiconductors studied with time-resolved terahertz
spectroscopy, Rev. Mod. Phys. 83 (2) (2011) 543–586.

[2] C. Wol↵, R. Rodriguez-Oliveros, K. Busch, Simple magneto-
optic transition metal models for timedomain simulations, Op-
tics Express 21 (10) (2013) 12022–12037.

[3] F. J. G. de Abajo, Graphene nanophotonics, Science - Applied
physics 339 (2013) 917–918.

[4] A. Moreau, C. Ciraci, D. Smith, Impact of nonlocal response on
metallodielectric multilayers and optical patch antennas, Phys.
Rev. B 87 (045401-1–045401-11) (2013) 6795–6820.

[5] A. Taflove, S. Hagness, Computational electrodynamics: the
finite-di↵erence time-domain method - 3rd ed., Artech House
Publishers, 2005.

[6] A. Ditkowski, K. Dridi, J. Hesthaven, Convergent cartesian
grid methods for Maxwell’s equations in complex geometries,
J. Comput. Phys. 170 (1) (2001) 39–80.

[7] J. Niegemann, M. König, K. Stannigel, K. Busch,
Higher-order time-domain methods for the analysis of
nano-photonic systems, Photonics and Nanostructures
- Fundamentals and Applications 7 (1) (2009) 2–11.
doi:http://dx.doi.org/10.1016/j.photonics.2008.08.006.

[8] K. Stannigel, M. Koenig, J. Niegemann, K. Busch, Discontinu-
ous Galerkin time-domain computations of metallic nanostruc-
tures, Optics Express 17 (2009) 14934–14947.

[9] K. Busch, M. König, J. Niegemann, Discontinuous Galerkin
methods in nanophotonics, Laser and Photonics Reviews 5
(2011) 1–37.

[10] M. König, K. Busch, J. Niegemann, The Discontinu-
ous Galerkin Time-Domain method for Maxwells equations
with anisotropic materials, Photonics and Nanostructures
- Fundamentals and Applications 8 (4) (2010) 303–309.
doi:http://dx.doi.org/10.1016/j.photonics.2010.04.001.

[11] C. Matyssek, J. Niegemann, W. Hergert, K. Busch, Com-
puting electron energy loss spectra with the Discontinuous

Galerkin Time-Domain method, Photonics and Nanostruc-
tures - Fundamentals and Applications 9 (4) (2011) 367–373.
doi:http://dx.doi.org/10.1016/j.photonics.2011.04.003.

[12] J. Niegemann, M. König, C. Prohm, R. Diehl, K. Busch, Us-
ing curved elements in the discontinuous Galerkin time-domain
approach, in: D. Chigrin (Ed.), 3rd International Workshop
on Theoretical and Computational Nano-Photonics (TaCoNa-
Photonics 2010), Vol. 1291 of AIP Conf. Proc., AIP, Bad Hon-
nef, Germany, 2010, pp. 76–78.

[13] R. Diehl, K. Busch, J. Niegemann, Comparison of low-storage
Runge-Kutta schemes for discontinuous Galerkin time-domain
simulations of Maxwell’s equations, J. Comp. Theor. Nanosc. 7
(2010) 1572.

[14] J. Niegemann, R. Diehl, K. Busch, E�cient low-
storage Runge-Kutta schemes with optimized stabil-
ity regions, J. Comput. Phys. 231 (2) (2012) 364–372.
doi:http://dx.doi.org/10.1016/j.jcp.2011.09.003.

[15] A. Demirel, J. Niegemann, K. Busch, M. Hochbruck,
E�cient multiple time-stepping algorithms of higher
order, J. Comput. Phys. 285 (2015) 133–148.
doi:http://dx.doi.org/10.1016/j.jcp.2015.01.018.

[16] L. Fezoui, S. Lanteri, S. Lohrengel, S. Piperno, Convergence
and stability of a discontinuous Galerkin time-domain method
for the 3D heterogeneous Maxwell equations on unstructured
meshes, ESAIM: Math. Model. Numer. Anal. 39 (6) (2005)
1149–1176.

[17] J. Viquerat, S. Lanteri, C. Scheid, Theoretical and numerical
analysis of local dispersion models coupled to a discontinuous
galerkin time-domain method for Maxwell’s equations, Tech.
Rep. 8298, INRIA (2013).
URL https://hal.inria.fr/hal-00819758
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Table 3: CPU times, memory consumption and error levels for mixed orders of approximation on locally refined meshes.
The order repartition was obtained via the procedure described in section 4. All simulations were run with upwind fluxes and LSRK4 time
integration.

M1 M2 M3

P1

CPU (s) 1.77 48.7 6030
Mem. (MB) 14.1 22.1 107.3
kE�E

h

k 3.38⇥ 10�2 3.59⇥ 10�2 3.87⇥ 10�2

P2 �
6.50 180 22460
17.8 34.4 211

3.68⇥ 10�3 3.71⇥ 10�3 3.82⇥ 10�3

P3 �
21.8 611 90020
23.9 54.6 382

2.14⇥ 10�4 2.39⇥ 10�4 2.53⇥ 10�4

P4 �
73.8 2106 228220
32.9 84.7 635

1.42⇥ 10�5 1.76⇥ 10�5 1.97⇥ 10�5

P1 � P2

CPU (s) 3.84 101 15000
Speedup 1.69 1.78 1.50

Mem. (MB) 17.8 34.4 211
Tet. ratios 0.18, 0.82 0.29, 0.71 0.33, 0.67
kE�E

h

k 3.84⇥ 10�3 3.71⇥ 10�3 3.82⇥ 10�3

P2 � P3 �

14.3 372 40470
1.52 1.64 2.22
23.9 54.6 382

0.25, 0.75 0.38, 0.62 0.43, 0.57
2.38⇥ 10�4 2.39⇥ 10�4 2.53⇥ 10�4

P3 � P4 �

49.2 1390 130730
1.5 1.51 1.74
33.0 84.8 635

0.17, 0.83 0.28, 0.72 0.31, 0.69
1.42⇥ 10�5 1.76⇥ 10�5 1.97⇥ 10�5

P1 � P2 � P3 � �

180 19890
3.39 4.53
54.7 392

0.29, 0.31, 0.40 0.33, 0.38, 0.29
2.39⇥ 10�4 2.53⇥ 10�4

P2 � P3 � P4 � �

695 64820
3.03 3.52
84.8 635

0.38, 0.22, 0.40 0.43, 0.27, 0.30
1.76⇥ 10�5 1.97⇥ 10�5

P1 � P2 � P3 � P4 � �

347 37130
6.07 6.15
84.9 636

0.29, 0.32, 0.13, 0.26 0.33, 0.38, 0.15, 0.14
1.80⇥ 10�5 1.99⇥ 10�5
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