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Abstract. In this work, we propose numerical schemes for linear kinetic equa-

tion, which are able to deal with a diffusion limit and an anomalous time scale
of the form ε2(1 + |ln(ε)|). When the equilibrium distribution function is

a heavy-tailed function, it is known that for an appropriate time scale, the

mean-free-path limit leads either to diffusion or fractional diffusion equation,
depending on the tail of the equilibrium. The bifurcation between these two

limits is the classical diffusion limit with anomalous time scale treated in this
work. Our aim is to develop numerical schemes which work for the different

regimes, with no restriction on the numerical parameters. Indeed, the degen-

eracy ε → 0 makes the kinetic equation stiff. From a numerical point of view,
it is necessary to construct schemes able to undertake this stiffness to avoid

the increase of computational cost. In this case, it is crucial to capture numer-

ically the effects of the large velocities of the heavy-tailed equilibrium. Since
the degeneracy towards the diffusion limit is very slow, it is also essential to

respect the asymptotic behavior of the solution, and not only the limit. Vari-

ous numerical tests are performed to illustrate the efficiency of our methods in
this context.

1. Introduction. The modeling of a large amount of particles, from a theoretical
or numerical point of view, is a very active field of research. The direct application
of Newton’s laws leads to a large system of coupled equations, one for each particle
of the system. Since such a huge number of unknowns is beyond the reach of numer-
ical computations, the so-called microscopic scale is not adapted to the numerical
analysis of these systems. Instead, an approach based on statistical physics is pre-
ferred, where the distribution function of particles fε(t, x, v) depending on the time
t ≥ 0, the position x ∈ Rd, and the velocity v ∈ Rd is considered. The parameter
ε ∈ (0, 1] denotes here the Knudsen number, which is proportional to the mean free
path of the particle.

Provided an initial condition f(0, x, v) = fin(x, v), we consider the following
kinetic equation for fε

Θ(ε)∂tfε + εv · ∇xfε = L(fε). (1)
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The quantity Θ(ε) = ε2 (1 + ln (ε)), is a suitable scaling parameter to be chosen
according to the nature of L, in order to capture a non-trivial dynamic when ε goes
to 0. The linear operator L describes the collisions of the particles. We will consider
the particular case of the BGK operator

L(fε) = ρεM − fε, (2)

with

ρε(t, x) =

∫
Rd

fε(t, x, v)dv =: 〈fε〉 (t, x).

Here, the equilibrium function M is even, positive and normalized to 1

M(−v) = M(v) > 0 for all v ∈ Rd and 〈M〉 = 1.

In what follows, the integral in v of f on a domain D will always be denoted 〈f〉D.
The integral is on the whole space Rd when no domain is specified.

The asymptotic analysis of (1) when ε → 0 can be found in [27]. Our aim in
this paper is to construct numerical schemes for (1) that fit with this asymptotic
analysis. The properties of the equilibrium function M , and the scaling Θ(ε) of
(1) make various asymptotic behaviors arise. For instance, considering the scaling
Θ(ε) = ε with a local Maxwellian equilibrium in (1) and the Boltzmann operator
instead of the linear collision operator L, leads when ε goes to 0 to a fluid limit for
(1) (see [1, 2]). With the BGK collision operator, the scaling Θ(ε) = ε2, and a global

Maxwellian equilibrium M(v) = (2π)−d/2e−v
2/2, the solution fε of (1) degenerates

when ε → 0 to a distribution at equilibrium f = ρM , where ρ solves a diffusion
equation

∂tρ−∇x · (D∇xρ) = 0,

with initial condition ρin = 〈fin〉. A rigorous derivation of diffusion-type equations
in this last case was first investigated in [31, 3, 5, 15]. When M is a Maxwellian
and Θ(ε) = ε2, the diffusion coefficient D is finite because of the exponential decay
of M for large v, and is given by

D = 〈v ⊗ vM〉 . (3)

However, for non Maxwellian equilibrium, it may happen in many situations
that the coefficient D becomes infinite. An important example is the case of a
so-called heavy-tailed function M(v) ∼ 1/|v|d+α for large v, α ∈ (0, 2). In this
case, the scaling Θ(ε) = ε2 is not the suitable choice and does not lead to a non
trivial dynamics when ε goes to 0. It is well-known that, in this case, the time
scale Θ(ε) should be modified according to α in order to capture a non-trivial
dynamics, which turns out to be a fractional diffusion model [27, 4]. Heavy-tailed
equilibria arise in the study of granular media (see [17, 7, 6]), astrophysical plasmas
(see [28, 29]), tokamaks (see [16]) or in economy (see [23]). Usually, the fractional
diffusion equation describes the motion of the particles driven by a Levy process
(see [14, 13]), while the classical diffusion is governed by a Brownian process.

From a numerical point of view, the case α ∈ (0, 2) has been treated in [11, 10, 30].
In this paper, we consider the so-called critical case α = 2, of the above heavy-tailed
equilibrium, which induces a different asymptotic behavior when ε goes to 0. For a
sake of simplicity we will consider here the following particular case

M(v) =

{
m |v| < 1
m/|v|d+2 |v| ≥ 1,

(4)
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where m is such that 〈M〉 = 1. With this assumption, it has been shown in [27]
that if Θ(ε) ∼ ε2| ln(ε)| in (1) the solution fε of (1) converges weakly when ε → 0
to ρ0M , where ρ0 solves a classical diffusion equation{

∂tρ0 − cdm∆ρ0 = 0,
ρ0(0, x) = ρin(x) = 〈fin〉 (x).

(5)

Here cd is a coefficient that only depends on the dimension d (c1 = 2, c2 = π, and
c3 = 8π/3). To have a non-vanishing of Θ(ε) for ε = 1, we shall consider

Θ(ε) = ε2 (1 + |ln(ε)|) . (6)

In this work, we prove that when the initial data fin is at equilibrium, the
convergence when ε→ 0 of the solution fε of (1) to the solution of (5) is very slow.
However, we will show that fε approaches much faster an intermediate equilibrium
ρ̃εM , where ρ̃ε is the solution of the following equation (in Fourier variable){

∂t ˆ̃ρε + aε(k)ˆ̃ρε = 0, t > 0, k ∈ Rd
ˆ̃ρε(0, k) = ρ̂in(k), k ∈ Rd,

(7)

and

aε(k) =
1

Θ(ε)

〈
ε2(k · v)2

1 + ε2(k · v)2
M

〉
, (8)

where ˆ̃ρε is the space Fourier transform of ρ̃ε.
The main goal of this work is to construct numerical schemes for (1) which do not

need to be refined in order to capture the right asymptotic behavior, when ε goes
to 0. There are, in fact, some stiffness in the problem (1). First, the smallness of ε
imposes severe conditions on the numerical parameters, if a naive approach is used.
We will follow an Asymptotic Preserving (AP) strategy [18, 21, 22] to overcome this
difficulty. Namely, if we consider a problem Pε which degenerates into a problem
P0 when ε tends to 0, then an AP scheme Shε should enjoy the following properties:

1. at fixed ε, Shε must be consistent with Pε when the discretization parameter
h tends to 0.

2. Shε must degenerate into a scheme Sh0 consistent with P0 when ε goes to 0.

An AP scheme can even enjoy the stronger property of being Uniformly Accurate
(UA), meaning that its accuracy does not depend on ε.

The construction of AP schemes for the case of classical diffusion with classical
time scale Θ(ε) = ε2 has been widely investigated (see [18, 19, 19, 20, 21, 8, 9,
26, 25]), but the heavy-tail of the equilibrium brings an additional stiffness, which
is not usual in the classical cases. Indeed, the anomalous time scale (6) in (1) is
designed to capture the effect of the high velocities in the asymptotic analysis. From
a numerical point of view, taking into account these high velocities is then crucial
to ensure the AP property of the scheme. In previous works (see [10, 11, 12]), we
investigated AP schemes for kinetic equations in the fractional diffusion limit. In the
critical case, the same methodology can not be applied since the resulting schemes
do not respect the dynamics of the convergence towards the diffusion equation (1).
This is due to the slow convergence in this critical case, and a specific study will be
performed to capture the right asymptotic behavior.

Three numerical schemes will be investigated in this paper. The first one is
based on a fully implicit in time scheme for (1) using a Fourier variable in space.
A suitable modification is introduced in this case, and its AP behavior is proved.
Then, a scheme based on a micro-macro decomposition of the distribution function
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fε is presented. It allows to avoid, if needed, the use of the Fourier transform and
of the time implicit character of the previous scheme. Moreover, it can be adapted
to deal with more general collision operators in (1). Once again, the convergence
towards (7) has to be treated with care to ensure the good asymptotic behavior of
the scheme. Eventually, we propose an approach based on an integral formulation
of (1) in Fourier variable, which enjoys the stronger UA property.

To summarize, we will show that (1) approaches (7) with a rate ε
√

1 + |ln(ε)|,
while (7) approaches the limit model (5) with the slower rate 1/ (1 + |ln(ε)|), and
we will construct numerical schemes which respect this asymptotic behavior. This
can be illustrated by the following diagram

Pε : (1) −−−−−−−−−−−−→
ε
√

1+|ln(ε)|
P̃ε : (7) −−−−−−−−−−−−→

1/(1+|ln(ε)|)
P0 : (5)

h
→

0
−−
−−
−→

−−
−−
−→

h
→

0

−−
−−
−→

h
→

0

Shε −−−−−−−−−−−−→
ε
√

1+|ln(ε)|
S̃hε −−−−−−−−−−−−→

1/(1+|ln(ε)|)
Sh0

(9)

The schemes Shε and S̃hε are respectively consistent with the problems Pε and P̃ε
when ε > 0 is fixed, and Sh0 is consistent with P0. The scheme Shε approaches S̃hε
with rate ε

√
1 + |ln(ε)| while S̃hε approaches S0 with rate 1/ (1 + |ln(ε)|) when the

discretization parameter h is fixed and when ε goes to 0. The asymptotic behavior
Pε → P̃ε → P0 will be proved in suitable functional spaces and illustrated by several
numerical tests.

The paper is organized as follows. In the next section, we will start by establish-
ing the convergence rates of (1) towards (5), and of (7) to (5). Then, in Section
3, we present an asymptotic preserving scheme for (7), and the three asymptotic
preserving schemes for (1), which are tested in Section 4.

2. Degeneracy to the diffusion limit. In this section, we show that the con-
vergence of (1) towards the diffusion limit (5) can be quantified by two steps as
described by the diagram (9). This will be the basis of the numerical methods pro-
posed in Section 3. In what follows, the space Fourier transform will be often used.

We will denote f̂(t, k, v) (resp. ρ̂(t, k)) the space Fourier transform of f(t, x, v)
(resp. ρ(t, x))

f̂(t, k, v) =

∫
Rd

e−ik·xf(t, x, v)dx.

We will use the following weighted L2 norm

‖f(x, v)‖2L2
M−1

=

∫
Rd

∫
Rd

|f(x, v)|2 1

M(v)
dvdx, (10)

where M is given by (4). We have the following propositions:

Proposition 1. Let fε ∈ L∞
(
0, T ;L2

M−1

)
be the solution of (1) with initial con-

dition fin(x, v) = ρin(x)M(v), with ρin ∈ HNd
(
Rd
)

(N1 = 3, N2 = N3 = 6), where

HNd
(
Rd
)

denotes the usual Sobolev space, and let T > 0. Then, there exists a
constant C such that

‖fε − ρ̃εM‖L∞(0,T ;L2
M−1) ≤ CTε

√
1 + |ln(ε)|‖ρin‖HNd , (11)
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where ρ̃ε ∈ L∞
(
0, T ;L2

)
solves (7) with initial condition ρin, and with M defined

in (4).

Proposition 2. Assume that the previous assumptions hold, and let
ρ̃ε ∈ L∞

(
0, T ;L2(Rd)

)
be the solution of (7) with ρin ∈ HMd

(
Rd
)

(M1 = 2,
M2 = M3 = 4), and let T > 0. Then, there exists a constant C such that

‖ρ̃ε − ρ0‖L∞(0,T ;L2(Rd)) ≤
CT

1 + |ln(ε)|
‖ρin‖HMd , (12)

where ρ0 ∈ L∞
(
0, T ;L2(Rd)

)
solves (5), with initial condition ρin.

These two propositions establish that the convergence ε→ 0 of (1) makes appear
two dynamics with very different rates in ε. Indeed, in a first step, the solution fε
approaches (relatively) quickly a distribution function at equilibrium ρ̃ε(t, x)M(v),
with ρ̃ε solution of (7). Then, in a second step, this density ρ̃ε goes much more slowly
to the solution ρ0 of the limit diffusion equation (5). Hence, the approximation of
fε by its diffusion limit (5) is valid only for very small ε. At the numerical level,
it implies that a large range of ε may stay out of reach if no appropriate strategy
is used in the numerical schemes. The next parts present numerical methods for
(1) degenerating when ε to 0 into numerical methods solving (7). In particular, the
schemes enjoy the AP property that is

• when ε is fixed, the scheme is consistent with (1),
• the difference between the numerical scheme Shε for (1) and the numerical

scheme S̃hε for (7) converges to 0 when ε goes to 0.

Afterwards, letting ε go to zero in the scheme S̃hε for (7) makes it degenerate in a
scheme Sh0 solving the limit diffusion equation (5). This approach enables to capture
numerically the two scales of convergence of the solution of (1) to its diffusion limit,
as described by (9).

The proofs of Prop. 1 and Prop. 2 follows the ideas developed in [4] in the
case of a fractional diffusion limit for kinetic equation, coming from a heavy-tailed
equilibrium function. We start by proving the following lemma, which gives the
limit of aε when ε goes to 0.

Lemma 2.1. Considering aε defined in (8), there exists a constant C such that,
∀k ∈ Rd

1. If d = 1, ∣∣aε(k)− 2mk2
∣∣ ≤ C

1 + |ln(ε)|
(
1 + k2

)
. (13)

2. If d = 2, 3,

|aε(k)− cdm|k|2| ≤
C

1 + |ln(ε)|
(
1 + |k|4

)
(14)

with c2 = π and c3 = 8π
3 .

Proof of Lemma 2.1. In the 1-dimensional case, with the change of variables w =
εv, the coefficient aε reads

aε(k) =
m

1 + |ln(ε)|

〈
k2v2

1 + ε2k2v2

〉
|v|<1

+
m

1 + |ln(ε)|

〈
k2w2

1 + k2w2

1

|w|3

〉
|w|≥ε

, (15)
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where the last term in (15) can be computed for nonzero k with the change of
variables u = 1/w

m

1 + |ln(ε)|

〈
k2w2

1 + k2w2

1

|w|3

〉
|w|≥ε

= 2mk2 +
2mk2

1 + |ln(ε)|

(
1

2
ln

(
ε2 +

1

k2

)
− 1

)
,

and the first term is bounded by Ck2/(1 + |ln(ε)|). Eventually the inequality
ln(x)/2 ≤ 1 + x for x > 0, gives (13).

When d = 2, 3, with the change of variables w = ε|k|v for nonzero k, (8) reads

aε(k) =
m

1 + |ln(ε)|

〈
(k · v)

2

1 + ε2 (k · v)
2

〉
|v|≤1

+
m|k|2

1 + |ln(ε)|

〈
(w · e)2

1 + (w · e)2

1

|w|d+2

〉
|w|≥ε|k|

,

(16)
where e denotes any unitary vector. The first term is lower than C|k|2, it remains
to consider the second one. Depending on the dimension, a change of variables in
polar or spherical coordinates can be applied in it. Since no additional difficulty
arise when d = 3, we treat here the case of polar coordinates, when d = 2. Choosing
e such that w · e = |w| cos(θ), it can be rewritten as〈

(w · e)2

1 + (w · e)2

1

|w|d+2

〉
|w|≥ε|k|

= I1 + I2 + I3,

with

I1 =

∫ 2π

θ=0

∫ 1

r=ε|k|
r2 cos2(θ)

1

r3
drdθ, (17)

I2 =

∫ 2π

θ=0

∫ 1

r=ε|k|
r2 cos2(θ)

(
1

1 + r2 cos2(θ)
− 1

)
1

r3
drdθ (18)

I3 =

∫ 2π

θ=0

∫ ∞
r=1

r2 cos2(θ)

1 + r2 cos2(θ)

1

r3
drdθ. (19)

At this stage, the last two integrals can be bounded

|I2| ≤
∫ 2π

θ=0

∫ 1

r=ε|k|

r4 cos4 (θ)

1 + r2 cos2(θ)

1

r3
drdθ ≤

∫ 2π

θ=0

∫ 1

r=ε|k|
r cos4(θ)drdθ ≤ C(1 + |k|2)

|I3| ≤
∫ 2π

0

∫ ∞
r=1

1

r3
drdθ ≤ C,

and the first one can be computed explicitly

I1 = −π ln(|k|)− π ln(ε).

Eventually, the inequality ln(|k|) ≤ |k| yields (14).

Remark 1. The proof of Lemma 2.1 provides, for nonzero k, a rewriting of aε in
which the diffusion limit clearly appears. In dimension 1, it is

ad=1
ε (k) = 2mk2 +

m

1 + |ln(ε)|

〈
k2v2

1 + ε2k2v2

〉
|v|<1

+
2mk2

1 + |ln(ε)|

(
1

2
ln

(
ε2 +

1

k2

)
− 1

)
,

(20)
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and in dimension 2 it reads

ad=2
ε (k) = πm|k|2 +

m

1 + |ln(ε)|

〈
(k · v)2

1 + ε2(k · v)2

〉
|v|≥1

− m|k|2

1 + |ln(ε)|
π (1 + ln(|k|))

− m|k|2

1 + |ln(ε)|

∫ 2π

θ=0

∫ 1

r=ε|k|

r cos4(θ)

1 + r2 cos2(θ)
drdθ

+
m|k|2

1 + |ln(ε)|

∫ 2π

θ=0

∫ ∞
r=1

cos2(θ)

1 + r2 cos2(θ)

1

r
drdθ.

(21)

Eventually, a change of variables in spherical coordinates provides the case of di-
mension 3

ad=3
ε (k) =

8π

3
m|k|2 +

m

1 + |ln(ε)|

〈
(k · v)2

1 + ε2(k · v)2

〉
|v|≥1

− m|k|2

1 + |ln(ε)|
8π

3
(ln(|k|) + 1)

− 2πm|k|2

1 + |ln(ε)|

∫ π

θ=0

∫ 1

r=ε|k|

r sin5(θ)

1 + r2 sin2(θ)
drdθ

+
2πm|k|2

1 + |ln(ε)|

∫ π

θ=0

∫ ∞
r=1

sin2(θ)

1 + r2 sin2(θ)

1

r
drdθ.

(22)

Proof of Prop. 2. We denote by ρ̂0 and ˆ̃ρε the solutions of (5) and (7) in space
Fourier variable, with initial condition ρ̂in, and a0(k) = cdmk

2. They satisfy

ˆ̃ρε(t, k) = e−taε(k)ρ̂in(k),

ρ̂0(t, k) = e−ta0(k)ρ̂in(k).

Since aε(k) ≥ 0 and a0(k) ≥ 0, the inequality |e−x − e−y| ≤ |x− y| for x ≥ 0, y ≥ 0
yields 

|ρ̂0 − ˆ̃ρε| ≤
Ct

1 + |ln(ε)|
(
1 + k2

)
|ρ̂in| if d = 1,

|ρ̂0 − ˆ̃ρε| ≤
Ct

1 + |ln(ε)|
(
1 + |k|2

)2 |ρ̂in| if d = 2, 3,

and gives (12).

The convergence of the solution of (7) to the solution of (5) is very slow in ε, but
Prop. 1 states that the degeneracy of (1) to (7) happens much faster. The proof
of Prop. 1 is based on the proof of the similar result stated in [4] for the case of a
kinetic equation with heavy-tailed equilibrium degenerating to a fractional diffusion
equation. It uses the following properties of the collision operator, established in
[15] and [27] in a more general case:

Proposition 3. The collision operator L given by (2) has the following properties

1. The operator L is bounded in L2
M−1(Rd × Rd).

2. There exists a constant C > 0 such that

∀f ∈ L2
M−1 ,

∫
Rd

L(f)
f

M
dv ≤ −1

2

∫
Rd

|f − 〈f〉M |2 1

M
dv.

3. For h ∈ L2
M−1 , the equation L(g) = h has a solution if and only if 〈h〉 = 0. If

〈g〉 = 0, this solution is unique.
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Proof of Prop. 1. As in [4], the proof relies on the following Hilbert expansion of
the solution fε of (1)

fε = ρ̃εM + g1 + g2 + r,

where ρ, g1, g2 and r solve

(1 + εv · ∇x) g1 = −εv · ∇xρ̃εM (23)

〈g2〉M − g2 = −〈g1〉M + Θ(ε)∂tρ̃εM (24)

∂tr +
ε

Θ(ε)
v · ∇xr =

1

Θ(ε)
(〈r〉M − r)− ∂tg1 −

(
∂tg2 +

ε

Θ(ε)
v · ∇xg2

)
(25)

with initial condition ρ̃ε(0, x) = ρin(x), g1(0, x, v) = g2(0, x, v) = r(0, x, v) = 0.
Considering (23) in Fourier variable leads to

ĝ1 = − iεk · v
1 + iεk · v

ˆ̃ρεM. (26)

Furthermore, the left-hand side of (24) is such that 〈〈g2〉M − g2〉 = 0. Still in
Fourier variable, (24) then reads −〈g1〉+ Θ(ε)∂tρ̃ε = 0, that is using (26) and the
symmetry of M

∂t ˆ̃ρε(t, k) + aε(k)ˆ̃ρε(t, k) = 0,

with aε defined in (8). Note that solving this equation leads to

ˆ̃ρε(t, k) = e−aε(k)tρ̂in(k), ∂t ˆ̃ρε(t, k) = −aε(k)e−aε(k)tρ̂in(k). (27)

As ρ̂ solves (7), the proof of the proposition relies on establishing estimates for
‖g1‖L∞(0,T ;L2

M−1 ), ‖g2‖L∞(0,T ;L2
M−1 ) and ‖r‖L∞(0,T ;L2

M−1 ). Since aε ≥ 0, (27) and

the expression of ĝ1 in (26) give∫
Rd

|ĝ1|2
dv

M
≤ Θ(ε)aε(k)|ρ̂in|2,

with Θ(ε) defined in (6). The estimation of aε given by Lemma 2.1 yields

‖g1‖L∞(0,T ;L2
M−1 ) ≤ Cε

√
1 + |ln(ε)|‖ρin‖HNd , (28)

with N1 = 1, and N2 = N3 = 2.
The solution g2 of (24) is unique if 〈g2〉 = 0. It can be rewritten as

−g2 = −〈g1〉M + Θ(ε)∂tρ̃εM,

and (26) and (7) imply g2 = 0.
The estimation of r can be done with (25) integrated on the characteristic curves,

multiplied by r/M and integrated in velocity. Since g2 = 0 and the term in 〈r〉M−r
gives a negative integral with the second point of Prop. 3, it reads

1

2

d

dt

∫
Rd

r2(t,X(t), v)

M
dv ≤ −

∫
Rd

∂tg1 (t,X(t), v)
r(t,X(t), v)

M
dv,

where X(t) = x + ε
Θ(ε) tv. After an integration in time and space, and using a

Cauchy-Schwarz inequality, it eventually writes

1

2
‖r‖L∞(0,T ;L2

M−1 ) ≤ ‖∂tg1‖L1(0,T ;L2
M−1 ),

so that an upper bound for the right-hand side is needed to complete the proof of
the proposition. A differentiation in time of (26), together with (27), gives

‖∂tg1‖2L2
M−1

≤ Θ(ε)

∫
Rd

aε(k)3e−aε(k)t|ρ̂in|2dk,
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hence, using Lemma 2.1

‖∂tg1‖L1(0,T ;L2
M−1 ) ≤ CTε

√
1 + |ln(ε)|‖ρin‖HNd ,

which completes the proof.

3. Numerical schemes. This section presents three numerical schemes designed
to approximate the solution of (1), and to respect the asymptotic behavior of Prop.
1 and Prop. 2 when ε becomes small. These schemes are based respectively on an
implicit formulation of (1) in Fourier variable, a micro-macro decomposition, and an
integral formulation of (1). These three strategies have been investigated in [11, 12]
in the case of the fractional diffusion limit of the kinetic equation, α ∈ (0, 2). Here
we extend them to the case α = 2. In this critical case, we required that not only
the limit equation (5), but the asymptotic behavior (7) of the numerical solution is
prescribed.

In what follows, we will denote by tn = n∆t, 0 ≤ n ≤ N , such that N∆t = T
the time discretization, and we will set fn ≈ f(tn). All the numerical tests will
be performed at time T = 0.1, the time step ∆t being specified in each case. The
schemes require a velocity discretization, we will denote

〈f〉Nv,D
= ∆v

Nv∑
j=1

vj∈D

f(vj), (29)

the quadrature formula for the integration in velocity on the domain D. When no
domain is specified, the integration is for all the index 1 ≤ j ≤ Nv. In the tests,
we will consider a uniform discretization of the domain |v| ≤ 10, with Nv points
symmetrically distributed on both sides of the origin to ensure that 〈vM〉Nv

= 0.

Namely, we will consider Nv = 2N ′v with N ′v = 100 and use the grid

vj = −10 +
∆v

2
+ (j − 1)∆v, 1 ≤ j ≤ 2N ′v, (30)

with ∆v = 10/N ′v. The normalization constant m of the equilibrium M is chosen
such that 〈M〉Nv

= 1. The space domain is bounded, and we consider periodic
conditions, allowing the use of the Fourier variable. At the discrete level, the discrete
Fourier variable will be used. In the tests, we will consider x ∈ [−1, 1], discretized
with Nx points such that

xi = −1 + (i− 1)∆x, 1 ≤ i ≤ Nx, (31)

where ∆x = 2/Nx. This space discretization is linked to the Fourier modes we
use for the computation of the discrete Fourier transform, that are the integers k
such that −Nx/2 ≤ k ≤ Nx/2. At the discrete level, the usual L2 norm in space,
and the norm L2

M−1 defined in (10) will be computed using the space and velocity
discretization

‖ρ‖2L2
Nx

= ∆x

Nx∑
i=1

|ρ(xi)|2, ‖f‖2L2
M−1,Nx,Nv

= ∆x∆v

Nx∑
i=1

Nv∑
j=1

|f(xi, vj)|2

M(vj)
. (32)

Eventually, in the following numerical tests, we will take Nx = 32 and consider the
initial condition

fin(x, v) = (1 + sin(πx))M(v). (33)
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We want our schemes to enjoy a stronger property than the AP one. Indeed, they
respect the two steps of the convergence of (1) towards (5) following the diagram
(9).

The peculiar asymptotic behavior of (1) comes from the effect of the high veloc-
ities in the equilibrium function M . Indeed, its heavy-tailed character makes the
usual diffusion coefficient (3) be infinite. The anomalous scaling Θ(ε) is chosen to
counterbalance the weight of M for large velocities. It is then necessary to take
them into account in the numerical computations. One idea would be to consider
an adaptive grid for large velocities, to use as much large velocities as needed. How-
ever, linking the stiffness ε and the discretization parameters is not in the spirit of
AP strategies. We propose a method based on analytical modifications of the terms
degenerating into (8) in the schemes. These modifications are done consistently in
the schemes, and (8) is carefully discretized to ensure the degeneracy to the limit
equation (5). Once it is done, we are able to prove that the schemes respect the
asymptotic behavior of (1).

3.1. Discretization of aε. Since the degeneracy of (1) to the diffusion limit (5)
goes through the equation (7), it is necessary to handle the degeneracy of (7) to (5)
numerically to design AP schemes for (1). In Fourier variable, both (5) and (7) are
differential equations, which can be solved analytically, and that can also be solved
with classical schemes. For instance, a semidiscrete-in-time implicit scheme for (7)
reads

ˆ̃ρn+1
ε − ˆ̃ρnε

∆t
+ aε(k)ˆ̃ρn+1

ε = 0, (34)

and it degenerates into a scheme solving (5) if aε(k)→ a0(k) = mcd|k|2 when ε goes
to 0. If the velocity integrations are done continuously, this is ensured thanks to
(13). Unfortunately, the discrete velocity integration breaks this property. Indeed,
with (29) the discrete version of aε(k) writes

1

Θ(ε)

〈
ε2k2v2

1 + ε2k2v2
M

〉
Nv

=
∆v

1 + |ln(ε)|

Nv∑
j=1

k2v2
j

1 + ε2k2v2
j

M(vj) (35)

∼
ε→0

∆v

1 + |ln(ε)|

Nv∑
j=1

k2v2
jM(vj).

Since the quadrature uses a finite number of points, the sum above is finite whilst
its continuous version is infinite. Then, the naive numerical version of aε(k) tends
to 0 when ε→ 0, which is not satisfactory. Consequently, it is necessary to modify
analytically aε before applying the discretization (29), to ensure the correct asymp-
totic behavior of aε. In Remark 1, the expressions aε(k) rewritten in (20)-(21)-(22)
make the limit behavior of aε clearly appear. Hence, at the discrete level, we rather
use a discrete version of these terms, where the integrals are computed with an
usual quadrature (29). It ensures the discrete version aNv

ε of aε to degenerate to
the expected diffusion coefficient when ε tends to 0. To do so, in dimension 1, we
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use the following discrete version of aε, from (20)

aNv
ε (k) =



m

1 + |ln(ε)|

〈
k2v2

1+ε2k2v2

〉
Nv,|v|≤1

+2m|k|2
(

1 +
1
2 ln

(
ε2+ 1

|k|2

)
−1

1+|ln(ε)|

)
, k 6= 0

0, k = 0,

(36)

which respects the estimates (13) at the discrete level. Eventually, with aNv
ε , the

Euler scheme for (7) degenerates when ε goes to 0, to a Euler scheme for (5).
The numerical tests highlight this behavior. Indeed, Fig. 1 displays the solutions

given by the scheme (34), with aε computed with the discretizations (35) and (36).
The solutions are computed with ∆t = 10−2, for a range of ε. We also plot the
numerical solution of the limit model approximated by

ρ̂n+1
0 − ρ̂n0

∆t
+ 2m|k|2ρ̂n+1

0 = 0. (37)

When aε is computed directly with (35), we observe that the solution of (34) does
not tend to the limit diffusion when ε goes to 0, but to the initial condition ρin =
〈fin〉Nv

, with fin defined in (33). Conversely, the solution of (34) with aε computed

with (36), comes close to the solution of (37) when ε goes to 0. Moreover, Fig. 2
suggests that this convergence in ε happens with the speed 1/(1 + |ln(ε)|), proved
in Prop. 2. To obtain this figure, we computed the solution ρε,∆t of (34) with (36),
and the solution ρ∆t of (37), with ∆t = 10−2. Then, we plotted the relative error

Error(ε) =
‖ρε,∆t − ρ∆t‖L2

Nx

‖ρ∆t‖L2
Nx

,

with ‖ · ‖L2
Nx

defined in (32), as a function of ε ∈ (0, 1).
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Figure 1. For ∆t = 10−2, the solutions of (37) and (34) at time
T = 0.1 for different values of ε. Left: when aε is computed with
(35). Right: when aε is computed with (36).

3.2. Implicit scheme (IS). The first idea to write a scheme for (1) which enjoys
the AP property is to use a fully implicit scheme for (1) written in Fourier variable.
Indeed, it is well-known that in the case of the classical diffusion limit, such a
scheme degenerates when ε → 0 into a scheme solving the limit equation. In our
case, such an approach does not work, due to the effects of large velocities. Then,
it is necessary to suitably write the scheme to make this degeneracy appear. We
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Figure 2. For ∆t = 10−2, the relative error between the solution
of the scheme (34) and the limit scheme (37) at time T = 0.1, in
function of ε (log scale).

start with (1) written in space Fourier variable, and we consider a fully implicit
time discretization

f̂n+1 − f̂n

∆t
+

1

Θ(ε)
(1 + iεk · v) f̂n+1 =

1

Θ(ε)
ρ̂n+1M, (38)

where the dependence in ε of fn+1, fn and ρn+1 has been omitted to simplify the
notations. This scheme degenerates when ε→ 0 into

f̂n+1 = ρ̂n+1M.

Therefore, provided that the density ρ̂n+1 is known, the scheme (38) enjoys the AP

property, and f̂n+1 reads

f̂n+1 =
Θ(ε)f̂n + ∆t ρ̂n+1M

Θ(ε) + ∆t+ iε∆t k · v
. (39)

An expression for ρ̂n+1 is given by a fully implicit time discretization of (1) inte-
grated in velocity

ρ̂n+1 − ρ̂n

∆t
+

1

Θ(ε)

〈
iεk · vf̂n+1

〉
= 0,

which writes, using the expression of f̂n+1 in (39)

ρ̂n+1 − ρ̂n

∆t
+

〈
iεk · vf̂n

Θ(ε) + ∆t+ i∆tεk · v

〉
+

∆t

Θ(ε)

〈
iεk · vM

Θ(ε) + ∆t+ iε∆tk · v

〉
ρ̂n+1 = 0.

(40)
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Using the symmetry of M , the last term of the previous expression can be rewritten
as

∆t

Θ(ε)

〈
iεk · vM

Θ(ε) + ∆t+ iε∆tk · v

〉
ρ̂n+1

=
∆t2

Θ(ε)

〈
ε2(k · v)2

(Θ(ε) + ∆t)
2

+ ε2∆t2 (k · v)
2M

〉
ρ̂n+1 (41)

=
1

Θ(ε)

〈
ε2 (k · v)

2(
Θ(ε)+∆t

∆t

)2

+ ε2 (k · v)
2
M

〉
ρ̂n+1. (42)

The expression (41) indicates that the term is of order ∆t2 for fixed ε, and thus
can be removed or modified with no incidence on the accuracy of the scheme. The
expression (42) shows that it degenerates into the coefficient aε(k) when ε decreases.
Since the second term of (40) vanishes for small ε, if the integrations in velocity are
done continuously, the scheme degenerates when ε to 0 into a scheme solving (7).
To ensure the AP property at the fully discrete level, (42) can be approximated by(

∆t

Θ(ε) + ∆t

)2
1

Θ(ε)

〈
ε2(k · v)2

1 + ε2(k · v)2
M

〉
ρ̂n+1/2 =

(
∆t

Θ(ε) + ∆t

)2

aε(k)ρ̂n+1/2,

where ρ̂n+1/2 can be taken equal to ρ̂n or ρ̂n+1, depending on the desired limit
scheme (implicit or explicit). Then the coefficient aε is numerically approximated
as in Section 3.1 to ensure the AP property. Eventually, we have the following
proposition

Proposition 4. We consider the following scheme defined for all k and all time
indices 0 ≤ n ≤ N,N∆t = T by

f̂n+1 − f̂n

∆t
+

1

Θ(ε)
(1 + iεk · v) f̂n+1 =

1

Θ(ε)
ρ̂n+1M

ρ̂n+1 − ρ̂n

∆t
+

〈
iεk · vf̂n

Θ(ε) + ∆t+ i∆tεk · v

〉
Nv

+

(
∆t

∆t+ Θ(ε)

)2

aNv
ε (k)ρ̂n+1/2 = 0,

(43)

with Θ(ε) and aNv
ε defined in (6) and (36), and with initial condition f̂0(k, v) =

f̂in(k, v), ρ̂0(k) =
〈
f̂0(k, ·)

〉
Nv

. The quantity ρ̂n+1/2 can be chosen equal to ρ̂n or

ρ̂n+1 depending on the desired asymptotic scheme (implicit or explicit in time). This
scheme has the following properties:

1. The scheme is of order 1 for fixed ε > 0 and preserves the total mass.
2. The scheme is AP: for a fixed ∆t, the scheme solves the diffusion equation

(5) when ε goes to 0

ρ̂n+1 − ρ̂n

∆t
+mcd|k|2ρ̂n+1/2 = 0, (44)

with c1 = 2, c2 = π, c3 = 8π
3 and where m has been defined in (4).

Remark 2. The degeneracy of (43) to a scheme solving (5) respects the two dy-
namics discussed in the diagram (9). Indeed, the numerical tests show that (43)

degenerates with speed ε
√

1 + |ln(ε)| to

ρ̂n+1 − ρ̂n

∆t
+ aNv

ε (k)ρ̂n+1/2 = 0, (45)
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which solves (7). Then letting ε going to 0 in the previous scheme makes it degen-
erate to (44) with speed 1/(1 + |ln(ε)|).

Proof. The first point of Prop. 4 is a direct consequence of the fact that we used
an Euler scheme for (1), and that the modifications we applied to it were done
consistently. Taking k = 0 in the second line of (43) yields the conservation of the
total mass. Eventually, with the modification of the term (42), the AP character is
straightforward. Indeed, letting ε becomes small with fixed ∆t in (43) leads to f̂n+1 = ρ̂n+1M

ρ̂n+1 − ρ̂n

∆t
+ aNv

ε (k)ρ̂n+1/2 = 0,

which degenerates into a scheme solving (5) when ε→ 0.

3.3. Micro-macro scheme (MMS). In the previous part, we proposed an im-
plicit scheme for (1), which has the same behavior as the solution of (1) when ε
goes to 0. However, the use of the Fourier variable may be restrictive in some cases,
and its extension to more general collision operators seems difficult. Moreover,
the implicit treatment of the transport operator induces high computational cost,
especially in multi-dimensional cases. We propose here a scheme based on a micro-
macro decomposition of the distribution function fε, which respects the behavior
of fε when ε→ 0. It treats the transport terms explicitly, and can be extended to
the case of general collision operators of [27] with a strategy similar to [24].

Denoting ρε = 〈fε〉, we consider the decomposition fε(t, x, v) = ρε(t, x)M(v) +
gε(t, x, v), such that 〈gε〉 = 0. Inserting it in (1) and integrating in velocity gives

∂tρε +
ε

Θ(ε)
〈v · ∇xgε〉 = 0. (46)

Then, we multiply (46) by M and we subtract it from (1) to get an equation for gε

∂tgε +
ε

Θ(ε)
v · ∇xρεM +

ε

Θ(ε)
(v · ∇xgε − 〈v · ∇xgε〉M) = − 1

Θ(ε)
gε. (47)

A semi-discrete-in-time numerical scheme can be designed following [26], in which
we implicit the stiffest terms

gn+1 − gn

∆t
+

ε

Θ(ε)
v · ∇xρnM +

ε

Θ(ε)
(v · ∇xgn − 〈v · ∇xgn〉M) = − 1

Θ(ε)
gn+1

ρn+1 − ρn

∆t
+

ε

Θ(ε)

〈
v · ∇xgn+1

〉
= 0.

(48)
Here, the dependence in ε of ρn and gn is omitted to simplify the notations. For
fixed ε, it is a consistent scheme, it remains to check wether it preserves the correct
asymptotic. With the first line of (48), gn+1 = O(ε) when ∆t is fixed, and then
gn+1 = −εv · ∇xρnM + o(ε). When reported in the second line of (48), this gives
the following limit scheme for ρ

ρn+1 − ρn

∆t
− 1

1 + |ln(ε)|
〈v · ∇x (v · ∇xρnM)〉 = 0, (49)

which does not corresponds to the expected diffusion limit. Indeed, the term into
brackets is infinite when the integration in velocity is done continuously, but it is
finite when the discretization (29) is applied. Hence, in this latter case, when ε→ 0,
the limit scheme is ρn+1 = ρn, which is not consistent with (5). It is then necessary
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to modify (48) to ensure the correct asymptotic behavior. To do so, we modify
the macro equation by making appear the inverse of the transport operator. We
first remark that

〈
v · ∇xgn+1

〉
=
〈
v · ∇xfn+1

〉
, we then use a semi discrete implicit

formulation of f as in the previous part (see (38) for instance)

fn+1 =
Θ(ε)

Θ(ε) + ∆t

(
I +

∆t

Θ(ε) + ∆t
εv · ∇x

)−1

fn

+
∆t

Θ(ε) + ∆t

(
I +

∆t

Θ(ε) + ∆t
εv · ∇x

)−1

ρn+1M.

This expression is injected in the flux of the macro equation of (48) to get

ρn+1 − ρn

∆t
+

ε

Θ(ε) + ∆t

〈
v · ∇x

((
I +

∆t

Θ(ε) + ∆t
εv · ∇x

)−1

fn

)〉
(50)

+
ε

Θ(ε)

∆t

Θ(ε) + ∆t

〈
v · ∇x

((
I +

∆t

Θ(ε) + ∆t
εv · ∇x

)−1

ρn+1M

)〉
= 0.

(51)

Since the scheme is first order in time, the bracket in (50) can be simplified consis-
tently in 〈v · ∇xfn〉 to avoid the inversion of a differential operator. For the same
reason, we could remove (51) with no incidence on the consistency of the scheme;
however, it degenerates when ε → 0 to the diffusion of (5). Therefore, this term
is kept to ensure the AP property of the scheme, but it must be treated with care
to take correctly the effects of the high velocities into account. In Fourier variable,
and using the evenness of M , (51) reads

1

Θ(ε)

(
∆t

Θ(ε) + ∆t

)2
〈

ε2(k · v)2

1 +
(

∆t
Θ(ε)+∆t

)2

ε2(k · v)2

M

〉
ρ̂n+1.

This term is of order ∆t2 when ε is fixed, and it degenerates to aε(k)ρ̂n+1 (with aε
defined in (8)) when ε becomes small with ∆t fixed. Thus, (51) can be modified
consistently in ∆t2/(Θ(ε) + ∆t)2aε(k)ρ̂n+1/2, which ensures both the AP character
of the scheme, and the fact that the numerical solution solves (7) when ε belongs
to the intermediate regime in which the solution fε of (1) solves (7). Here, ρ̂n+1/2

can be chosen equal to ρ̂n or ρ̂n+1.
The passage from the semi-discrete-in-time scheme to the fully discretized scheme

can then be done with the quadrature (29), and the suitable discretization of aε
defined in (8), as in section 3.1. The derivatives in space are treated with a classical
first order upwind scheme; for a sake of simplicity in the notations, we still write here
the spatial derivatives as continuous. Eventually, we have the following proposition.

Proposition 5. We consider the following scheme (discretized in time and velocity)
defined for all x ∈ Rd, vj , 1 ≤ j ≤ Nv and all time indices 0 ≤ n ≤ N,N∆t = T > 0
by

gn+1 − gn

∆t
+

ε

Θ(ε)
v · ∇xρnM +

ε

Θ(ε)

(
v · ∇xgn − 〈v · ∇xgn〉Nv

M
)

= −g
n+1

Θ(ε)

ρn+1 − ρn

∆t
+

ε

Θ(ε) + ∆t
〈v · ∇xgn〉Nv

+

(
∆t

Θ(ε) + ∆t

)2

F−1
(
aNv
ε ρ̂n+1/2

)
= 0,

(52)
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with Θ(ε) and aNv
ε defined in (6) and in (36), where F−1 denotes the inverse of the

Fourier transform, and with initial condition ρ0 = 〈fin〉Nv
, and g0 = fin − ρ0M .

The quantity ρ̂n+1/2 can be chosen equal to ρ̂n or ρ̂n+1 depending on the desired
asymptotic scheme (implicit or explicit in time). This scheme has the following
properties:

1. The scheme is of first order in time for any fixed ε > 0 and preserves the total
mass.

2. The scheme is AP: for a fixed ∆t, the scheme solves the diffusion equation
(5) when ε goes to 0

ρ̂n+1 − ρ̂n

∆t
+mcd|k|2ρ̂n+1/2 = 0, (53)

with c1 = 2, c2 = π, c3 = 8π
3 , and where m has been defined in (4).

Remark 3. As in the case of the implicit scheme, this scheme enjoys a property
stronger than being AP, since it respects the diagram (9). Hence, it respects the
dynamics of the convergence to the solution of the diffusion equation (5) when ε→ 0.

Indeed, the numerical tests show that (52) degenerates with speed ε
√

1 + |ln(ε)| to
the scheme (45), which solves (7). The degeneracy to the limit scheme (53) happens
much more slowly, with speed 1/(1 + |ln(ε)|).

Remark 4. If we want to avoid the use of Fourier variable, we can replace
F−1

(
aNv
ε ρ̂n+1/2

)
by −mcd∆xρ

n+1/2. This modification is consistent with (1), and
still enjoys the AP property, but the convergence to the limit scheme does not make
a scheme for (7) arise in the intermediate regime in ε.

Proof. Since the first point comes immediately from the derivation of the scheme,
let us prove the second point. The first line of (52) gives that gn+1 = o(1) when
ε→ 0. Once injected in the second line, it yields

ρn+1 − ρn

∆t
+ F−1

(
aNv
ε ρ̂n+1/2

)
= o(1),

which is a consistent approximation of (7). Finally, aNv
ε tends to mcd|k|2 when

ε→ 0, which concludes the proof.

3.4. Integral formulation based scheme (DS). In the previous parts, we pro-
posed two numerical schemes solving (1), which in addition respect the asymptotic
behavior of the continuous solution when ε goes to 0. They enjoy the AP property,
but their precision is not uniform in ε. In this section, we propose a scheme based on
an integral formulation of (1) in Fourier variable. This approach was investigated
in [11]-[12] in the case of the fractional diffusion limit. This scheme was shown to be
uniformly accurate (UA) : its precision does not depend on the stiffness parameter
ε. A similar strategy is performed here, to deal with the diffusion case with an
anomalous scaling.

We start from the Duhamel form for f̂ε, solution of (1) in space Fourier variable

f̂ε(t, k, v) = A0(t, k, v) +

∫ t
Θ(ε)

0

e−s(1+iεk·v)ρ̂ε(t−Θ(ε)s, k)M(v)ds,

where

A0(t, k, v) = e−t(1+iεk·v)f̂in(k, v). (54)
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Evaluating at time tn+1 and integrating in velocity, we get

ρ̂ε(tn+1, k) = 〈A0(tn+1, k, ·)〉+

n∑
j=0

∫ tj+1
Θ(ε)

tj
Θ(ε)

〈
e−s(1+iεk·v)M

〉
ρ̂ε(tn+1 −Θ(ε)s, k)ds.

(55)
To write a scheme on ρ̂ε, we perform a quadrature of order 2 in the integral in s;

we have ∀j ∈ [[0, n]],∀s ∈
[

tj
Θ(ε) ,

tj+1

Θ(ε)

]
,

ρ̂ε(tn+1 −Θ(ε)s, k) =

(
1− Θ(ε)s− tj

∆t

)
ρ̂ε (tn+1 − tj)

+
Θ(ε)s− tj

∆t
ρ̂ε(tn+1 − tj+1) +O(∆t2).

(56)

Assuming that the time derivatives of ρ̂ε are uniformly bounded in ε, the remainder
is uniformly bounded by a term of magnitude O

(
∆t2

)
independently of ε. Inserting

(56) in (55) yields the following scheme for ρ̂ε

ρ̂n+1 = 〈A0(tn+1, k, ·)〉+

n∑
j=0

bj ρ̂
n−j + cj ρ̂

n+1−j , (57)

where the dependence in ε of ρ̂ε has been omitted to simplify the notations. The
coefficients bj , cj , 0 ≤ j ≤ n are given by

bj =

∫ tj+1
Θ(ε)

tj
Θ(ε)

Θ(ε)s− tj
∆t

〈
e−s(1+iεk·v)M

〉
ds

cj =

∫ tj+1
Θ(ε)

tj
Θ(ε)

(
1− Θ(ε)s− tj

∆t

)〈
e−s(1+iεk·v)M

〉
ds.

The consistency of this scheme comes directly from its derivation, but the discretiza-
tion of the integrals in velocity appearing in bj and cj is crucial to ensure the AP
property. Indeed, as in the previous parts, their continuous limit when ε goes to
0 makes the diffusion (5) appear. But the effects of the high velocities are not
captured if (29) is used. Therefore, it is necessary to modify analytically bj and
cj before applying the velocity discretization. The velocity integration of bj and cj
can be rewritten as〈

e−s(1+iεk·v)M
〉

= e−s +
〈(

e−s(1+iεk·v) − e−s
)
M
〉
|v|<1

+
〈(

e−s(1+iεk·v) − e−s
)
M
〉
|v|≥1

,

because 〈M〉 = 1. After that, the change of variables w = εv is performed in the
last term to capture the high velocity effects, and the integrals in s of bj and cj are
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computed exactly to get

bj = −e−
tj+1
Θ(ε) +

Θ(ε)

∆t
e−

tj
Θ(ε)

(
1− e−

∆t
Θ(ε)

)
+m

〈
e−

tj+1
Θ(ε) − e−

tj+1
Θ(ε)

(1+iεk·v)

1 + iεk · v

〉
|v|<1

(58)

+
Θ(ε)

∆t
m

〈
e−

tj
Θ(ε)

(1+iεk·v) 1− e−
∆t

Θ(ε)
(1+iεk·v)

(1 + iεk · v)2
− e−

tj
Θ(ε)

(
1− e−

∆t
Θ(ε)

)〉
|v|<1

+ ε2m

〈
1

|w|d+2

e−
tj+1
Θ(ε) − e−

tj+1
Θ(ε)

(1+ik·w)

1 + ik · w

〉
|w|≥ε

+
Θ(ε)

∆t
ε2m

〈
1

|w|d+2
e

tj
Θ(ε)

(1+ik·w) 1− e−
∆t

Θ(ε)
(1+ik·w)

(1 + ik · w)2

〉
|w|≥ε

− Θ(ε)

∆t
ε2m

〈
1

|w|d+2
e−

tj
Θ(ε) (1− e−

∆t
Θ(ε) )

〉
|w|≥ε

,

cj = e−
tj

Θ(ε) − Θ(ε)

∆t
e−

tj
Θ(ε)

(
1− e−

∆t
Θ(ε)

)
(59)

− Θ(ε)

∆t
m

〈
e−

tj
Θ(ε)

(1+iεk·v) 1− e−
∆t

Θ(ε)
(1+iεk·v)

(1 + iεk · v)2
− e−

tj
Θ(ε)

(
1− e−

∆t
Θ(ε)

)〉
|v|<1

+m

〈
e−

tj
Θ(ε)

(1+iεk·v)

1 + iεk · v
− e−

tj
Θ(ε)

〉
|v|<1

+ ε2m

〈
1

|w|d+2

e−
tj

Θ(ε)
(1+ik·w)

1 + ik · w
− e−

tj
Θ(ε)

〉
|w|≥ε

(60)

− Θ(ε)

∆t
ε2m

〈
1

|w|d+2
e−

tj
Θ(ε)

(1+ik·w) 1− e−
∆t

Θ(ε)
(1+ik·w)

(1 + ik · w)2

〉
|w|≥ε

+
Θ(ε)

∆t
ε2m

〈
1

|w|d+2
e−

tj
Θ(ε)

(
1− e−

∆t
Θ(ε)

)〉
|w|≥ε

.

However, it is still not sufficient to ensure the AP character of the scheme when the
integrals are discretized since, when j = 0, the term (60) reads

Θ(ε)

(
m

1 + |ln(ε)|

〈
(k · v)2

1 + ε2(k · v)2

〉
|v|<1

+
m

1 + |ln(ε)|

〈
1

|w|d+2

(k · w)2

1 + (k · w)2

〉
|w|≥ε

)
,

which is equal to Θ(ε)aε, with aε defined in (8) and rewritten in (15) (note that
the equality (15) is valid for any dimension). In Section 3.1, we established that
the discretization of this term is crucial to ensure the AP property of our schemes.
Following the strategy presented previously, we then replace (60) by an appropriate
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discretization Θ(ε)aNv
ε defined in (36) when j = 0. Eventually, c0 rewrites

c0 = Θ(ε)aNv
ε (k) + 1 (61)

− Θ(ε)

∆t

(
1− e−

∆t
Θ(ε)

)
− Θ(ε)

∆t
m

〈
1− e−

∆t
Θ(ε)

(1+iεk·v)

(1 + iεk · v)2
− 1 + e−

∆t
Θ(ε)

〉
|v|<1

− Θ(ε)

∆t
mε2

〈
1

|w|d+2

(
1− e−

∆t
Θ(ε)

(1+ik·w)

(1 + ik · w)2
− 1 + e−

∆t
Θ(ε)

)〉
|w|≥ε

.

The expressions bj (j ≥ 0), cj (j ≥ 1) and c0, defined in (58)-(59)-(61), computed
with the discretization (29) make the scheme (57) AP. Moreover, let us remark that
the scheme only uses ρ and not f . It implies that the computation of the whole
distribution f is not necessary, which represents a gain of computational cost, since
the problem for f is of higher dimension than the problem on ρ. Let us note that f
can even so be computed in Fourier variable with a scheme similar to (57). Indeed,
Duhamel formula of (1) between the times tn and tn+1 leads to

f̂ε(tn+1, k, v) = e−
∆t

Θ(ε)
(1+iεk·v)f̂ε(tn, k, v)

+

∫ ∆t
Θ(ε)

0

e−s(1+iεk·v)ρ̂ε(tn+1 −Θ(ε)s, k)M(v)ds.
(62)

As in the scheme for ρ̂, we apply the quadrature (56) in the integral in s, and the

scheme for f̂ reads

f̂n+1 = e−
∆t

Θ(ε)
(1+iεk·v)f̂n + βρ̂nM + γρ̂n+1M,

where the dependence in ε of f̂ has been omitted, and with

β =

∫ ∆t
Θ(ε)

0

Θ(ε)s

∆t
e−s(1+iεk·v)ds = −e−

∆t
Θ(ε)

(1+iεk·v)

1 + iεk · v
+

Θ(ε)

∆t

1− e−
∆t

Θ(ε)
(1+iεk·v)

(1 + iεk · v)2

(63)

γ =

∫ ∆t
Θ(ε)

0

(
1− Θ(ε)s

∆t

)
e−s(1+iεk·v)ds =

1

1 + iεk · v
− Θ(ε)

∆t

1− e−
∆t

Θ(ε)
(1+iεk·v)

(1 + iεk · v)2
.

(64)

Eventually, we have the following proposition.

Proposition 6. Provided the initial condition
(
f̂0(k, vj)

)
j∈[[1,Nv ]]

=
(
f̂in(k, vj)

)
j∈[[1,Nv ]]

, ρ̂0(k) =
〈
f̂0(k, ·)

〉
Nv

, we consider the following scheme,

defined for all k and all time indices 0 ≤ n ≤ N,N∆t = T , by ρ̂n+1(k) =

〈A0(tn+1, k, v)〉Nv
+ b0ρ̂

n(k) +
n∑
j=1

[
bj ρ̂

n−j(k) + cj ρ̂
n+1−j(k)

]
1− c0

f̂n+1 = e−
∆t

Θ(ε)
(1+iεk·v)f̂n+1 + βρ̂nM + γρ̂n+1M,

(65)
with A0, β, γ defined in (54)-(63)-(64), and bj(j ≥ 0), cj(j ≥ 1) and c0 defined in
(58)-(59)-(61) and computed with (29). This scheme has the following properties:

1. The scheme is first order in time and preserves the total mass.
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2. The scheme is AP: for a fixed ∆t, it solves the diffusion equation (5) when ε
goes to zero

ρ̂n+1 − ρ̂n

∆t
+mcd|k|2ρ̂n+1 = 0,

with c1 = 2, c2 = π, c3 = 3π
8 , and where m has been defined in (4).

3. Moreover, the semi-discrete-in-time scheme enjoys the UA property: it is first
order uniformly in ε

∃C > 0, sup
ε∈(0,1]

‖f̂N (·, ·)− f̂(T, ·, ·)‖L∞k,v
≤ C∆t.

Remark 5. The UA property of the scheme ensures that it respects the dynamics
of the convergence towards the diffusion equation (5).

Proof. The conservation of the mass can be proved by induction on the expression
of ρ̂n+1 for k = 0. Moreover, since the proof of the third point of Prop. 6 is very
similar to the one presented in [11]-[12] in the case of the fractional diffusion limit,
we just prove the AP character of the scheme (65). First of all, let us remark that
A0,bj and cj (j ≥ 1) defined in (54)-(58)-(59) are exponentially small when ε goes
to 0. The expressions (58) and (61) then give the following equivalents for b0 and
c0

b0 =
Θ(ε)

∆t
+ Θ(ε)o (1) , c0 = Θ(ε)aNv

ε +
Θ(ε)

∆t
+ Θ(ε)o(1).

Hence the scheme for ρ̂ degenerates when ε goes to 0 into

ρ̂n+1 − ρ̂n

∆t
+ aNv

ε ρ̂n+1 = 0.

The asymptotic behavior of aNv
ε has already been studied, it remains to consider

the limit of the expression of f̂n+1 when ε goes to 0. From (63) and (64), we have

β = O(Θ(ε)), γ = 1 +O(Θ(ε)),

and eventually the scheme for f̂n+1 degenerates for small ε into f̂n+1 = ρ̂n+1M.

4. Numerical tests. In this section, we propose numerical tests in dimension 1
to validate the schemes of the previous parts. For simplicity, we will denote IS
the implicit scheme of Prop. 4, MMS the micro-macro scheme of Prop. 5, and
DS the integral formulation based scheme of Prop. 6. The implicit Euler scheme
(45) for the equation (7), with aε computed with (36), will be denoted quasi-diff.
Eventually, the scheme (44) for the limit diffusion equation (5) will be denoted diff.
To highlight the consistency of the schemes, we will compare their solutions to the
solution of a reference scheme which is an explicit Euler scheme in Fourier variable
for (1) 

f̂n+1 − f̂n

∆t
+

1

Θ(ε)
(1 + iεkv) f̂n =

1

Θ(ε)
ρ̂nM

ρ̂n+1 =
〈
f̂n+1

〉
Nv

f̂0(k, v) = f̂in(k, v).

(66)

As detailed in the beginning of Section 3, all the tests are performed at time T = 0.1,
the time step being specified in each case. We will consider Nx points in space on the
interval [−1, 1] with periodic boundary conditions, and the velocities are discretized
withNv = 199 points symmetrically distributed on the interval [−10, 10]. The initial
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condition is (33). In the DS scheme, the velocity integrations with the variable w in
(58)-(59)-(61) are computed with the same grid as the integrals with the v variable.

4.1. Implicit scheme (IS). In this section, we test the properties of the IS scheme.
First of all, its consistency is tested. The left part of Fig. 3 shows that, for ε = 1,
its solution coincides with the solution of the explicit scheme (66). For this figure,
the two solutions are computed with the time step ∆t = 10−2. Then, the solution
ρ∆t of the IS scheme for a range of ∆t is compared to the solution ρ∆tref=10−6 of

the IS scheme for ∆tref = 10−6 at time T = 0.1. The relative error between these
densities

Errorconsistency(∆t, ε) =
‖ρreference − ρ∆t‖L2

Nx

‖ρreference‖L2
Nx

, (67)

with ‖ ·‖L2
Nx

defined in (32), is displayed in the right-hand side of Fig. 3 in function

of ∆t. As it is a line with slope 0.98, the numerical order of the method is 1.
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Figure 3. Left: for ∆t = 10−2 and ε = 1, the solutions of the
IS scheme and of the explicit scheme (66). Right: The relative
consistency error (67) for the IS scheme (log scale).

Then, the AP character of the IS scheme is tested. The dynamics of the con-
vergence towards the diffusion limit (5) is highlighted in the left part of Fig. 4,
where the densities obtained with the IS scheme are presented for a range of ε, and
compared to the densities given by quasi-diff and diff schemes. These solutions
are computed with ∆t = 10−2. For intermediate ε, the solution of the IS scheme
sticks to the solution of quasi-diff, and the two densities goes together to the solu-
tion of diff when ε tends to 0. The convergence towards the solution of quasi-diff
happens with speed ε

√
1 + |ln(ε)|, as suggested by the error study presented in the

right-hand side of Fig. 4. Denoting by f the distribution function obtained with
the IS scheme, and ρquasi−diff the density obtained with the quasi-diff scheme for
∆t = 10−2, the quantity

ErrorAP(ε) = ‖f − ρquasi−diffM‖L2
M−1,Nx,Nv

, (68)

with ‖ · ‖L2
M−1,Nx,Nv

defined in (32), is displayed in function of ε. This numerical

quantity decreases with the expected rate ε
√

1 + |ln(ε)| stated in Prop. 1. Note
that the numerical results of section 3.1 assure that the convergence of the solution
of IS to the solution of diff happens with the speed 1/(1 + |ln(ε)|) proved in Prop.
2.
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Figure 4. Left: for ∆t = 10−2, the solutions of IS, quasi-diff
and diff schemes for different values of ε. Right: for ∆t = 10−2,
the error (68) between the solution of IS and quasi-diff scheme in
function of ε (log scale).

4.2. Micro-macro scheme (MMS). In this section, we focus on the MMS scheme
and we highlight its properties with the same tests as in the previous section. As the
transport operator is treated with a classical upwind scheme in the MMS scheme,
the CFL condition imposes to take time steps smaller than in the previous section.
The left-hand side of Fig. 5 shows that the solutions of the MMS and explicit
schemes with ∆t = 10−4 and ε = 1 coincide. The numerical order of the MMS
scheme is studied in the right-hand side of Fig. 5, where the consistency error (67)
for ε = 1 is displayed in function of ∆t. For this figure, the density ρreference is
the density obtained with the MMS scheme for ∆t = 10−6 and ρ∆t are densities
obtained with the MMS scheme for a range of ∆t. As expected, the numerical order
of the method is 1.
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Figure 5. Left: for ∆t = 10−4 and ε = 1, the solutions of the
MMS scheme and of the explicit scheme (66). Right: The relative
consistency error (67) for the MMS scheme (log scale).

Concerning the AP character of the MMS scheme, the left-hand side of Fig. 6
shows, for a range of ε, the densities obtained with the MMS, quasi-diff and diff
schemes with ∆t = 10−4. Once again, the solution of the MMS scheme first joins
the solution of the quasi-diff scheme when ε becomes small and the two reach the
solution of diff scheme together when ε tends to 0. The speed of the convergence
towards the solution of quasi-diff scheme is ε

√
1 + |ln(ε)| stated in Prop. 1. Indeed,

the right-hand side of Fig. 6 displays the error (68), where ρquasi−diff , and the
solution f given by the MMS scheme are computed with ∆t = 10−4.

4.3. Integral formulation based scheme (DS). In this section, we test the
integral formulation scheme DS. For ε = 1, we check in the left-hand side of Fig.
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Figure 6. Left: for ∆t = 10−4, the solutions of MMS, quasi-diff
and diff schemes for different values of ε. Right: for ∆t = 10−4,
the error (68) between the solution of MMS and quasi-diff scheme
in function of ε (log scale).

7, that the solutions of the explicit and DS schemes are close. This figure was
obtained with ∆t = 10−2. The order of accuracy of the DS scheme is studied in the
right-hand side of Fig. 7. For ε = 1, it displays the error (67) between ρreference
defined as the solution of the DS scheme for ∆t = 5 · 10−5, and the solution of
the DS scheme ρ∆t for a range of ∆t. In a logarithmic scale, the slope of the line
obtained is close to 1, as expected.
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Figure 7. Left: for ∆t = 10−2 and ε = 1, the solutions of the
DS scheme and of the explicit scheme (66). Right: The relative
consistency error (67) for the DS scheme (log scale).

Then, we can study the AP character of the DS scheme. The dynamics of the
convergence towards the diffusion limit (5) is highlighted in the left-hand side of
Fig. 8. It presents the densities obtained with the DS, quasi-diff and diff schemes
for ∆t = 10−2. The solution of the DS scheme has the right behavior, since it
is very close to the solution of quasi-diff for intermediate ε, and remains stuck
to it as it goes to the solution of diff when ε goes to 0. The right-hand side of
Fig. 8 displays the error study of the convergence in ε of the solution of the DS
scheme to the solution of the quasi-diff scheme. The error (68) is displayed in a
logarithmic scale in this figure, where both ρquasi−diff and the solution f of the DS
scheme are computed with ∆t = 10−2. The convergence happens with the expected
ε
√

1 + |ln(ε)| rate.
To highlight the fact that the DS scheme is of order 1 uniformly in ε, we compare

the results given by the DS scheme for ∆tref = 5 · 10−5 to the results given by the
same DS scheme for different values of ∆t and ε. With these densities, the error
(67) is displayed in Fig. 9 as a function of ε. We observe that the error curves are
stratified with respect to ε, showing the uniformity of the scheme with respect to ε.
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Figure 8. Left: for ∆t = 10−2, the solutions of DS, quasi-diff
and diff schemes for different values of ε. Right: for ∆t = 10−2,
the error (68) between the solution of DS and quasi-diff scheme in
function of ε (log scale).
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Figure 9. The error (67) as a function of ε. The density ρreference
is the density given by the DS scheme for ∆tref = 5 ·10−5, and ρ∆t

are the densities given by the DS scheme for different values of ∆t
(log scale).

5. Conclusion. In this paper, we presented three AP schemes for a kinetic equa-
tion with a diffusion limit and an anomalous time scale We first proved that the
convergence of the solution of the kinetic equation towards the solution of the as-
ymptotic model happens with a slow rate in ε, but that this convergence goes
through an intermediate model with a quicker convergence rate. The degeneracy
ε→ 0 makes the problem stiff, which complicates the numerical computations, but
moreover the slow rate of the convergence towards the asymptotic model makes the
limit model unattainable in the numerical computations. Hence, we proposed an
adaptation of the AP approach for numerical schemes, by requiring in addition the
schemes to respect the dynamics of the degeneracy towards the limit equation. A
second stiffness arise in the design of numerical schemes for kinetic equations with
the anomalous diffusion limit we studied, since the high velocities play a crucial
role in the asymptotic analysis of the model. From a numerical point of view, it is
then necessary to take these high velocities correctly into account to ensure the AP
property of the schemes. To deal with this stiffness, we proposed a method based
on analytical transformation of the terms leading to the asymptotic model in the
schemes. A similar approach was proposed in [11, 12] in the case of a fractional
diffusion limit for the kinetic equation.
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The first scheme we presented is based on a fully implicit discretization of the
kinetic equation in Fourier variable, and the second one uses a micro-macro de-
composition of the distribution function and treats the transport explicitely. Both
of them enjoy the AP property and respect the dynamics of the convergence to-
wards the limit model. The last scheme we proposed, which is based on an integral
formulation of the kinetic equation in space Fourier variable, even enjoys the UA
property.

In a near future, we aim at extending this work to more general context, consid-
ering an integral collision operator. In this context, the study can not be simplified
by the use of the space Fourier variable. However, schemes based on a micro-macro
decomposition of the distribution can be written. Moreover, the case of fractional
diffusion limit of kinetic equations with an integral collision operator can also be
treated with such an approach.
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