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Abstract—This article proposes an online auto-tuning ap-
proach for computing kernels. Differently from existing online
auto-tuners, which regenerate code with long compilation chains
from the source to the binary code, our approach consists on
deploying auto-tuning directly at the level of machine code
generation. This allows auto-tuning to pay off in very short-
running applications. As a proof of concept, our approach
is demonstrated in two benchmarks, which execute during
hundreds of milliseconds to a few seconds only. In a CPU-
bound kernel, the speedups achieved are 1.10 to 1.58 in average
depending on the target micro-architecture, up to 2.53 in the
most favourable conditions (all run-time overheads included). In
a memory-bound kernel, less favourable to our runtime auto-
tuning optimizations, the speedups are 1.04 to 1.10 in average,
up to 1.30. Despite the short execution times of our benchmarks,
the overhead of our runtime auto-tuning is between 0.2 and 4.2 %
only of the total application execution times. By simulating the
CPU-bound application in 11 different CPUs, we showed that,
despite the clear hardware disadvantage of In-Order (IO) cores
vs. Out-of-Order (OOO) equivalent cores, online auto-tuning in
IO CPUs obtained an average speedup of 1.03 and an energy
efficiency improvement of 39 % over the SIMD reference in
OOO CPUs.

I. INTRODUCTION

High-performance general-purpose embedded processors
are evolving with unprecedented grow in complexity. ISA
back-compatibility and energy reduction techniques are among
the main reasons. For sake of software development cost,
applications do not necessarily run in only one target, one
binary code may run in processors from different manufacturers
and even in different cores inside a SoC.

Iterative optimization and auto-tuning have been used
to automatically find the best compiler optimizations and
algorithm implementations for a given source code and target
CPU. These tuning approaches have been used to address the
complexity of desktop- and server-class processors (DSCPs).
They show moderate to high performance gains compared to
non-iterative compilation, because default compiler options
are usually based on the performance of generic benchmarks
executed in representative hardware. Usually, such tools need
long space exploration times to find quasi-optimal machine
code. Previous work addressed auto-tuning at run-time [1],
[2], [3], [4], however previously proposed auto-tuners are only
adapted to applications that run for several minutes or even
hours, such as scientific or data center workload, in order to
pay off the space exploration overhead and overcome the costs
of static compilation.

While previous work proposed run-time auto-tuning in DSCP,
no work focused on general-purpose embedded-class processors.

In hand-held devices, applications usually run for a short
period of time, imposing a strong constraint to run-time auto-
tuning systems. In this scenario, a lightweight tool should
be employed to explore pre-identified code optimizations in
computing kernels.

We now explain our motivation for developing run-time
auto-tuning tools for general-purpose embedded processors:

Embedded core complexity. The complexity of high-
performance embedded processors is following the same trend
as the complexity of DSCP evolved in the last decades.
For example, current 64-bit embedded-class processors are
sufficiently complex to be deployed in micro-servers, eventually
providing a low-power alternative for data center computing.
In order to address this growing complexity and provide better
performance portability than static approaches, online auto-
tuning is a good option.

Heterogeneous multi/manycores. The power wall is affecting
embedded systems as they are affecting DSCP, although in a
smaller scale. Soon, dark silicon may also limit the powerable
area in embedded SoC. As a consequence, heterogeneous
clusters of cores coupled to accelerators are one of the solutions
being adopted in embedded SoC. In the long term, this
trend will exacerbate software challenges of extracting the
achievable computing performance from hardware, and run-
time approaches may be the only way to improve energy
efficiency [5].

ISA-compatible processor diversity. In the embedded mar-
ket, a basic core design can be implemented by different
manufacturers with different transistor technologies and also
varying configurations. Furthermore, customized pipelines
may be designed, yet being entirely ISA-compatible with
basic designs. This diversity of ISA-compatible embedded
processors facilitates software development, however because
of differences in pipeline implementations, static approaches
can only provide sub-optimal performance when migrating
between platforms. In addition, contrary to DSCP, in-order (IO)
cores are still a trend in high-performance embedded devices
because of low-power constraints, and they benefit more from
target-specific optimizations than out-of-order (OOO) pipelines.

Static auto-tuning performance is target-specific. In average,
the performance portability of statically auto-tuned code is
poor when migrating between different micro-architectures [6].
Hence, static auto-tuning is usually employed when the
execution environment is known. On the other hand, the trends
of hardware virtualization and software packages in general-
purpose processors result in applications underutilizing the



hardware resources, because they are compiled to generic
micro-architectures. Online auto-tuning can provide better
performance portability, as previous work showed in server-
class processors [4].

Ahead-of-time auto-tuning. In recent Android versions (5.0
and later), when an application is installed, native machine
code is generated from bytecode (ahead-of-time compilation).
The run-time auto-tuning approach proposed in this work could
be extended and integrated in such systems to auto-tune code
to the target core(s) or pre-profile and select the best candidates
to be evaluated in the run-time phase. Such approach would
allow auto-tuning to be performed in embedded applications
with acceptable ahead-of-time compilation overhead.

Interaction with other dynamic techniques. Some powerful
compiler optimizations depend both on input data and the target
micro-architecture. Constant propagation and loop unrolling
are two examples. The first can be addressed by dynamically
specializing the code, while the second is better addressed by
an auto-tuning tool. When input data and the target micro-
architecture are known only at program execution, which
is usually the case in hand-held devices, mixing those two
dynamic techniques can provide even higher performance
improvements. If static versioning is employed, it could easily
lead to code size explosion, which is not convenient to
embedded systems. Therefore, run-time code generation and
auto-tuning is needed.

This article proposes an online auto-tuning approach for
computing kernels in ARM processors. Existing online auto-
tuners regenerate code using complex compilation chains,
which are composed of several transformation stages to
transform source into machine code, leading to important
compilation times. Our approach consists on shortening the
auto-tuning process, by deploying auto-tuning directly at the
code generation level, through a run-time code generation tool,
called deGoal [7]. This allows auto-tuning to be successfully
employed in very short-running kernels, thanks to the low run-
time code generation overhead. Our very fast online auto-tuner
that can quickly explore the tuning space, and find code variants
that are efficient on the running micro-architecture. The tuning
space can have hundreds or even thousands of valid binary
code instances, and hand-held devices may execute applications
that last for a few seconds. Therefore, in this scenario online
auto-tuners have a very strong timing constraint. Our approach
address this problem with a two-phase online exploration and
by deploying auto-tuning directly at the level of machine code
generation.

The proposed approach is evaluated in a highly CPU-
bound (favorable) and a highly memory-bound (unfavorable)
application, to be representative of all applications between
these two extreme conditions. In ARM platforms, the two
benchmarks run during hundreds of milliseconds to only a few
seconds. In the favorable application, the average speedup is
1.26 going up to 1.79, all run-time overheads included.

One interesting question that this work tries to answer is if
run-time auto-tuning in simpler and energy-efficient cores can

obtain performance similar to statically compiled code run in
more complex and hence power-hungry cores. The aim is to
compare the energy and performance of IO and OOO designs,
with the same pipeline and cache configurations, except for
the dynamic scheduling capability. This study would tell us
at what extent run-time auto-tuning of code can replace OOO
execution. However, given that commercial IO designs have
less resources than OOO ones (e.g., smaller caches, branch
predictor tables), a simulation framework was employed to
perform this experiment. The simulation results show that
online micro-architectural adaption of code to IO pipelines can
in average outperform the hand vectorized references run in
similar OOO cores: despite the clear hardware disadvantage,
the proposed approach applied to the CPU-bound application
obtained an average speedup of 1.03 and an energy efficiency
improvement of 39 %.

II. MOTIVATIONAL EXAMPLE

In this section, we present an experiment supporting the
idea that performance achievements could be obtained by the
combined use of run-time code specialization and auto-tuning.
The experiment is carried out with a SIMD version of the
euclidean distance kernel implemented in the Streamcluster
benchmark, manually vectorized in the PARVEC [8] suite
(originally from the PARSEC 3.0 suite [9]). In the reference
kernel, the dimension of points is a run-time constant, but
given that it is part of the input set, compilers cannot optimize
it. In the following comparisons, we purposefully set the
dimension as a compile-time constant in the reference code
to let the compiler (gcc 4.9.3) generate highly optimized
kernels (up to 15 % of speedup over generic versions).
This ensures a fair comparison with auto-tuned codes. With
deGoal [7], in an offline setting, we generated various kernel
versions, by specializing the dimension and auto-tuning the
code implementation for an ARM Cortex-A8 and A9. The
auto-tuned parameters mainly affect loop unrolling and pre-
fetching instructions, and are detailed in Section III-A. Figure 1
shows the speedups of various generated kernels in the two
core configurations. By analyzing the results, we draw several
motivating ideas:

Code specialization and auto-tuning provide considerable
speedups even compared to statically specialized and manually
vectorized code: Auto-tuned kernel implementations obtained
speedups going up to 1.46 and 1.52 in the Cortex-A8 and A9,
respectively.

The best set of auto-tuned parameters and optimizations
varies from one core to another: In both cases in Figure 1, there
is a poor performance portability of the best configurations
between the two cores. For example, in Figure 1(b), when
the best kernel for the Cortex-A8 is executed in the A9, the
execution time increases by 55 %, compared to the best kernel
for the latter. Conversely, the best kernel for the A9 when
executed in the A8 increases the execution time by 21 %,
compared to the most performing kernel.

There is no performance correlation between the sets of
optimizations and input data: The main auto-tuned parameters



(a) 1-D projection of the auto-tuning exploration space. Dimension = 32

(b) 1-D projection of the auto-tuning exploration space. Dimension = 128

Fig. 1: Speedups of euclidean distance kernels statically generated with deGoal. The reference is a hand vectorized kernel
(from PARVEC) compiled with gcc 4.9.3 and highly optimized to each target core (-O3 and -mcpu options). Both deGoal
and reference kernels have the dimension of points specialized (i.e. set as a compile-time constant). The exploration space
goes beyond 600 configurations, but here it was zoomed in on the main region. The peak performance of each core is labeled.
Empty results in the exploration space correspond to configurations that could not generate code.

are related to loop unrolling, which depends on the dimension
of points (part of the input set). In consequence, the exploration
space and the optimal solution depend on an input parameter.
For example, the configurations of the top five peak perfor-
mances for the A8 in Figure 1(b) (configurations 30, 66, 102,
137 and 138) have poor performances in Figure 1(a) or simply
can not generate code with a smaller input set.

The results suggest that, although code specialization and
auto-tuning provide high performance improvements, they
should ideally be performed only when input data and target
core are known. In the released input sets for Streamcluster, the
dimensions are 32, 64 and 128, but the benchmark accepts any
integer value. Therefore, even if the target core(s) was (were)
known at compile time and the code was statically specialized,
auto-tuned and versioned, it could easily lead to code size
explosion.

We demonstrate in the following sections that the most
important feature of our approach is that it is fast enough to
enable the specialization of run-time constants combined with
online auto-tuning, allowing the generation of highly optimized
code for a target core, whose configuration may not be known
prior compilation.

The optimized kernels shown in this motivational example
were statically auto-tuned. The run-time auto-tuning approach
proposed in this work successfully found optimized kernels
whose performance is in average only 6 % away from the
performance of the best kernels statically found (all run-time
overheads included). It is worth observing that the auto-tuning
space has up to 630 valid versions: its exploration took several
hours per dimension and per platform, even if the benchmark
runs for a few seconds.

Fig. 2: Architecture of the run-time auto-tuning framework.

III. ONLINE AUTO-TUNING APPROACH

This section describes the approach of the proposed online
auto-tuner. Figure 2 presents the architecture of the framework
that auto-tunes a function at run time. At the beginning of the
program execution, a reference function (e.g., C compiled code)
is evaluated accordingly to a defined metric (execution time in
the experiments presented here). This reference function starts
as the active function. In parallel to the program execution,
the auto-tuning thread periodically wakes up and decides if
it is time to generate and evaluate a new version. The active
function is replaced by the new one, if its score is better. This
approach is applicable to computing kernels frequently called.

Sections III-A, III-B and III-C describe the implementation
of each block from the main loop of Figure 2.



A. Parametrizable function generator

New versions of functions are generated by a tool called
deGoal. It implements a domain specific language for run-time
code generation of computing kernels. It defines a pseudo-
assembly RISC-like language, which can be mixed with
standard C code. The machine code is only generated by
deGoal instructions, while the management of variables and
code generation decisions are implemented by deGoal pseudo-
instructions, optionally mixed with C code. The dynamic nature
of the language comes from the fact that run-time information
can drive the machine code generation, allowing program and
data specialization.

deGoal supports high-performance ARM processors from the
ARMv7-A architecture, including FP and SIMD instructions.
A set of C functions were also created to be called in the host
application or inside a function generator to configure the code
generation, allowing the evaluation of the performance impact
of various code generation options.

To illustrate some auto-tuning possibilities and how the
dynamic language works, Figure 3 presents the deGoal code
to auto-tune the euclidean distance implementation, focusing
on the main loop of the kernel. This is the code used in
the motivational example presented in Section II, and also
in the run-time auto-tuning experiments later in this work.
Statements between the symbols #[ and ]# are recognized
as the dynamic language, which are statically converted to
standard C code, calling deGoal library code to generate
machine instructions at run time. Other statements are standard
C code. An important symbol in the dynamic language is the
sign #(): any C expression placed between the parenthesis
will be dynamically evaluated, allowing the inlining of run-time
constants or immediate values.

The kernel generator (called compilette in the deGoal jargon)
description represented in Figure 3 can generate different
machine codes, depending on the arguments that it receives. In
line 1, the first argument is the dimension, which is specialized
in this example. The four following arguments are the auto-
tuned parameters:

• Hot loop unrolling factor (hotUF): Unrolls a loop and
processes each element with a different register, in order
to avoid pipeline stalls.

• Cold loop unrolling factor (coldUF): Unrolls a loop
by simply copy-pasting a pattern of code, using fewer
registers, but potentially creating pipeline stalls.

• Normalized vector length (vectLen): Defines the
length of the vector used to process elements in the loop
body, normalized to the SIMD width when generating
SIMD instructions (four in the ARM ISA). Longer vectors
may benefit code size and speed, because instructions that
load multiple registers instructions may be generated.

• Data pre-fetching stride (pldStride): Defines the
stride in bytes used in hint instructions to try to pre-fetch
data of the next loop iteration.

Given that the dimension is specialized (run-time constant),
we know exactly how many elements are going to be processed

in the main loop. Hence, between the lines 5 and 21, the pair
of deGoal instructions loop and loopend can produce three
possible results, depending on the dimension and the unrolling
factors:

1) No code for the main loop is generated if the dimension
is too small. The computation is then performed by a
leftover code (not shown in Figure 3).

2) Only the loop body is generated without any branch
instruction, if the main loop is completely unrolled.

3) The loop body and a backward branch are generated
if more than one iteration is needed (i.e. the loop is
partially unrolled).

The loop body iterates over the coordinates of two points
(referenced by coord1 and coord2) to compute the squared
euclidean distance. The computation is performed with vectors,
but for the sake of paper conciseness, variable allocation is not
shown in Figure 3. Briefly, in the loop body, lines 8 and 9 load
vectLen coordinates of each point into vectors, lines 14 and
15 compute the difference, squaring and accumulation, and
finally outside the loop, line 23 accumulates the partial sums in
each vector element of Vresult into result. Between the
lines 6 and 20, the loop body is unrolled by mixing three auto-
tuning effects, whose parameters are highlighted in Figure 3:
the outer for (line 6) simply replicates coldUF times the
code pattern in its body, the inner for (line 7) unrolls the loop
hotUF times by using different registers to process each pair
of coordinates, and finally the number of elements processed
in the inner loop is set through the vector length vectLen.
In the lines 10 to 13, the last auto-tuned parameter affects a
data pre-fetching instruction: if pldStride is zero, no pre-
fetching instruction is generated, otherwise deGoal generates a
hint instruction that tries to pre-fetch the cache line pointed
by the address of the last load plus pldStride.

Besides the auto-tuning possibilities, which are explicitly
coded with the deGoal language, a set of C functions can be
called to configure code generation options. In this work, three
code optimizations were studied:

• Instructions scheduling (IS): Reorders instructions to
avoid stall cycles and tries to maximize multi-issues.

• Stack minimization (SM): Only uses FP scratch registers
to reduce the stack management overhead.

• Vectorization (VE): Generates SIMD instructions to
process vectors.

Most of the explanations presented in this section were given
through examples related to the Streamcluster benchmark, but
partial evaluation, loop unrolling and data pre-fetching are
broadly used compiler optimization techniques that can be
employed in almost any kernel-based application.

B. Regeneration decision and space exploration

The regeneration decision takes into account two factors:
the regeneration overhead and the achieved speedup since
the beginning of the execution. The first one allows to keep
the run-time overhead of the tool at acceptable limits if it
fails to find better kernel versions. The second factor acts as



1 dist_gen(int dim, int vectLen, int hotUF, int coldUF,
int pldStride)

2 {
3 numIter = function(dim, vectLen, hotUF, coldUF);
4 (...)
5 #[ loop #(numIter) ]#
6 for (j = 0; j < coldUF; ++j) {
7 for (i = 0; i < hotUF; ++i) {
8 #[ lw Vc1[#(i)], coord1 ]#
9 #[ lw Vc2[#(i)], coord2 ]#

10 if (pldStride != 0) {
11 #[ pld coord1, #((vectLen-1)*4 + pldStride) ]#
12 #[ pld coord2, #((vectLen-1)*4 + pldStride) ]#
13 }
14 #[ sub Vc1[#(i)], Vc1[#(i)], Vc2[#(i)] ]#
15 #[ mac Vresult, Vc1[#(i)], Vc1[#(i)] ]#
16
17 #[ add coord1, coord1, #(vectLen*4) ]#
18 #[ add coord2, coord2, #(vectLen*4) ]#
19 }
20 }
21 #[ loopend ]#
22 (...)
23 #[ add result, Vresult ]#
24 (...)
25 }

Fig. 3: Main loop of the deGoal code to auto-tune the euclidean
distance kernel in the Streamcluster benchmark. The first
function parameter is the specialized dimension, and the other
four are the auto-tuned parameters (highlighted variables).

an investment, i.e. allocating more time to explore the tuning
space if previously found solutions provided sufficient speedups.
Both factors are represented as percentage values, for example
limiting the regeneration overhead to 1 % and investing 10 %
of gained time to explore new versions.

To estimate the gains, the instrumentation needed in the
evaluated functions is simply a variable that increments each
time the function is executed. Knowing this information and the
measured run-time of each kernel, it is possible to estimate the
time gained at any moment. However, given that the reference
and the new versions of kernel have their execution times
measured only once, the estimated gains may not be accurate
if the application has phases with very different behaviors.

Given that the whole space exploration can have hundreds
or even thousands of kernel versions, it was divided in two
online phases:

• First phase: Explores auto-tuning parameters that have
an impact on the structure of the code, namely, hotUF,
coldUF and vectLen, but also the vectorization option
(VE). The previous list is also the order of exploration,
going from the least switched to the most switched
parameter. The initial state of the remaining auto-tuning
parameters are determined through pre-profiling.

• Second phase: Fixes the best parameters found in the
previous phase and explores the combinatorial choices
of remaining code generation options (IS, SM) and
pldStride.

In our experiments, the range of hotUF and vectLen were
defined by the programmer in a way to avoid running out of
registers, but these tasks can be automated and dynamically
computed by taking into account the code structure (static)

and the available registers (dynamic information). Compared
to coldUF, their ranges are naturally well bounded, providing
an acceptable search space size.

The range of coldUF was limited to 64 after a pre-profiling
phase, because unrolling loops beyond that limit provided
almost no additional speedup.

The last auto-tuned parameter, pldStride, was explored
with the values 32 and 64, which are currently the two possible
cache line lengths in ARM processors.

Finally, to optimize the space exploration, first the tool
searches for kernel implementations that have no leftover code.
After exhausting all possibilities, this condition is softened by
gradually allowing leftover processing.

C. Kernel evaluation and replacement

The auto-tuning thread wakes up regularly to compute the
gains and determine if it is time to regenerate a new function.
Each new version is generated in a dynamically allocated code
buffer, and then its performance is evaluated. When the new
code has a better score than that of the active function, the
global function pointer that references the active function is
set to point to the new code buffer. In order to evaluate a new
kernel version, the input data (i.e., processed data) used in the
first and second phases can be either:

• Real input data only: Evaluates new kernel versions
with real data, performing useful work during evaluation,
but suffering from measurement oscillations between
independent runs. These oscillations can sometimes lead
to wrong kernel replacement decisions.

• Training & real input data: Uses training data with
warmed caches in the first phase and real data in the
second one. A training input set with warmed caches
results in very stable measurements, which ensure good
choices for the active function. Since no useful work is
performed, using training data is only adapted to kernels
that are called sufficient times to consider the overhead
of this technique negligible, and to kernels that have
no side effect. In the second phase, the usage of real
data is mandatory, because the adequacy of pre-fetching
instruction depends on the interaction of the real data and
code with the target pipeline.

When the evaluation uses real data, the performance of the
kernel is obtained by simply averaging the run-times of a
pre-determined number of runs.

When the kernel uses a training input data, the measurements
are filtered. We took the worst value between the three best
values of groups with five measurements. This technique filters
unwanted oscillations caused by hardware (fluctuations in the
pipeline, caches and performance counters) and software (inter-
ruptions). In the studied platforms, stable measurements were
observed, with virtually no oscillation between independent
runs (in a Cortex-A9, we measured oscillations of less than
1 %).

The decision to replace the active function by a new version
is taken by simply comparing the calculated run-times.



TABLE I: Abbreviation of the simulated core designs and CPU
areas

Abbrev. Width Type VPUs Area (mm2)
Core L2 Total

SI-I1 1 IO 1 0.45 1.52 1.97
TI-I1 3 IO 1 1.81 5.88 7.70
TI-I2 3 IO 2 2.89 5.88 8.78
DI-I1 2 IO 1 1.00 3.19 4.19
TI-I3 3 IO 3 3.98 5.88 9.86
DI-I2 2 IO 2 1.48 3.19 4.67
TI-O1 3 OOO 1 2.08 5.88 7.97
DI-O1 2 OOO 1 1.15 3.19 4.34
TI-O2 3 OOO 2 3.21 5.88 9.10
DI-O2 2 OOO 2 1.67 3.19 4.86
TI-O3 3 OOO 3 4.35 5.88 10.2

IV. EXPERIMENTAL SETUP

This section presents the experimental setup. First, we
detail the hardware and simulation platforms employed in
the experiments. Then, the chosen applications for two case
studies are described. The kernel run-times and the auto-tuning
overhead are measured through performance counters.

Two ARM boards were used in the experiments. One is the
Snowball equipped with a dual Cortex-A9 processor [10], an
OOO pipeline. The board runs the Linaro 11.11 distribution
with a Linux 3.0.0 kernel. The other is the BeagleBoard-xM,
which has an IO Cortex-A8 core [11]. The board runs a Linux
3.9.11 kernel with an Ubuntu 11.04 distribution.

A micro-architectural simulation framework [12] was used
to simulate 11 different core configurations. It is a modified
version of the gem5 [13] and McPAT [14] frameworks, for
performance and power/area estimations, respectively. The 11
configurations were obtained by varying the pipeline type (IO
and OOO cores) and the number of VPUs (FP/SIMD units) of
one-, two- and three-way basic pipelines. Table 1 in [15] shows
the main configurations of the simulated cores, and Table I
shows the abbreviations used to identify each core design.

Two kernel-based applications were chosen as case studies
to evaluate the proposed online auto-tuning approach. To
be representative, one benchmark is CPU-bound and the
other is memory-bound. In both applications, the evaluated
kernels correspond to more than 80 % of execution time.
The benchmarks were compiled with gcc 4.9.3 (gcc 4.5.2
for Streamcluster binaries used in the simulations) and the
default PARSEC flags (-O3 -fprefetch-loop-arrays
among others). The NEON flag (-mfpu=neon) is set to allow
all 32 FP registers to be used. The target core is set (-mcpu
option) for the real platforms and the ARMv7-A architecture
(-march=armv7-a) for binaries used in the simulations.
The deGoal library was also compiled for the ARMv7-A
architecture, which covers all real and simulated CPUs.

The first kernel is the euclidean distance computation in
the Streamcluster benchmark from the PARSEC 3.0 suite.
It solves the online clustering problem. Given points in a
space, it tries to assign them to nearest centers. The clustering
quality is measured by the sum of squared distances. With

high space dimensions, this benchmark is CPU-bound [9]. In
the compilette definition, the dimension (run-time constant) is
specialized. The simsmall input set is evaluated with the
dimensions 32 (original), 64 and 128 (as in the native input
set), which are referred as small, medium and large input sets,
respectively.

The second kernel is from VIPS, an image
processing application. A linear transformation is
applied to an image with the Linux command line
vips im_lintra_vec MUL_VEC input.v ADD_VEC output.v.
Here, input.v and output.v are images in the VIPS
XYZ format, and MUL_VEC, ADD_VEC are respectively FP
vectors of the multiplication and addition factors for each band
applied to each pixels in the input image. Given that pixels are
loaded and processed only once, it is highly memory-bound.
Indeed, the auto-tuned parameters explored in this work are
not suitable for a memory-bound kernel. However, this kind of
kernel was also evaluated to cover unfavorable situations and
show that negligible overheads are obtained. In the compilette
description, two run-time constants, the number of bands
and the width of the image, are specialized. Three input sets
were tested: simsmall (1600 x 1200), simmedium (2336
x 2336) and simlarge (2662 x 5500).

V. EXPERIMENTAL RESULTS

This section presents the experimental results of the proposed
online auto-tuning approach in a CPU- and a memory-bound
kernels.

A. Real platforms

Table 3 in [15] presents the execution times of all configura-
tions studied of the two benchmarks in the real platforms.
Figures 4(a) and 4(b) show the speedups obtained in the
Streamcluster benchmark. In average, run-time auto-tuning
provides speedup factors of 1.12 in the Cortex-A8 and 1.41
in the A9. The speedup sources come mostly from micro-
architectural adaption, because even if the reference kernels are
statically specialized, they can not provide significant speedups.
The online auto-tuning performance is only 4.6 % and 5.8 %
away from those of the best statically auto-tuned versions,
respectively for the A8 and A9.

Figures 4(c) and 4(d) show the speedups obtained in the
VIPS application. Even with the hardware bottleneck being the
memory hierarchy, in average the proposed approach can still
speed up the execution by factors of 1.10 and 1.04 in the A8
and A9, respectively. Most of the speedups come from SISD
versions (SIMD performances almost matched the references),
mainly because in the reference code run-time constants are
reloaded in each loop iteration, differently from the compilette
implementation. In average, online auto-tuning performances
are only 6 % away from the best static ones.

Table II presents the auto-tuning statistics in both platforms.
For each benchmark and input set, it shows that between 330
and 858 different kernel configurations could be generated, but
in one run this space is limited between 39 and 112 versions,
thanks to the proposed two phase exploration (Section III-B).



(a) Streamcluster in Cortex-A8

(b) Streamcluster in Cortex-A9

(c) VIPS in Cortex-A8

(d) VIPS in Cortex-A9

Fig. 4: Speedup of the specialized reference and the auto-tuned
applications in the real platforms (normalized to the reference
benchmarks).

The online statistics gathered in the experiments are also
presented. In most cases, the exploration ends very quickly,
specially in Streamcluster, in part because of the investment
factor. Only with the small input in VIPS, the auto-tuning did
not end during its execution, because it has a large tuning space
and VIPS executes during less than 700 ms. The overhead
of the run-time approach is negligible, between only 0.2 and
4.2 % of the application run-times were spent to generate and
evaluate from 28 to 75 kernel versions.

B. Simulated cores

Figure 5 shows the simulated energy and performance of the
reference and online auto-tuning versions of the Streamcluster
benchmark. In the SISD comparisons, run-time auto-tuning can
find kernel implementations with more ILP (Instruction-level
parallelism) than the reference code, specially remarkable in
the long triple-issue pipelines. The average speedup is 1.58. In
the SIMD comparisons, the reference kernel naturally benefits
from the parallelism of vectorized code, nonetheless online

(a) Small input set.

(b) Medium input set.

(c) Large input set.

Fig. 5: Speedup and energy efficiency improvement of online
auto-tuning over the references codes in the Streamcluster
benchmark, simulating the 11 cores. Core abbreviations are
listed in Table I.

auto-tuning can provide an average speedup of 1.20. Only 6
of 66 simulations showed worse performance, mostly in big
cores that quickly executed the benchmark.

In terms of energy, in general, there is no surprise that
pipelines with more resources consume more energy, even if
they may be faster. However, there are interesting comparisons
between equivalent IO and OOO cores. Here, the term
equivalent means that cores have similar configurations, except
the dynamic scheduling capability.

Still analyzing Streamcluster, when the reference kernels
execute in equivalent IO cores, in average their performance is
worsened by 16 %, yet being 21 % more energy efficient. On the
other hand, online auto-tuning improves those numbers to 6 %
and 31 %, respectively. In other words, the online approach can
considerably reduce the performance gap between IO and OOO
pipelines to only 6 %, and further improve energy efficiency.

It is also interesting to compare reference kernels executed
in OOO cores to online auto-tuning versions executed in
equivalent IO ones. Despite the clear hardware disadvantage,
in average the run-time approach can still provide speedups of
1.52 and 1.03 for SISD and SIMD, and improve the energy
efficiency by 62 % and 39 %, respectively.

In the simulations of VIPS, the memory-boundedness is
even more accentuated, because the benchmark is only called
once and then Linux does not have the chance to use disk



TABLE II: Statistics of online auto-tuning in the Cortex-A8 and A9 (SISD / SIMD separated, or average if minor variations).

Bench. Input set Explo-rable
versions

Exploration
limit in one run

Run-time regeneration and space exploration
Kernel
calls

Explored Overhead to bench. run-time Duration to kernel life
A8 A9 A8 A9 A8 A9

Stream-
cluster

Small 390 43-49
5315388

49 49 0.2 % (11 ms) 0.4 % (9.2 ms) 13 / 4.4 % 32 %
Medium 510 55-61 58 61 0.2 % (17 ms) 0.3 % (15 ms) 6.3 / 2.7 % 22 %
Large 630 67-73 67 73 0.2 % (30 ms) 0.2 % (26 ms) 5.6 / 1.8 % 15 %

VIPS
Small 858 106-112 1200 44 28 4.2 % (26 ms) 2.5 % (12 ms) 100 % 100 %
Medium 330 39-45 2336 40 42 0.9 % (14 ms) 1.0 % (14 ms) 18 % 66 %
Large 596 73-79 5500 75 71 0.3 % (71 ms) 0.8 % (78 ms) 28 % 86 %

blocks cached in RAM. The performance of the proposed
approach virtually matched those of the reference kernels. The
speedups oscillate between 0.98 and 1.03, and the geometric
mean is 1.00. Considering that between 29 and 79 new kernels
were generated and evaluated during the benchmark executions,
this demonstrates that the proposed technique has negligible
overheads if auto-tuning can not find better versions.

In this study, we observed correlations between auto-tuning
parameter and pipeline features. The results corroborate the
capability of the auto-tuning system to adapt code to different
micro-architectures. On the other hand, precise correlations
could not be identified, because the best auto-tuning parameters
depend on several factors (system load, initial pipeline state,
cache behavior, application phases, to name a few), whose
behaviors can not be easily modeled in complex systems. Online
auto-tuning is a very interesting solution in this scenario.

VI. CONCLUSION

In this paper, we presented an approach to implement run-
time auto-tuning kernels in short-running applications. This
work advances the state of the art of online auto-tuning. To
the best of our knowledge, this work is the first to propose
an approach of online auto-tuning that can obtain speedups
in short-running kernel-based applications. Our approach can
both adapt a kernel implementation to a micro-architecture
unknown prior compilation and dynamically explore auto-
tuning possibilities that are input-dependent.

We demonstrated through two case studies in real and
simulated platforms that the proposed approach can speedup
a CPU-bound kernel-based application up to 1.79 and 2.53,
respectively, and has negligible run-time overheads when auto-
tuning does not provide better kernel versions. In the second
application, even if the bottleneck is in the main memory, we
observed speedups up to 1.30 in real cores, because of the
reduced number of instructions executed in the auto-tuned
versions.

Energy consumption is the most constraining factor in current
high-performance embedded systems. By simulating the CPU-
bound application in 11 different CPUs, we showed that run-
time auto-tuning can reduce the performance gap between IO
and OOO designs from 16 % (static compilation) to only 6 %.
In addition, we demonstrated that online micro-architectural
adaption of code to IO pipelines can in average outperform the
hand vectorized references run in similar OOO cores. Despite
the clear hardware disadvantage, online auto-tuning in IO CPUs

obtained an average speedup of 1.03 and an energy efficiency
improvement of 39 % over the SIMD reference in OOO CPUs.
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