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Practical and precise projector-camera calibration
Liming Yang∗ Jean-Marie Normand† Guillaume Moreau‡

Ecole Centrale de Nantes, UMR CNRS 1563 AAU, France

ABSTRACT

Projectors are important display devices for large scale augmented
reality applications. However, precisely calibrating projectors with
large focus distances implies a trade-off between practicality and
accuracy. People either need a huge calibration board or a pre-
cise 3D model [12]. In this paper, we present a practical projector-
camera calibration method to solve this problem. The user only
needs a small calibration board to calibrate the system regardless
of the focus distance of the projector. Results show that the root-
mean-squared re-projection error (RMSE) for a 450cm projection
distance is only about 4mm, even though it is calibrated using a
small B4 (250×353mm) calibration board.

Index Terms: H.5.1 [INFORMATION INTERFACES AND
PRESENTATION (e.g., HCI)]: Multimedia Information Systems—
Artificial, augmented, and virtual realities;

1 INTRODUCTION

Projector-camera systems (referred to as ProCam systems in the
following) are important vision systems that raise a lot of interest
both for research and industry. They can indeed be used for many
applications such as 3D measurement and augmented reality (AR).
In AR applications, cameras are used to capture the environment
and track its changes, and projectors are then used to project (i.e. to
augment) information directly onto objects. This projection-based
augmentation is commonly referred to as Spatial Augmented Real-
ity (SAR) [2]. Unlike head-mounted or hand-held AR, one of the
great advantages of SAR is that users are free of instruments. Users
can interact with the environment more naturally, especially when
they have complex tasks to carry out, such as in industrial produc-
tions and maintenance.

Calibration is one of the most essential elements of Projector-
Camera systems, namely determining the intrinsic matrix and the
distortion coefficients of cameras and projectors, as well as their rel-
ative position. A precise calibration will produce a precise mapping
between the physical world and camera/projector images, which
permits the augmented information to be projected to their desired
positions in SAR. Although there exists very mature and simple
methods for camera calibration [18], calibrating a projector remains
difficult and unpractical, especially when projecting at large dis-
tances [12].

In this paper, we propose a method to calibrate a ProCam system
consisting of one camera and one projector more practically, i.e. by
using only a small B4 printed pattern attached to a rigid board. Af-
ter a review of existing techniques, we present our method. Results
are provided for both calibration and augmentation evaluations.
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1.1 Related works

There exist two families of methods for projector calibration: cali-
brating each light stripe [14] or each pixel [9] of the projector, and
calibrating the projector as a whole using the pinhole model. The
former is very time consuming since each light stripe or pixel needs
to be calibrated individually. The latter mainly features two cate-
gories of techniques: two-views based methods and inverse camera
methods.

As an example of “two-views based methods”, Yamazaki et
al. [15] use structured-light patterns to create dense point corre-
spondences between the camera and the projector views to find the
fundamental matrix by exploiting two-view geometry properties.
The final intrinsic matrices of both the projector and the camera are
calculated iteratively by assuming their initial values. This method
has no error propagation but the matrices of the projector and of the
camera have a coupling-effect. It is sensitive to initial values and
only estimates 3 parameters of the intrinsic matrix. With the help
of a known precise 3D model of a target object, Resch et al. [12]
use bundle adjustment to iteratively correct the estimated matrices
without dependence on initial values. However, a precise 3D model
is not always available in the general case.

The “inverse camera” methods, treat projectors as inverse cam-
eras, so that they can be calibrated using Zhang’s method [18].
More precisely, a calibration board with a pre-defined pattern is
used to calibrate the camera. In the meantime, the projector projects
other patterns onto the calibration board. These projected patterns
are used to find camera-projector point correspondences in order
to calibrate the projector. Several methods exist for finding such
correspondences. Structured-light methods [17, 8] employ series
of coded gray-bars images. Even though methods for defocused
projector exists [7], the board needs to be frozen at the same posi-
tion by the user for several seconds, which is not convenient. Other
methods capture fewer or even a single image for each board posi-
tion, e.g. by projecting regular dot patterns [11], chessboards [5] or
a matrix of ARToolKit markers [1]. Our method follows a similar
approach.

In [5] and [1], the calibration board has to be positioned in the fo-
cus zone (where projected images are clear), or the pattern becomes
too blurred to be recognized. Moreover, Zhang’s method [18] re-
quires the pattern to occupy a large part of the field of view of the
projector in order to give a better result. Consequently if a wide-
angle projector is focusing at about 2m, the user needs to manip-
ulate at least an A0 size (841×1189mm) calibration board, which
is a burden. The user can also choose to calibrate the projector at
a short distance and then change the focus depending on the ap-
plication, but this will induce a loss of precision, as showed later
in Section 4. We also experimentally noticed that for Audet et
al.’s method [1], projectors’ brightness greatly influences markers
recognition.

Ouellet et al. [11] need to take 3 images for each board position
while the projector is successively projecting (1) a white image, (2)
a regular pattern, (3) a calibration regular pattern. These images are
highly related: (1) is subtracted from (2) to find the homography
between the projector and the camera (Hcp). If the board moves or
ambient lighting changes, detection may fail. (3) needs Hcp to in-
terleave projected points between printed ones. If the board moves,



points may interfere. Moreover, a few missing points in the regular
pattern can lead to detection failures. Thus the whole process is not
very robust. At last, this method detects projected dot centers by
back projecting them onto the board plane. When the board is out
of focus, back projected dots may be heavily deformed, which can
make the center detection difficult and introduce large errors.

1.2 Contribution
Compared to [1] and [11], our work has the following advantages
which makes it much more practical and usable:

• it can work at large distances without having to manipulate
unpractical huge calibration boards, unlike [1]

• it uses random dot patterns, which are robust to pattern inter-
ference and insensitive to lighting, unlike both [1] and [11]

• it only needs one image for each board position, thus has a
faster recovery from detection failure, unlike [11]

• it gives more stable results for intrinsic matrices of cameras
and projectors, compared to [1]

We believe this work can make projector calibration much easier
both for academic researchers and spatial augmented reality users,
especially when projecting at large distances.

2 CALIBRATION METHOD

Our method relies on simple manipulations of a calibration board
whatever the focus distance used on the projector: the user holds a
small calibration board before the camera and the projector. If the
board is still for a while (≈ 1s), an image is automatically captured
for calibration. Once a pre-defined number (K, cf. Section 3) of
images are acquired, the system is calibrated (cf. Figure 1).

Figure 1: Calibration: only a small board is manipulated whatever the
focus distance of the projector.

In the following, we first introduce some basic notations and the
generic “inverse camera” method. Then we present our calibra-
tion patterns and how to find feature correspondences. Finally, the
whole calibration procedure is presented.

2.1 Basic notations and inverse camera method
The ProCam system is described by the camera intrinsic matrix Kc,
its distortion coefficients Dc, the projector intrinsic matrix Kp, its
distortion coefficients Dp, the projector rotation in camera frame R
and the position of the projector’s optical center in camera frame t.
More precisely, the intrinsic matrix is defined by [3]:

Kε =

 fεx γε uε

0 fεy vε

0 0 1

 (1)

where ε stands for c or p, fεx and fεy are focal lengths, (uε , vε )
is the position of the principal point, γε is the skew.

The “inverse camera” method starts with two sets of correspon-
dences for each view of the calibration board: ccb = {(x,x(c))} and
ccp = {(y(p),y(c))}, where x is an interest point (corner/center of
markers, etc.) on the calibration board, x(c) is its image in the cam-
era; y(p) is an interest point in the projected image, y(c) is its image
viewed by camera. With ccb from K(K ≥ 3) views, the camera can
be first calibrated by Zhang’s method [18]. Lens distortion in x(c)

and y(c) can then be removed.
For the projector, the Board-Camera homography Hcb is found

with ccb. The location on the calibration board of projected features
y(p) can then be expressed as H−1

cb y(c), thus a new correspondence
set cpb = {(y(p),H−1

cb y(c))} can be established for each view. At
last, the projector can be calibrated with cpb from K views.

2.2 Calibration pattern
We choose to use randomly distributed circle points as both physi-
cal patterns and projected patterns, with the following advantages:

• Circle points have no internal structures unlike ARToolKit
markers, they are thus less influenced by defocus or blur

• Different random dots-based markers can be distinguished,
real-time tracked and accurately located even in the case of
partial occlusion and over/under-detections, unlike regular
patterns. This makes the method robust against pattern over-
lapping.

• Points occupy a small surface: the same area can contain more
points than other geometries, so more correspondences can be
established

In order to track patterns and find point correspondences, we
use the Local Geometric Consensus (LGC) algorithm [16]. It is
a general algorithm for matching/tracking random point patterns
(2D/3D) undergoing various geometric transformations (e.g. affine,
perspective) in real-time. LGC relies on local subset geometric dis-
tribution as characteristic features to generate rough hypotheses and
uses neighboring subset geometric consensus to reject false match-
ings. It works in two phases: during the off-line registration phase,
it splits model point patterns into different local patches and regis-
ters them using Geometric Hashing. During the on-line matching
phase, local patches from scene point patterns are used to match
with pre-registered model patches. Once a local match is found,
LGC tries to find more geometrically coherent matchings in the
neighborhood. If the matching contains enough correspondences,
a model is claimed to be found. The method remains accurate with
moderate point jitter, it is also robust to over/under detection and
partial occlusion. So it is very suitable for calibration purposes.

Figure 2: Calibration Pattern: Pb black dots printed on a piece of
paper, Pp in white are projected. Both form the original pattern Po.

The calibration pattern (cf. Figure 2) is constructed as follows:
2N points are randomly generated in a rectangle region, called the



original pattern (Po) afterwards. The first half of these points (Pb)
are printed on a paper and attached to a rigid board, the second half
(Pp) is pre-warped and projected onto the board in order to form Po
during the calibration procedure (cf. Section 2.3). We set a min-
imum inter-point distance for all 2N points to have a more homo-
geneous distribution, which improves camera calibration according
to [13]. Since our objective is to calibrate the projector with a far
focus by using a small calibration board, the board does not have to
be close to the focus plane of the projector, so the projected points
will be defocused and become larger. The minimum inter-point dis-
tance requirement makes the defocused projected points less likely
to overlap with printed points.

2.3 Algorithm

We use LGC to find point correspondences, the two basic opera-
tions of this algorithm are defined as follows:

LGC.register(P) (2)

[P̃,Pi,H] = LGC.match(I) (3)

Operation (2) registers a model point pattern P into LGC, several
models may be registered; Operation (3) matches detected black
points in image I with all registered models. If a model Pi is found
in the detected pattern, operation (3) returns Pi and their corre-
sponding detected points P̃. An homography H : P̃ = H(Pi) is also
returned.

The algorithm contains three parts: initialization, manipulation
and improvements (cf. Algorithm 1). For initialization, both Pb and
Pp points are registered into LGC as models. Initial value Hpre is
defined so that Hpre(Pp) exactly fits the projector resolution.

During manipulation, the algorithm matches Pb (i.e. calibration
board) with LGC. Once the board is found, it starts to detect and
match Pp on the calibration board in the same way. If Pp is found
as well, an homography Hpre is computed which permits to warp
the projected pattern to the right position for the next iteration (cf.
Figure 3). Note that Hpre only warps points’ positions. When both
patterns are well aligned (meaning that they form well Po) and the
board is steady for ≈ 1s, image I is captured, both Hbc and Hpc are
recorded. We choose ts = 3.0 pixels and ta = 2.0 pixels in Algo-
rithm 1 empirically.

Once images from K views are obtained, an improvement step
is executed. It is used to deal with the fact that the center of a
circle is not perspective invariant. The approach is similar to [4]:
each captured image I is rectified so that points are nearly circle.
Then the OpenCV’s MSER detector [10] is used to detect ellipse
centers. The error introduced by this method in the defocused case
is discussed in the following section.

Hpre

Hcp Hcb

Pp PbP’b & P’p

L

l

fc zOc

x

y

Figure 3: Point patterns used in Algorithm 1. From left to right: Pp,
projected pattern Hpre(Pp), P′b and P′p in camera view, board pattern
Pb. Hcp = Hcb if P′b and P′p are well aligned on board.

The initialization step takes ≈ 1s, the manipulation sequence is
real time, the improvement step can process 2− 3 frames per sec-
ond.

Algorithm 1 Algorithm
LGC.register(Pb)
LGC.register(Pp)
set Hpre such that Hpre(Pp) exactly fits in projector resolution

while Less than K views are captured do
Projector: Draw circles at Hpre(Pp) and projecting
Camera: Get new image I
[P′b,Pb,Hcb] = LGC.match(I)
if P′b found then

[P′p,Pp,Hcp] = LGC.match(Ĩ), Ĩ is I with inverted color.
if P′p found then

steady = ∀p ∈ P′b has moved less than ts since last image
aligned = ∀p ∈ Pb,

∥∥Hcb(p)−Hcp(p)
∥∥< ta

if steady && aligned then
if last over 1s then

Capture I, record correspondences (P′b,Pb),
(P′p,Hpre(Pp)) and homographies Hcb,Hcp

end if
else

Hpre = HpreH−1
cp Hcb

end if
end if

end if
end while

Improve detection of P′b in rectified views Ib = H−1
cb I

Improve detection of P′p in rectified views Ip = H−1
cp I

Calibrate the system (cf. Section 2.1)

2.4 Defocusing error

For any projected circle, the center of its defocused projection is
not equal to the projection of its center in the general case. This is
what introduces the defocusing error.

Let so be a point source with center Eo on the projector plane.
The projection of Eo on the calibration board is defined by the
pinhole projector model where no defocus effect occurs. The re-
lationship between points on the calibration board and points on
the projector plane under pinhole model is governed by Hbp. So
its projection on the calibration board is Hbp(Eo). In the improve-
ment step, projected dots centers are detected in the rectified view
Ip = H−1

cp I. Assume the projector works inversely, i.e. it captures
world object and forms images on projector plane. Then, Ip can be
regarded as an image “seen” by the pinhole inverse-projector. Let
sr be the spot on Ip with center Er. H−1

cb Hcp(Er) = Hbp(Er) is then
used as the world point for projector calibration. Thus, the error of
detection due to projector’s defocus on the calibration board can be
expressed as Hbp(Er)−Hbp(Eo). If it is expressed on the projector
plane, then e = Er−Eo.

We show in the Appendix that the upper bound of this error can
be roughly expressed as:

emax =
0.52 f d2

b2 ≈ 0.29px (4)

In our experiments, we used the following values: effective fo-
cal length f ≈ 2000px, diameter of the lens d=8.35mm, distance
between the calibration board and the projector b =50cm.

Note that Eq. (4) can also be used to estimate the smallest admis-

sible board distance for different projectors bmin = d
√

f
2emax

. This
indicates the drawback of our method for large lens projectors.



3 CALIBRATION RESULTS

Our experimental system consists of a LogiTech C270 webcam
(working resolution 640× 480), an Epson EB-1771W projector
(resolution 1920×1080, lens diameter 8.35mm), a laptop (Intel i7-
4510U@2.00GHz CPU, 8GB of RAM) and calibration boards. We
use our method to calibrate the system with the projector focusing
at various distances, and compare the results with Audet et al. [1].
This method is chosen as a reference since it presents competitive
results compared to other ones, source code is available online and
it is easy to use.

Audet et al. [1] propose to use a B4 paper (250× 353mm) at-
tached to a rigid board as calibration pattern. In order to ease com-
parison, we use a calibration board of the same size with 2N = 200
points. We found that with this size, using a 2mm radius for points
with 16mm minimum inter-point distance works well. The radius
of projected points is ro = 6px.

Figure 4: Comparison of a 2×A0 calibration board used by Audet’s
method [1] and a B4 calibration board used by our method (bottom-
right) for large focus distances.

For the projector we use, a B4 board covers almost all the pro-
jection view only at about 50cm from the projector. For other fo-
cus distances, three different sizes of pattern (A2, A1, 2×A0) are
printed. Marker centers are used for Audet et al.’s method as they
report to have a better result. For our method, we only use the
B4 calibration board to demonstrate that it is much easier to use
(cf. Figure 4). At each focus distance, we calibrate 5 times for
each method and average the result. For each calibration, K = 10
images are captured, following [1]. Both methods call OpenCV’s
calibrateCamera method for final calibration, with the same set of
options and parameters. To prevent projector’s optical properties
changing with temperature, the projector is pre-warmed 30 minutes
before experiments.

We first show the results of calibration re-projection root mean
square errors (RMSE) in Figure 5. RMSE is the most com-
monly used error measurement for camera and projector calibra-
tions. Compared to Audet et al.’s method, our average RMSE is
smaller but our maximum RMSE is larger. This is reasonable since
the more correspondences a method uses, the more likely extreme
values appear.

Both methods rely on Zhang [18] to find the projector’s intrin-
sic matrix and distortions coefficients by minimizing the sum of
re-projection errors of all correspondences. However, as pointed
out by [6, 13], minimizing re-projection errors on calibration data
cannot guarantee that the estimated internal parameters are the best
ones. Ideally, when no modification is applied to the ProCam sys-
tem, separated consecutive calibrations should lead to repeatability,
i.e. stable intrinsic matrix and lens distortions for both devices.

Figure 6 shows the results on focal lengths estimation at differ-
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Figure 5: Average and maximum re-projection errors (RMSE): A red
point on the curve indicates a significant difference between Audet’s
method and ours, at p < 0.05 with t-test.

ent focus distances. Focal lengths estimated by our method are
very stable, with t(5) = 2.69 for standard deviation (SD) of fpx
and t(5) = 2.49 for SD of fpy, p < 0.05. One can clearly ob-
serve the effective focal length changes due to focus change. In
Figure 7, our principal point positions seem more stable as well,
but the difference is not significant in t-test (t(5) = 1.35 for SD
of u and t(5) = 1.92 for SD of v, p > 0.05). For the camera,
our method gives stable results fc = 812.4± 0.9 against Audet’s
fc = 808.1±4.2, ( fcx, fcy are averaged together).

To make a short summary, our method gives a smaller RMSE on
calibration data, and more stable intrinsic estimates, despite using a
much smaller calibration board.

4 AUGMENTATION EVALUATION

In the SAR community, people do not care about the true value
of intrinsic matrix, nor about the RMSE of calibration data, since
real augmentation will hardly lie on these calibration points. They
care more about how precise some information can be projected in
the focus zone of the projector. In this section, we use calibration-
independent data to evaluate this effect.

When relying on Audet et al.’s method to augment information
at large distances, the user may choose to calibrate either at a short
focus distance with a small board (B4 size) with a loss of preci-
sion, or to calibrate at a larger distance with more burden (due to
the use of potentially very big calibration boards). As mentioned
before, our method offers the advantage to be able to calibrate the
ProCam system with only a B4 size calibration board. In order
to draw a fair comparison between our method and Audet et al.’s
method, three different results are compared here: our method and
Audet’s calibrating at Correct Focus Distances with different size
of boards (i.e. focus distances of the projector during calibration
and evaluation are the same, denoted in the figures as Audet-CFD),
and Audet method calibrating with a focus set at 50cm with a B4
board (denoted as Audet-50cm).

We use two asymmetric circle patterns (cf. Figure 8) to inves-
tigate projection errors in the focus zone of the projector. Qb con-
tains the coordinates of all black points while Qw contains the co-
ordinates of the white ones. According to the distance between
the ProCam system and the calibration board, different sizes of
these patterns are generated. Qb are printed at exact positions and
with known sizes so that we know their true physical positions on
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Figure 6: Focal length results: our method gives a significantly more
stable estimation at p < 0.05 with t-test. It shows the trend of focal
length variation.
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Figure 7: Principal point position results: there is no significant dif-
ference between our method and Audet’s one, despite the size differ-
ence between calibration patterns.

Figure 8: Evaluation pattern: (printed) black points are used for lo-
calization, (projected) white points are used to measure projection
errors.

the paper. Qw contains the ground-truth positions at which white
points should be projected. They are drawn in an image I(Qp) to be
warped and projected later. After projection, the real positions of
the projected circles are measured by the camera and compared to
their ground truth values to compute projection errors. A detailed
version of this evaluation algorithm is presented in Algorithm 2.

Algorithm 2 Evaluation
Input: Kc,Dc,Kp,Dp,R, t to be evaluated, Qb and Qw
Output: List of re-projection errors {~er}
I← undistortCameraView(Kc,Dc)
Q′b← detectBlackDots(I)∗
Hcb← computeHomography(Q′b,Qb) with Q′b = Hcb(Qb)
Rcb, tcb← computePatternPosition(Kc,Hcb)
Rpb, tpb← coordinateTrans f ormation(R, t,Rcb, tcb)
Hpb← constructHomography(Rpb, tpb,Kp)
Id p← pro jectDistortedImage(I(Qp),Dp,Hpb)
Q′w← detectWhiteDots(Id p)∗
{~er}← H−1

cb (q′w)−qw, for all (q′w,qw) ∈ (Q′w,Qw)
(*)Perspective and lens’ distortions are removed from images.
This allows us to find real circle centers.

Before showing the results, we need to address an issue: how
precise can this evaluation algorithm be? The precision depends on
both camera and projector intrinsics. Let us take an example with
the camera (projector would follow the same reasoning): assum-
ing a board parallel to the camera’s image plane is positioned at a
distance z from the camera’s origin (cf. Figure 9). A segment of
length L is measured by the camera as being l pixels long, so we
have l = fcz−1L. Furthermore, if the angle between the board and
the camera optical plane is ϕ , l = fcz−1Lcos(ϕ).

The smaller the focal length is, the smaller l is. Assuming l =
0.5 pixel (used for illustrative purpose as an approximation of the
MSER detector precision), the minimum on board difference we
can measure is:

dmin =
z

2min( fc, fp)cosϕ
(5)

Hpre

Hcp Hcb

Pp PbP’b & P’p

L

l

fc zOc

x

y

Figure 9: Projection of a segment: Oc is the camera’s origin. World
segment L is on a board parallel to camera image plane at z, its image
l is on the image plane. We have l/L = fc/z.

RMSE is calcuated from {~er} in each evaluation image. Consid-
ering two series of RMSE e1 and e2, if the difference of the average
value ∑e1/n1−∑e2/n2 is less than dmin, we consider it to be nu-
merical noise. This effect is represented in Figures 10, 13, 14 as
a gray region englobing our curve, which means that other RMSE
inside this region shows no difference from our result due to the
measurement limit. Otherwise, an independent significant test (t-
test with different variations) is performed against the result of our
method:



H0 : ∑e1/n1 = ∑e2/n2 (6)

We choose p = 0.05, which means the probability that H0 is
wrongly rejected is less than 5%. In our system, fc < fp, so we
have min( fc, fp) = fc ≈ 810 (cf. Section 3).

4.1 Focus distance

We first evaluate RMS re-projection errors at different focus dis-
tances (cf. Figure 10). The circle pattern is placed in the center
of the focus zone to have the least lens distortions. Even only cal-
ibrated at 50cm, Audet-50cm method works well for short focus
distances (< 250cm), but the RMSE grows rapidly for large focus
distances. Except for 250cm, there is no significant performance
difference between our method and Audet-CFD method although
we have to remind the results of Audet-CFD’s method are obtained
with huge cumbersome calibration boards. For our method, the
RMSE for a 450cm focus/projection distance is only about 4mm.
To have a clear visual difference, we choose 450cm focus to show
the re-projection difference (cf. Figure 11).
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Figure 10: RMSE with different focus distances. Color dots mean
that RMSE significantly differs from our result (H0 is rejected).

Figure 11: Re-projection error in rectified views (focusing at 450cm).
From left to right: ours, Audet-CFD, Audet-50cm. Red lines are drawn
to show points alignment. Circles diameter is 48mm.

4.2 Error distribution

Figure 12 shows error distribution in a front view at 250cm. The
circle board is placed at four different places to cover the whole pro-
jector view. Both our method and Audet-CFD method have small
errors while Audet-50cm gives large errors especially for small y
values. We can notice that Audet-CFD generally has smaller errors
than ours in Figure 12 while our method shows smaller RMSE at
250cm in Figure 10. However, this is not contradictory, since the
error difference reaches the limits of the measurement system.
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Figure 12: Error distribution in projector’s view (focusing at 250cm).
Re-projection errors (instead of RMSE) are used in the t-test: Color
circles indicate significant differences from our result.

4.3 Perspective and depth
At last, we study the influence of perspective angle and depth in
the projector’s focus zone. The projector is always focusing at
250cm. Figure 13 shows that all methods perform worse with large
oblique angles. Audet-50cm method is significantly worse in many
cases while our method and Audet-CFD give almost the same re-
sult, yet again at the expense of the size of the calibration board.
Figure 14 shows that when further away from the projector, Audet-
50cm method has a poor performance.
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Figure 13: RMSE with various rotations (focusing at 250cm). Color
dots mean RMSE significantly differs from our result (H0 is rejected).

5 CONCLUSION

We have presented a practical method to calibrate a projector-
camera system. The method is projector focus independent, user-
friendly and interacts with the user in real-time. We evaluated
the calibration results with calibration-independent data. The re-
projection error of the system is competitive with regard to the
state-of-art, but the method only demands a small calibration board
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Figure 14: RMSE with various depths (focusing at 250cm). Color
dots mean RMSE significantly differs from our result. (H0 is rejected).

and simple manipulations even at large focus distances (more than
2.5m). Results also show that the calibrated intrinsic matrix of the
projector is more stable than other state-of-the-art methods [1]. The
drawback of our method is that it potentially has larger system er-
ror for projector with large lens. Nevertheless this can be solved
by calibrating the system at a slightly bigger distance, which is still
closer than state-of-the-art methods [1].

APPENDIX
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Figure 15: Projection geometry for defocusing error: O is projector
optical center, po is the projector plane, pi is the plane of focus, pb
is the board plane. sb is the defocused spot on the board, sr is the
defocused spot “seen” by an inverse pinhole projector.

In this section, we compute e from Eq. (4) in a general 3D case.
In Figure 15, the projector lens is located at O with diameter d.

A circle so(xo,yo,−u;ro) is located on the projector’s plane po(z =
−u). It is projected and forms a clear image si(xi,yi,v;ri) on the
plane of focus pi(z = v). All light coming from so and transmitted
by the lens forms a blue cone Cb, which follows a standard lens
projection model.

Cb intersects the board plane pb and forms the light spot sb on
the board. The ellipse sb is “seen” by the inverse-projector (cf.

Section 2.4) with pinhole model (represented by a red elliptic cone
Cr), and forms sr on the rectified view Ip, which coincides with
the projector plane. As discussed in Section 2.4, the error e in the
projector’s plane is the difference between so and sb.

To derive the error e, the coordinate system is constructed so
that the angle between pb and the projector’s z-axis is ϕ . Then the
equations of Cb and the board plane pb are:

Cb :


x(t,α) = xo

zo
t + d

2
[
1− (d−2ri)

t
dv
]

cosα

y(t,α) = yo
zo

t + d
2
[
1− (d−2ri)

t
dv
]

sinα

z(t,α) = t
(7)

lb : z− xcotϕ−b = 0 (8)

where t, α are two parameters for Cb.
By using the fact that sb is the intersection of Cb and lb; both

sb and sr lines on the surface of Cr; Cr is an elliptic cone passing
through O; and sr is the intersection between Cr and po. We can
prove that sr is an ellipse centered at (xr,yr), with:

{
xr = xo +

ud2 cotϕ

4b2−d2 cot2 ϕ

(
1− xo

yo
cotϕ− b

v +
2bro
ud

)
yr = yo

(9)

Thus the error e is

e =
ud2 cotϕ

4b2−d2 cot2 ϕ

(
1− cotϕ

xo

u
− b

v
+

2bro

ud

)
(10)

where u is the object distance; v is the focus distance; d is the lens
diameter; ϕ is the angle between z-axis and the board (cf. Fig. 15),
usually in [45◦,135◦] for calibration; pb intersects z-axis at (0,0,b);
xo measures the distance between so’s center and the principle point
in the projector plane along x-axis.

We can see from Eq. (10) that, if the board is vertical (i.e. ϕ =
90◦), or with pinhole projector (i.e. d = 0), the error will be 0. This
corresponds to our intuitive knowledge.

In our experiment, the projector’s width W = 1920 px, its height
H = 1080 px, the effective focal length (i.e. object plane distance)
f = u ≈ 2000 px, b = 50cm, ro = 6 px. The maximum error emax
is obtained when v→∞, ϕ = ϕmax = 135◦ and xo =

√
W 2/4+H2.

It can be approximated by:

emax ≈
0.52 f d2

b2 ≈ 0.29px (11)
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