
HAL Id: hal-01389060
https://hal.science/hal-01389060

Submitted on 27 Oct 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Real-time surface of revolution reconstruction on dense
SLAM

Liming Yang, Hideaki Uchiyama, Jean-Marie Normand, Guillaume Moreau,
Hajime Nahagara, Rin-Ichiro Taniguchi

To cite this version:
Liming Yang, Hideaki Uchiyama, Jean-Marie Normand, Guillaume Moreau, Hajime Nahagara, et al..
Real-time surface of revolution reconstruction on dense SLAM. 3D Vision Conference 2016, Oct 2016,
Palo Alto, United States. �hal-01389060�

https://hal.science/hal-01389060
https://hal.archives-ouvertes.fr

Real-time surface of revolution reconstruction on dense SLAM

Liming Yang∗

Ecole Centrale de Nantes
Hideaki Uchiyama
Kyushu University

Jean-Marie Normand
Ecole Centrale de Nantes

Guillaume Moreau
Ecole Centrale de Nantes

Hajime Nagahara
Kyushu University

Rin-ichiro Taniguchi
Kyushu University

Abstract

We present a fast and accurate method for reconstructing
surfaces of revolution (SoR) on 3D data and its application
to structural modeling of a cluttered scene in real-time. To
estimate a SoR axis, we derive an approximately linear cost
function for fast convergence. Also, we design a framework
for reconstructing SoR on dense SLAM. In the experiment
results, we show our method is accurate, robust to noise
and runs in real-time.

1. Introduction

Scene understanding from 3D data is an important re-
search topic in computer vision and robotic perception be-
cause it can be applied to various types of systems such
as robotic grasping, model simplification, augmented re-
ality, etc. Existing methods on this topic can be classi-
fied into two main families: top-down and bottom-up ap-
proaches [6]. Top-down approaches are often referred to
as object detection, since they aim at detecting pre-known
models. Bottom-up approaches are sometimes called ge-
ometric reconstruction methods. They detect primitive
shapes in a scene and establish relationships between these
shapes whenever possible.

Primitive detection and localization is a crucial step in
bottom-up approaches: it represents the first step of those
methods and determines their application range. However,
existing approaches can only deal with a limited type of
primitive shapes such as: planes only [6], cylinders only [9]
or thin-structures [11]. More complex primitives such as
spheres, cones or tori [10] can be detected but those tech-
niques still remain limited to pre-defined parametric shapes.
It is important for applications in reverse engineering or in
the construction field to deal with various types of geomet-
ric primitive shapes. Also, on-line scene understanding is
desirable as dense SLAM runs in real-time [14].

In this paper, we aim at detecting and reconstructing sur-
faces of revolution (SoR) in a cluttered scene in real-time.

SoR can express the majority of primitives and are quite
common in man-made objects due to their ease of produc-
tion. Since the most crucial step in detecting a SoR is to
estimate its rotation axis, we propose a fast and accurate
method, which boils down the estimation of rotation axis to
one dimension search. The main contributions of this paper
are summarized as follows:

• a fast and accurate estimation of SoR axes on 3D data

• a framework for detecting, localizing and reconstruct-
ing SoR in a cluttered scene in real-time

The rest of the paper is organized as follows: after in-
troducing related work in Section 2, we present a fast and
accurate method for SoR axis estimation in Section 3, its
implementation details in Section 4 and real-time SoR re-
construction in Section 5. Finally, we present our results
with both synthetic and real data in Section 6.

2. Related work
For semantic 3D understanding, structural modeling us-

ing geometric primitives has been investigated in the liter-
ature. Qiu et al. [9] use parallel cylinder detection to re-
construct a pipeline system. Song et al. [11] use beams and
planes to reconstruct thin structural systems, such as chairs.
Thanh et al. [6] use planes to find semantic structures of a
scene. In order to model the structure of more complex ob-
jects, Schnabel et al. [10] propose a RANSAC-like method
which can detect cones, cylinders, spheres and tori to recon-
struct more types of primitive shapes. Taguchi et al. [12]
improved this method by introducing distance field func-
tions for efficient computation. Drost et al. [2] propose to
use Hough Transform to detect cylinders and spheres. All
these methods can detect limited and parametric shapes, and
are not designed to work in real-time.

A surface of revolution (SoR), or rotational object, is
formed by rotating a 2D curve (i.e. the profile) in 3D
space with respect to a 3D line (i.e. the axis), thus it is
axis-symmetric and is a more general representation of ge-
ometric primitives. Once the position of its rotation axis is

4321

determined, the profile can be easily calculated. Existing
approaches are dedicated to estimate the rotation axis of a
SoR, and can be classified as direct, iterative and brute force
methods. For direct methods, Pottmann et al. [8] use 3D line
geometry to classify surfaces and find the rotation axis of a
SoR by solving a 6D eigenvalue problem. Lou et al. [4] de-
rive the same formulation by using distance functions. For
iterative methods, [4],[15] and [7] use ICP-like method [1].
They first estimate the profile function of a SoR by using
a presumed rotation axis, thus creating an initial model of
the SoR. Then, they try to align this model with the point
cloud, which results in a better estimation of the axis for the
next iteration. Brute force methods use the fact that the in-
tersection between the SoR and a plane perpendicular to its
rotation axis is a circle. Han et al. [3] use planes containing
the normal of a surface point to cut a SoR and evaluate the
intersecting curve. The plane which gives the least curva-
ture variation is used to calculate the rotation axis. Mara et
al. [5] use a set of parallel planes to cut a SoR. Then circles
are fitted on each plane and the variation of circle centers
across all planes is calculated. This set of planes is then ro-
tated in a 2-dimensional search space so that the set which
gives the least variation of circle centers is used to calculate
the rotation axis.

Although direct methods are quite fast, they cannot find
accurate results if input data contains even moderate noise
(cf. Section 6). Iterative methods use the whole point cloud,
fit the SoR profile at each step, and are thus very time con-
suming. Brute force is time consuming as well. To recon-
struct SoR in real-time, we propose a method to make the
iterative step faster but still accurate. It is inspired by the
method of Mara et al. [5] that uses parallel planes to cut a
SoR. However, [5] uses a 2-dimensional brute force search,
while our method finds the axis by solving a 1-dimensional
objective function. The same cutting operation (cf. Sec-
tion 4.2) is repeated near a hundred times in [5] but is only
required at most 5 times in our method.

3. Surface of revolution axis estimation
The procedure of reconstructing a SoR in our method is

summarized as follows:

1. Estimate initial rotation axis l0 using Pottmann’s
method [8] (denoted as P-method afterwards)

2. Improve rotation axis estimation (cf. Algorithm 1)

(a) Use parallel planes to cut the SoR along l0
(b) For each plane: find the center of the intersecting

curve (cf. Figure 1)

(c) Fit a line to all centers

(d) Rotate the cutting planes and goto step 2a if the
line is not perpendicular to the planes

x

40 20
0

20
40

y

40
20

0
20

40

z

0

20

40

60

80

100

R

P1

C1

O1

C2

O2

l l0

C3
O3

Ps

lg
v

θφ

O p
2

O p
3 lc

Figure 1. Symmetry of SoR and planes

Figure 2. Sketch of Ps: All useful quantities are inside Ps

3. Reconstruct the SoR by finding its profile (cf. Sec-
tion 4.1)

A fast and accurate iterative step 2 is our main contri-
bution. Usually, the direction of a rotation axis l can be
determined by two Euler angles and many existing methods
use two dimensional search, such as Mara et al. [5]. We
show that the search space can be reduced to one dimen-
sion, and the objective function is simple to solve. It makes
the algorithm more efficient. Steps 1 and 3 can be seen as
pre-process and post-process respectively.

In this section, we first explain the idea of step 2 and then
mathematically prove it. The implementation of step 2 and
step 3 are then presented in Section 4.

3.1. Basic idea

We first show that, given an initial guess l0 obtained from
the P-method, the search space of the rotation axis direction
is unidimensional. In Figure 1, we use a cone R to represent
a general SoR for the sake of simplicity. The solid line lg is
the ground truth of its rotation axis. Line l0 represents the
initial guess. A plane Ps containing lg can be defined by
the normal ~lg × ~l0, where unit vector~· represents the line’s

direction. By varying ~l0 inside plane Ps, it is possible to
find ~lg , thus the search space is reduced to one dimension.
Note that we use a 2D sketch of Ps in Figure 2 to represent
Figure 1 because all useful information is contained in Ps.
Ps can be determined without knowing lg . We first create

parallel planes Pj (j = 1..n) with normal~l0 to cut R, which
results in a set of 2D curves Cj . Since Cj are symmetric
curves with respect to Ps, their centers Oj should lie on Ps.
We then project centers of Cj on an arbitrary plane, e.g. P1.
These projections Opj (Op1 = O1) will form a line lc (cf.
Figure 1), which is also the intersection between Ps and P1.
By finding ~lc, one can determine Ps.

Next, we derive the objective function of our method.
Let us assume that ~l is rotated from ~l0 inside Ps by angle θ
(cf. Figures 1 and 2). The set of parallel planes Pj is also
rotated so that their normal is~l. A line v is fitted to all points
Oj . Intuitively, if ~l = ~lg , all Cj should be circles because
of symmetry, and their centersOj should lie on lg . It means
that ~l = ~lg ⇒ ~v = ~lg = ~l. In the next section, we show that
the converse is true if R is not a sphere. That is to say ~v =
~l ⇔ ~l = ~lg for non-spheres. In Figure 2, unit vectors inside
Ps can be represented by 2D vectors. By abusing notations,
we still use ~· to refer to these 2D vectors, so their cross
products are real numbers. Finally, the objective function
is:

φ(θ) = sin−1(~l × ~v) (1)

with signed angle θ = sin−1(~l0×~l). Our objective is to find
θ as the signed angle φ(θ) is 0.

Once ~lg is found, we can use the average of Oj as the
point on the axis. This gives us the final rotation axis as:

lg = (~lg,
1

n

n∑
j=1

Oj) (2)

3.2. Approximately linear objective function

In this section, we prove that the objective function φ
(equation (1)) is approximately linear. This is the core of
our method since it guarantees its fast convergence.

The unknown lg is chosen to be the z-axis in Figure 2
for easier deduction. The profile of the SoR in this plane
can be expressed as r = ±f(z). Parallel planes intersect
with z-axis at zj . The 2D projection of Cjs on Ps can be
represented by segments between (z+j , r

+
j) and (z−j , r

−
j). ϕ

is defined as the offset angle of initial guess ~l0 from ~lg:

ϕ = sin−1(~lg × ~l0) (3)

Please notice that when θ = −ϕ, we have ~l = ~lg and
thus the objective function φ(θ) = φ(−ϕ) = 0. To derive
the formula of φ(θ), two intermediate angles are used:

α = sin−1(~lg ×~l)

β = sin−1(~lg × ~v)
(4)

It is easy to derive that:

θ = α− ϕ
φ = β − α

(5)

By assuming that α is small, the profile near zj can be
approximated by its first order Taylor expansion:

r = ±f(z) ≈ ± (f(zj) + f ′(zj)(z − zj)) (6)

The equation of plane Pj can be expressed as:

r = tan(
π

2
+ α)(z − zj) (7)

The intersection points (z+j , r
+
j) can be calculated by solv-

ing equation (7) and using r = +f(z) from equation (6).
Similarly, (z−j , r

−
j) can be calculated from (7) and using

r = −f(z) from (6). The center point Oj(z∗j , r
∗
j) lies in

the middle of the [(z−j , r
−
j), (z+j , r

+
j)] line segment and thus

can be derived as:

z∗j =
1

2
(z−j + z+j) = zj +

f(zj)f
′(zj)

cot2 α− f ′2(zj)

r∗j =
1

2
(r−j + r+j) = −cotαf(zj)f

′(zj)

cot2 α− f ′2(zj)

(8)

Since v is an interpolation of all Oj , its slope k in the plane
can be expressed as follows:

k = tanβ = −

n∑
1

(z∗j)2 − n
(
n∑
1

z∗j
n

)2

n∑
1
z∗j r
∗
j − n

(
n∑
1

z∗j
n

)(
n∑
1

r∗j
n

) tanα

(9)
As α is small, the equation above can be simplified by Tay-
lor expansion and tanα ≈ α, by using equation (8):

k ≈ −
n
n∑
1
zjf(zj)f

′(zj)−
(
n∑
1
zj

)(
n∑
1
f(zj)f

′(zj)

)
n
n∑
1
z2j −

(
n∑
1
zj

)2 α

(10)

When β is small, k = tanβ ≈ β. Let ξj = zj − 1
n

n∑
1
zj ,

we have
n∑
1
ξj = 0. Equation (10) can be simplified as:

β ≈ −

n∑
1
ξjf(ξj + z̄)f ′(ξj + z̄)

n∑
1
ξ2j

α = −(A− 1)α (11)

where

A =

n∑
1
ξjf(ξj + z̄)f ′(ξj + z̄)

n∑
1
ξ2j

+ 1 (12)

Thus, by using equation (5) and (11), the objective function
φ(θ) can be written as:

φ(θ) = β − α = −Aα = −A(θ + ϕ) (13)

When ~l is rotated to the ground-truth ~lg , then θ = −ϕ and
thus φ(θ) = 0, which corresponds to our intuitive knowl-
edge. In equation (13), ϕ is an unknown variable depending
on l0. AlthoughA depends on ξj (cf. equation (12)), we can
show that when n→∞:

A =

n∑
1
ξjf(ξj + z̄)f ′(ξj + z̄)∆ξ

n∑
1
ξ2j∆ξ

+ 1

≈

ξmax∫
ξmin

ξjf(ξj + z̄)f ′(ξj + z̄)dξ

ξmax∫
ξmin

ξ2j dξ

+ 1

(14)

It shows that A is a discrete approximation of an integral.
Thus althoughA depends on ξj , it does not vary much when
n is big. In other words, the objective function φ(θ) is ap-
proximately linear.

We then show that the solution φ(θ) = 0 is unique ex-
cept for spheres and that it corresponds to the rotation axis.
From equation (13), we can see that A = 0 ⇒ φ(θ) ≡ 0.
By solving A = 0 from equation (14), we find the profile
function is f(z) = ±

√
(C − z2), where C is an arbitrary

constant. This equation is that of a sphere. φ ≡ 0 means a
sphere can have its rotation axis in any direction, which is
obvious. But for other surfaces, since A 6= 0, the solution
of φ(θ) = 0 is uniquely θ = −ϕ (cf. equation 13). It means
that by finding the unique solution of φ(θ) = 0, one can
find its unique rotation axis.

4. Implementation details

3D data of real objects are often obtained by using RGB-
D sensors (i.e. Kinect, RealSense). They can have various
representations, such as point cloud and Signed Distance
Fields (SDF). However, the captured data may be noisy. In
this section, we explain the implementation details by con-
sidering noisy data. The outline of the algorithm is first
introduced in Section 4.1. Then we explain a basic and
important operation in Section 4.2 and solve the objective
function numerically in Section 4.3.

4.1. Algorithm

The outline of rotation axis estimation is shown in Al-
gorithm 1. It takes the 3D representation (e.g. point cloud,
SDF) of a SoR and an initial axis estimation l0 from [8] as
input and returns the rotation axis le.

Algorithm 1 Rotation axis estimation
Input: 3D data of SoR, initial axis estimation l0
Output: SoR axis le
Parameter: number of cutting planes n1, imax
i = 0, θ0 = 0, valuePair = ∅
while i < imax do

if i 6= 0 then
θi = θi−1 − φi−1/Ai−1
~li ← rotate(~l0, Ps, θi)

end if
O,w← findCircleCenters(li, n1) or fail
if i = 0 then
Ps, δ ← findSymmetricP lane(O)

end if
~vi ← findCenterLineDirection(O,w)

φi = sin−1(~li × ~vi)
valuePair.append(θi, φi)
if |φi| < ε then

return ~le = ~li
else

if i = 0 then
Estimate A0 with (O, r) from equation (19)

else
Ai ← calculateSlope(valuePair)

end if
end if
i = i+ 1

end while
Find smallest |φi| in valuePair and return ~le = ~li

The process of cutting the SoR by parallel planes and
finding the centers of intersecting curves is frequently used
in our method. Since the angle between the presumed axis
li and the ground-truth lg is usually smaller than 10◦, we
use circle fitting to find the centers Oj . We call this process
findCircleCenters.

O,w,R, ē← findCircleCenters(l, n) (15)

This process takes the presumed axis l and the number
of planes n as input and gives nv valid circles as output,
with circle centers O = {O1, O2, ..., Onv

}, circle radii
R = {R1, R2, ..., Rnv}, weights w = {w1, w2, ..., wnv}
and average geometric errors ē = {ē1, ē2, ..., ēnv}. nv is
the number of valid circles, which may be smaller than n.
A detailed explanation is provided in Section 4.2.

In Algorithm 1, findSymmetricPlane is the process of
finding Ps. It takes all valid circle centers O as input and
gives Ps and δ as output. δ represents the incertitude of
circle centers detection, which is explained in Section 4.3.
findCenterLineDirection is the process of finding the di-
rection of v in Figure 2. It takes circle centers O and
their weights w as input. It fits a line to points O by us-
ing different weights w and returns ~v as output. calcu-
lateSlope is the process of finding the slope A of φ(θ). It
takes as input the previous i + 1 value pairs valuePair =
{(θ0, φ0), (θ1, φ1), .., (θi, φi)}, fits a line to them and re-
turns the slope A of this fitted line.

After finding ~le, findCircleCenters(~le, n2) is used on
the whole object for reconstruction. n2 can be larger than
n1 for a finer reconstruction result. A surface’s intrinsic
coordinate system is constructed, with origin Oe being the
average of Oj and the direction of z-axis ẑe = ~le. Within
this coordinate system, the profile function f(ze) is fitted
by splines, thus finishing the SoR reconstruction.

The global reconstruction error e, is defined as the aver-
age of geometrical error ē (cf. Section 4.2).

4.2. Plane cutting and circle fitting

We use parallel planes separated by an equal interval
in findCircleCenters. Since scanned 3D data contain lots
of defects, such as incomplete scanning and noise, some
planes may contain data with better quality than others. To
compensate those limitations, a circle is considered as valid
only when its inlier ratio of circle fitting is more than 80%,
and each valid circle Cj is associated with a weight wj ac-
cording to its fitting result. Additionally, planes near the
two ends of a SoR are more influenced by inaccurate axis
direction estimation, so we only use the middle 70% region
of the surface for axis estimation. The weight wj for a valid
circle is calculated by:

wj =
Ωj
ēj

(16)

where Ωj is the angular spans of data points on the fitted cir-
cle as shown in Figure. 3, ēj is the average geometric error
of all inliers in the current plane. We define the geometric
error as the distance between a point and the fitted circle.

When point clouds are used as raw data with resolution
(i.e. average inter-point distance) τ , a point is considered
inside a plane if its distance to the plane is less than 0.5τ .
If a SDF representation (with voxel size τ) is used, a ray
casting method can be used to find points inside a specified
plane. A point is considered as an inlier if its geometric
error is less than τ .

If findCircleCenters finds less than 2 valid circles, it
means that the target surface is not a true SoR or the data
is too noisy to process. The algorithm fails in this case.

Figure 3. Angular spans of data points on a fitted circle: black
points represent data points in plane Pj , Cj is the fitted circle, Ωj

is the angular spans of data points.

4.3. Determining Ps and solving φ(θ)

The basic idea of calculating Ps has been explained in
Section 3.1. Assuming that the incertitude of center de-
tection is δ, the center projections Opj in Figure 1 will lie
in a thick line of width 2δ. By using Principle Compo-
nent Analysis (PCA) on these center projections, the major
eigenvector can be regarded as good approximation of ~lc
(cf. Figure 1) while the minor eigenvalue λmin is the sum
of squared distance between detected circle centers and Ps.
Thus, δ can be approximated by:

δ ≈
√
λmin/nv (17)

where nv is the number of valid circles.
Although φ(θ) has a simple form, but since the scanned

3D data is noisy and φ(θ) is not exactly linear (cf. Sec-
tion 3.2), we still have to rely on an iterative approach to
solve φ(θ) = 0. Recall Newton’s method:

θi+1 = θi −
φ(θi)

φ′(θi)
= θi −

φ(θi)

Ai
(18)

For the i-th step, θi is known and φ(θi) is evaluated. Ow-
ing to its linearity, φ′(θi) = Ai can be approximated by
fitting previous i + 1 data by using calculateSlope. For the
first step i = 0, θ0 = 0, we solve the primitive function of
equation (12) to find an approximation of A0:

A0 ≈ 3

f2(zmax) + f2(zmin)− 2
nv

nv∑
1
f2(zj)

(zmax − zmin)2
+ 1

≈ 3

R2
max +R2

min − 2
nv

nv∑
1
R2
j

D2
+ 1

(19)

where D is the distance between the two most distant
planes. In the second approximation, f2(zj) ≈ R2

j is used.
It is because that when α is small, Pj is almost perpendicu-
lar to lg , thus we can use the the radius of fitted circle Rj to
approximate f(zj) (cf. Figure 2).

The iteration can be terminated when |φ(θ)| is small
enough, e.g. 10−3rad. However, since circle center de-
tection cannot be more precise than δ (cf. equation (17)),
the estimation of rotation axis can not be more precise than
tan−1(δ/D). Since δ � D, δ/D can be used instead of
tan−1(δ/D). Therefore, the iteration is terminated when
|φ(θi)| is less than ε = max(δ/D, 10−3). Practically, we
found that this method usually converges in 2-3 steps. But
if a point cloud is used, φ(θi) may not be continuous and
|φ(θi)| < ε may never be achieved. This leads the process
to oscillate around φ(θi) = 0. In order to avoid this, we
set the maximum iteration number imax = 5. If imax is
reached but |φ(θimax)| ≥ ε, the li which gives smallest |φ|
will be chosen as le.

5. Real-time SoR reconstruction
We propose a workflow where the reconstruction of SoR

is carried out in a depth SLAM framework. It uses real-time
segmentation result from the work of [13], where surfel-
based representation is used. A surfel is a representation of
a small surface patch at position ~p(x, y, z) in 3D space, with
its normal direction ~n, its confidence radius r and at most
one segment label. Surfels which have the same segment
label make up a segment. Usually, each segment represents
a single object in the scene.

Although the workflow can deal with SoRs, planes and
spheres, we only focus on SoRs to highlight our contribu-
tion. A method to distinguish different types of surfaces
is presented in Section 5.1. It allows us to find segments
which represent SoR. Detailed algorithm to reconstruct SoR
with [13] at each frame is presented in Section 5.2.

5.1. Segment classification

We use a two-step method to classify each segment. A
surfel at position ~p having a normal ~n is denoted by (~p, ~n).
Let ~r = (~p × ~n, ~n). For all N points belonging to one
segment, the following two matrices can be calculated:

L =
1

N

N∑
j=1

~nj~n
T
j and M =

1

N

N∑
j=1

~rj~r
T
j (20)

Let {λL,i : i = 1, 2, 3} be the eigenvalues of L and
ft be the number of small eigenvalues in {λL,i}. Accord-
ing to [4], the segment can be translated in ft directions
without changing the distance function values nearby. We
can say that the segment has ft translation free directions.

ft 2 1
fr - > 2 1 0

Type Plane Sphere SoR Complex

Table 1. Different surface types according to ft and fr

Initialization: ck = 0

ck < c ?

Estimate data
stability

Check reconstruction
precision

More frames?

Y N

End

Next frame

Y

N

Sk
m, Sk

v

Figure 4. Workflow of real-time surface reconstruction for SoR.

Let {λM,i : i = 1, 2, 3} be the eigenvalues of problem
M~x = λD~x, where D = diag(1, 1, 1, 0, 0, 0), and fr be
the number of small eigenvalues in {λM,i}. According
to [8], the segment has fr rotation free directions. With
both ft and fr, surfaces can be classified into 4 groups as
shown in Table 1. Practically, an eigenvalue is considered
to be small when following conditions are true:

λN,i < 0.05 and λM,i < 0.5τ2 (21)

5.2. Workflow

Let us take a SoR with segment label k (denoted as Bk)
as an example to explain the workflow. All other segments
follow the same procedure.

Concerning Bk, two sets of surfels with segment label k,
i.e. Smk and Svk , can be obtained from [13] at frame t. Smk
contains all surfels belonging to Bk in the model obtained
from the SLAM procedure. Svk is the visible subset of Smk at
frame t. When Bk has only appeared in front of the camera
for a few frames, or when it is occluded or far from the
camera, data acquired from Bk may be not stable. With
more information coming from new frames, the data can
be more stable and the reconstruction can be more reliable.
We use a confidence label ck to represent the stability of
data points acquired from Bk.

The workflow to reconstruct Bk is shown in Figure 4.
When ck is less than a threshold c, we check the stabil-
ity by estimating the variation of Svk ’s rotation axis. Al-
though different frames contain different sets of visible sur-
fels Svk , their rotation axis should be similar. Thus, ck is
incremented by 1 if the angle between two estimations of
axis is smaller than a threshold γ̃ (set to 10◦ in our experi-
ment). When ck = c (set to 5 in our experiment), the data
is considered to be stable. The axis of Bk is estimated and
Bk is then reconstructed for the first time by applying our
methods (cf. Sections 3-4) on global model Smk , with τk (cf.
Section 4.2) being the average of double radius of surfels in
Smk . More details are shown in Algorithm 2.

Algorithm 2 Estimate the stability of data
Input: Svk , Smk at frame t
Calculate ~lk from Svk using P-method [8]
if ck = 0 then

Set ~lrk = ~lk
else if cos−1(~lk ·~lrk) < γ̃ then
ck = ck + 1
if ck ≥ c then

Estimate initial ~lmk,0 from Smk with P-method
Improve axis estimation & reconstruct Bk from Smk

end if
else
ck = ck − 1

end if

In later frames, we continue to check the precision of this
reconstruction. If the reconstruction is precise, the recon-
structed model should fit well all visible surfels Svk in new
frames. Otherwise, the axis of Bk should be re-estimated
and Bk should be reconstructed by using the newest global
model Smk . Details on checking reconstruction precision are
shown in Algorithm 3. enumk indicates the number of sur-
fels whose modeling error is larger than ẽ. Empirically, ẽ
is set to 1.5ek, with ek being the global reconstruction er-
ror of Bk (cf. Section 4.1). When enumk is larger than
a threshold Ñ , the reconstruction Bk should be improved.
Since consecutive frames have large overlapping area, the
same surfel may be frequently recalculated. We found that
Ñ = 30%|Smk | works well in our experiment.

The calcModelingError process estimates the modeling
error ei on surfel si. ei is computed as the distance between
si and its approximate nearest point on the reconstructed
surface. The approximate nearest point is constrained so
that itself and si are lying on the same plane which is per-
pendicular to the rotation axis.

Algorithm 3 Check reconstruction precision
Input: Svk , Smk at frame t
for each si ∈ Svk do
ei ← calcModelingError(si, S

m
k)

enumk = enumk + 1 if ei > ẽ
end for
if enumk > Ñ then

Improve axis estimation and reconstruct Bk from Smk
Set enumk = 0

end if

6. Results

In this section, we first evaluate the method for esti-
mating the rotation axis, before using real data to evalu-

ate reconstruction results and the efficiency of our method.
n1 = 10 is used for all experiments.

6.1. Synthetic study

We use synthetic truncated cones with grid size τ = 0.2
to investigate the feasibility of the method. A truncated
cone’s properties are shown in Figure 5.

Figure 5. Synthetic truncated cones: with r = 20, h = 10, angular
span Ω = 120◦. Θ is the opening angle.

To simulate noise, δr ∼ N(0, 0.5τ) is added to the three
coordinates of each point, and δn ∼ N(0, η) is added to
each normal component (normalized afterwards). At last,
the synthetic cone is rotated and moved by a random rigid
transformation. We compare the results of our method with
the one from [8] (denoted as P-method), since we are inter-
ested in efficient methods for real-time application.

The objective functions φ(θ) of different objects are
shown in Figure 6. For the synthetic cone, we use Θ =
100◦, η = 0.03. The Cup and Can are taken from Dataset 2
of Section 6.2 (cf. Figure 10). We can see that these φ(θ)s
are almost linear, when θ is near the ground truth.

Figures 7 shows the rotation axis estimation error
cos−1(~lg,~l) on synthetic data. Our method gives better re-
sults, especially for large noise and opening angles. More-
over, the error of our method is less than 0.5◦ in most cases.

6.2. Real data

For real-time reconstruction, n2 = 10 is chosen. Two
datasets were used for evaluating our online reconstruc-
tion algorithm. We use downsampled image with resolution

10 5 0 5 10
θ (◦)

10

5

0

5

10

15

20

25

φ
(θ

) (
◦
)

Synthetic
Can
Cup

Figure 6. φ(θ) for different objects: synthetic cone, Cup and Can.
They are approximately linear.

0 20 40 60 80 100 120
Opening angle Θ (◦)

0

1

2

3

4

5

6
Er

ro
r (

◦
)

P-method
Our's

0.00 0.01 0.02 0.03 0.04 0.05
noise η

0

2

4

6

8

10

12

Er
ro

r (
◦
)

P-method
Our's

Figure 7. Synthetic result with different opening angles Θ (top),
and with different amount of noise η (bottom).

20 40 60 80 100 120
Frame N ◦

20

25

30

35

40

45

50

55

Ra
di

us
 (m

m
)

Cylinder (small) Cylinder (big) Cone

16

17

18

19

20

21

22

23

Op
en

in
g

An
gl

e
Θ

 (
◦
)

Figure 8. Dataset 1: Measuring objects of known dimension.

160× 120 to let the whole workflow run in real-time on the
CPU as indicated in [13].

We use two cylinders and a cone with known size in
dataset 1. The cylinders’ radii and the cone’s opening angle
are used to measure the precision of the algorithm. Results
are shown in Figure 8. It can be seen that the accuracy of
radius is about 1-2mm, while the accuracy of opening angle
has a big variation at the beginning but gradually converges
near the ground truth in about 80 frames.

Dataset 2 is an online dataset provided by Tateno1. It
contains diverse daily objects lying on a desktop. We draw
the time consumption for each frame in Figure 9. The
solid line represents the reconstruction time, with an aver-
age of 1.87ms per frame, while the dashed line represents
the SLAM+segmentation time, with an average of 20.40ms
per frame. These results are produced on a laptop equipped
with Intel Core i7-4510U CPU @2.00GHz and 8GB RAM.

The final reconstructed object along with the segmenta-

1http://campar.in.tum.de/Chair/ProjectInSeg

0 50 100 150 200 250 300 350
Frame N ◦

0

5

10

15

20

25

30

Ti
m

e
(m

s)

Others Reconstruction

Figure 9. Dataset 2: Time consumption.

Figure 10. Dataset 2. Top: Original segmented point cloud (left)
and reconstruction result (right). Bottom: visual comparison be-
tween reconstruction result, original point cloud and RGB image.
(Cup and Can).

tion map is presented in Figure 10. The reconstructed ob-
jects correctly match the original data and are visually sim-
ilar to the original objects in the RGB image.

7. Conclusion

We have developed a fast and accurate method to esti-
mate the rotation axis of revolution surfaces as well as a
real-time online geometric reconstruction workflow. Exper-
iments show that the proposed method and workflow work
well for real world objects, achieving about 1-2mm accu-
racy for radius estimation and < 1◦ for cone’s opening an-
gle estimation.

With these reconstructed geometries, point clouds can
be simplified and other interesting work may be performed.
For example, SLAM wide-baseline re-localization prob-
lems could be solved by 3D rotation axis matching. Other
future work may also include improving segmentation re-
sults by using reconstructed geometries; establishing spatial
relationships between different geometries, etc.

References
[1] P. J. Besl and H. D. McKay. A method for registration of 3-d

shapes. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 14(2):239–256, Feb 1992.

[2] B. Drost and S. Ilic. Local Hough Transform for 3D Primi-
tive Detection. In 3D Vision (3DV), 2015 International Con-
ference on, pages 398–406. IEEE, 2015.

[3] D. Han, D. B. Cooper, and H.-s. Hahn. Fast axis estimation
from a segment of rotationally symmetric object. In Com-
puter Vision and Pattern Recognition (CVPR), 2012 IEEE
Conference on, pages 1154–1161. IEEE, 2012.

[4] C. Lou, L. Zhu, and H. Ding. Identification and reconstruc-
tion of surfaces based on distance function. Proceedings of
the Institution of Mechanical Engineers, Part B: Journal of
Engineering Manufacture, 223(8):981–994, 2009.

[5] H. Mara and R. Sablatnig. Orientation of Fragments of Ro-
tationally Symmetrical 3D-Shapes for Archaeological Docu-
mentation. In 3D Data Processing, Visualization, and Trans-
mission, Third International Symposium on, pages 1064–
1071. IEEE, 2006.

[6] T. Nguyen, G. Reitmayr, and D. Schmalstieg. Structural
Modeling from Depth Images. IEEE Transactions on Visu-
alization and Computer Graphics, 21(11):1230–1240, 2015.

[7] G. Pavlakos and K. Daniilidis. Reconstruction of 3D Pose
for Surfaces of Revolution from Range Data. In 3D Vision
(3DV), 2015 International Conference on, pages 648–656.
IEEE, 2015.

[8] H. Pottmann, M. Peternell, and B. Ravani. An introduction
to line geometry with applications. Computer-Aided Design,
31(1):3–16, 1999.

[9] R. Qiu, Q.-Y. Zhou, and U. Neumann. Pipe-Run Extrac-
tion and Reconstruction from Point Clouds. In 13th Euro-
pean Conference on Computer Vision, ECCV, pages 17–30.
Springer, 2014.

[10] R. Schnabel, R. Wahl, and R. Klein. Efficient RANSAC for
Point-Cloud Shape Detection. Computer Graphics Forum,
26(2):214–226, June 2007.

[11] M. Song and D. Huber. Automatic Recovery of Networks
of Thin Structures. In 3D Vision (3DV), 2015 International
Conference on, pages 37–45. IEEE, 2015.

[12] Y. Taguchi and S. Ramalingam. Method for fitting primitive
shapes to 3d point clouds using distance fields, Dec. 2015.
US Patent 9,208,609.

[13] K. Tateno, F. Tombari, and N. Navab. Real-time and scalable
incremental segmentation on dense SLAM. In Intelligent
Robots and Systems (IROS), 2015 IEEE/RSJ International
Conference on, pages 4465–4472. IEEE, 2015.

[14] K. Tateno, F. Tombari, and N. Navab. When 2.5D is
not enough: Simultaneous Reconstruction, Segmentation
and Recognition on dense SLAM. In 2016 IEEE Inter-
national Conference on Robotics and Automation (ICRA),
pages 2295–2302. IEEE, 2016.

[15] A. Willis, X. Orriols, and D. B. Cooper. Accurately Esti-
mating Sherd 3D Surface Geometry with Application to Pot
Reconstruction. In Computer Vision and Pattern Recogni-
tion Workshop, 2003. CVPRW’03. Conference on, volume 1,
pages 5–5. IEEE, 2003.

