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F-38000 Grenoble, France

Abstract. This paper presents a multi-layer dictionary learning method
for classification tasks. The goal of the proposed multi-layer framework is
to use the supervised dictionary learning approach locally on raw images
in order to learn local features. This method starts by building a sparse
representation at the patch-level and relies on a hierarchy of learned
dictionaries to output a global sparse representation for the whole image.
It relies on a succession of sparse coding and pooling steps in order to
find an efficient representation of the data for classification. This method
has been tested on a classification task with good results.

1 Introduction

Sparse coding is the approximation of an input signal by a linear combination of
a few number of dictionary elements. Dictionary learning and sparse represen-
tations have received a lot of focus in the recent years because they have led to
state-of-the-art results in many applications, in particular in image processing.
One reason for its success is that it can efficiently learn the underlying patterns
in the data, leading to good performances for example in denoising [6], [12] or in-
painting [1]. The sparse codes obtained can also be seen as a new representation
of the input or as features in classification tasks [11], [15], [2], [19], [3]. In such
cases, the dictionary is often learned in an unsupervised way. Then, the sparse
codes obtained can either be used directly for classification [14], or as features
fed to a classifier [3] (i.e SVM).

Recent researches have emphasized the advantages of learning discrimina-
tive sparse models [11], [2], [20] instead of purely reconstructive ones. It is
usually done by learning conjointly the sparse representation and the classifier.
In practice, each input image is matched with a label and the dictionary is
learned in a supervised setup.

Generally, in image processing applications, dictionary learning and sparse
coding are computed on a small portion of an image (i.e image patches) because
learning a dictionary directly on high resolution images is computationally in-
tensive. There is no particular problem doing so in denoising, however, in the
case of classification, a mean to fuse efficiently the representation of the patches
into an image-level descriptor is needed (i.e pooling [20] or Bag of words [18]).

In this paper, we propose to learn discriminative dictionaries for classification
(similarly as in [20]) while working at a patch-level in a supervised framework by



using an architecture which combines many layers of sparse coding and pooling
in order to reduce the dimension of the problem.

Method framework In the proposed multi-layer architecture, the sparse codes
obtained by encoding signals on a dictionnary are used as inputs to a subsequent
coding layer. Each additional layer of dictionary encoding changes the represen-
tation by projecting the features into a new space. The prospective objective is
to increase the discriminability of the features by building a hierarchy of dictio-
naries.

In Section 2, we recall the dictionary learning framework going from the
unsupervised setup to the supervised dictionary learning setup. In Section 3, we
introduce our multi-layer dictionary learning setup. In Section 4, we present the
experiments and their results.

2 Dictionary learning

In this section, we recall various formulations of the dictionary learning problem,
starting with an unsupervised method more suited to reconstruction and followed
by the supervised method tailored around a specific task (here, classification).

2.1 Unsupervised dictionary learning

Dictionary learning has been widely used in reconstruction tasks. In its classical
formulation, the goal is to learn a set of atoms directly from data. Let’s consider
a set of n signals Y = [y1, ..yn]. A dictionary D can be learned by solving:

min
D,xk

n∑
k=1

‖yk −Dxk‖22 + λ‖xk‖1 (1)

with D = (dij)i∈[1,m],j∈[1,K] being a dictionary, K the number of dictionary
atoms dj , m the dimension of yk, and xk a sparse vector containing the coeffi-
cients to reconstruct yk. ‖·‖2 and ‖·‖1 denote `2-norm and `1-norm respectively.
Once a sparse code xk is obtained, the original signal can be approximated by
computing ŷk ≈ Dxk.

This problem has been widely studied and many approaches exist in order
to get both dictionary D and coefficients xk [1], [13], [17].

In this formulation, the reconstruction error is minimized and the sparsity
can be controlled with the value of the parameter λ (a higher λ increases spar-
sity). Using such unsupervised approach can yield good results in reconstruction
problem and even in classification tasks [15], [19], because it can often find the
underlying patterns in the data. However, it has been shown that better results
could be obtained by tuning the dictionaries for a specific task [11], [2].



2.2 Supervised dictionary learning

Supervised dictionary learning methods began to be investigated [11], [20] in
order to take advantage of parsimony in classification tasks. Encoding a datum
using a dictionary can be seen as a projection into another coordinate system.
The objective is to obtain projected features that are discriminative in the new
space.

Let’s assume we know a set of pairs (yk, lk) where yk, k ∈ [1, n] is a set of
signals (i.e images represented as column vectors) and lk, k ∈ [1, n] is the cor-
responding label for yk. We define L, a differentiable classification loss function
and W, its set of parameters.

The supervised dictionary learning problem can be written as follows:

x̂k = argmin
x

‖yk −Dx‖22 + λ‖x‖1 (2)

min
W,D

n∑
k=1

L(lk, x̂k,W) (3)

The objective here, is to minimize the suitable cost function L with respect to
its parameters W and a dictionary D (Fig. 1) using gradient descent for example.
The main difference between this formulation and the previous one (Eq. 1) is
that the goal now is to minimize the classification loss instead of a reconstruction
error term. To minimize the cost function L with respect to the parameters D
and W, it is possible to use a method similar to the backpropagation algorithm
[10] used in neural networks.

Computing the gradient of L with respect to the parameters W is usually
simple. The main difficulty when solving (Eq. 3) is the minimization of the cost
function L with respect to dictionary D because it does not appear explicitly
and involves another optimization problem (solving for x̂k, (Eq. 2)). To overcome
this problem, a way to compute the gradient of the cost function L(lk, x̂k,W)
with respect to the dictionary D is needed. This problem has been tackled in
[11], [2].

In this paper, we follow the ideas of [11] which show the differentiability of
L and give the steps to compute its gradient with respect to the parameters
W and the dictionary D. According to the paper, the desired gradient can be
computed as follows :

∇DL(lk, x̂k,W) = Dβx̂>k + (y −Dx̂k)β> (4)

We define Λ = {i|xi 6= 0}), the set of non-zero coefficients of the considered
code xk.

Let’s consider a vector β ∈ RK . βΛ which is the vector β restricted to the
indices in Λ is defined as follows :

βΛ = (D>ΛDΛ)−1∇x̂kΛL(lk, x̂k,W) (5)

where x̂kΛ corresponds to x̂k restricted to its non-zero coefficients and βj = 0,
if j /∈ Λ.



Fig. 1. A signal yk associated to a label lk is encoded by a dictionary D, the resulting
code x̂k is used as an input to a cost function with parameters W. The cost L(lk, x̂k,W)
is computed. Then, the dictionary D and the parameters W are updated to fit the
classification problem.

2.3 Patch decomposition and pooling

Dictionary learning methods have been used for reconstructing or classifying
either full image or image patches. It means that in practice, a signal yk can be
either an image (Section 2.2) or a patch reshaped as a column vector containing
the pixel values (Section 3.2).

A supervised dictionary learning approach can successfully learn patterns
for a classification task. However, in practice, some limitations can be observed:
in particular, if we take the example of image classification, these methods are
the most effective when the input images are relatively small and the object
of interest homogeneously localized. Otherwise, the dictionary used would need
a huge number of atoms in order to obtain an efficient sparse decomposition.
Moreover, classifying a set of patches extracted from an image instead of the
image itself is different, from the dictionary methods point of view. Indeed, when
dealing with patches, a method to fuse the information of the set of patches is
needed.

This particular problem has been studied by Yang et al. [20]. In the paper,
the authors proposed to perform a single sparse coding step at patch level (with
a patch size smaller than the input image) followed by numerous pooling steps in
order to efficiently reduce the dimensions and obtain a multi-scale representation.

To be able to deal with large images, we recall the pooling function: the
pooling operation is used to insert robustness and translation invariance to the
features and are an effective way of reducing the dimensions. It is a mean of



aggregating spatial local features in an image. Let’s consider the classification of
an image I. First, it can be decomposed into local overlapping patches yk which
are encoded on dictionary by computing the coefficients x̂k. These patches can
be spatially localized on a grid which gives the relative position of all patches.
Then the codes x̂k obtained can be, for example, averaged over a small group of
patches reducing the total number of patches.

3 Multi-layer supervised dictionary learning

3.1 Multi-layer framework

Intuitively, sparse coding can extract important characteristics for reconstruction
in unsupervised frameworks and for classification in supervised methods.

The idea of the contribution is to reiterate the sparse coding layer in order
to increase the discriminability of the features. The method is inspired by the
convolutional networks [16]: the convolution by a filter is replaced by a sparse
coding step.
The other goal of the proposed method is to control the dimension of the in-
put patches by reducing the sparse coding of a large image, computationally
intensive, to the sparse coding of small patches which can be processed more
efficiently.

Encoding a vector on a dictionary is similar to projecting into a new space.
The projection is non-linear and the resulting vector is sparse. The vector is
then used as a new input for the following layer. So, adding another dictionary
encoding step is akin to doing another projection in a new coordinate system.
Each dictionary is learned in a supervised manner. The process can be repeated
many times, with as much dictionaries as the number of layers in the architecture.

The proposed multi-layer can be described as follows (Fig. 2):

1. An input image is decomposed into a set of overlapping patches ordered to
retain their spatial localization.

2. Each patch yk is encoded on a first dictionary D(1). Since the spatial local-
ization of the patches has been retained, the set of encoded sparse codes x̂k
can be represented as a 3D volume X with a depth equal to the number of
atoms in dictionary D(1).

3. The resulting 3D volume is treated as a 3D image input for the next layer.
(1) and (2) can be repeated for the chosen number of layers.

To complement 3), for example, if we consider the q-th layer, we can write:

Y(q) = X̂(q−1), meaning that the stacked codes at layer q − 1 are used as an
input image Y(q) in layer q (see Fig. 2). The image Y(q) is then decomposed

into 3D patches ŷ
(q)
k and x̂

(q)
k are obtained by encoding y

(q)
k with D(q). More

generally, we can replace Y(q) = X̂(q−1) by y
(q)
k = f(X̂(q−1)) where f can denote

a transformation on the codes coupled with the patch decomposition.
In order to optimize the multi-layer architecture for classification, it is needed

to find the optimal dictionaries at each layer.



Fig. 2. Example of an architecture with 2 layers. An input image in presented to the
first layer. The image is decomposed into patches y

(1)
k which are encoded by dictionnary

D(1). The codes x
(1)
k are processed and restructured into a 3D volume X(1) and then

decomposed again into 3D patches y
(2)
k in the second layer. These patches are encoded

using the dictionary D(2).

3.2 Formulation

Let’s consider a set of input features Y = {y(1)
1 , · · · ,y(1)

p } associated to a label
l. This set is obtained by decomposing an input image into p patches. In the
section, to simplify the notations, each subscript k used for denoting the index
of patches or codes is tied to a specific layer q (it can be read as kq). The upper
index (q) denotes the q-th layer. Let’s consider the proposed algorithm with Q
layers, its formulation is as follows:

For q ∈ [1, Q− 1] (same as in (Eq. 2))

x̂
(q)
k = argmin

x
‖y(q)

k −D(q)x‖22 + λq‖x‖1 (6)

y
(q+1)
k is obtained from the output of the previous layer x̂

(q)
k by applying a

transformation f (see [20] for an example with f being the max-pooling function)
followed by a new patch decomposition step. In this paper, we propose to use
the average-pooling function.

To optimize the classification cost function with respect to the dictionaries at
each layer, we use the backpropagation algorithm. Therefore, we need to compute
the gradients with respect to the various dictionaries D(1), · · · ,D(Q).

By extending the formulation given in (Eq. 3), we obtain:

min
W,D(1),··· ,D(Q)

n∑
k=1

L(lk, x̂
(Q)
k ,W) (7)



We only use the output x̂
(Q)
k of the last layer as features for the classification

(Fig. 3) and the cost function is minimized over the entire training set of n
images.

Fig. 3. Proposed structure with 2 layers. Input vectors go through a sparse coding
step. We have y

(2)
k = f(X̂(1)) as input to the second layer. Backpropagation is then

used to update both dictionaries simultaneously.

3.3 Computation of the gradients

To use the backpropagation algorithm (i.e computing each gradient using the
chain rule, the gradient is computed the same way as presented in Section 2.2

by replacing x̂k by x̂
(q)
k and yk by y

(q)
k .

For a pair (Y, l), the gradient of L with respect to dictionary D(Q) (the
dictionary of the last layer) is computed using equations (Eq. 4) and (Eq. 6). If
we introduce the notation using the layer number, the equation for the last layer
becomes:

∇D(Q)L(lk, x̂
(Q)
k ,W) = D(Q)βx̂

(Q)>
k + (y

(Q)
k −D(Q)x̂

(Q)
k )β> (8)

with β defined as:
for the indexes contained in the set Λ,

βΛ = (D
(Q)>
Λ D

(Q)
Λ )−1∇

x̂
(Q)
kΛ

L(lk, x̂
(Q)
k ,W) (9)

and βj = 0, if j /∈ Λ.
To compute the gradient of the layer q, the computations for the dictionary

become:

∇D(q)L(lk, x̂
(Q)
k ,W) = D(q)βx̂

(q)>
k + (y

(q)
k −D(q)x̂

(q)
k )β> (10)



βΛ = (D
(q)>
Λ D

(q)
Λ )−1∇

x̂
(q)
kΛ

L(lk, x̂
(Q)
k ,W) (11)

We underline that only the last layer Q intervenes in the classification step

that is why the term is L(lk, x̂
(Q)
k ,W) and not L(lk, x̂

(q)
k ,W): by choice, the

output of the last layer is a single code vector. To compute the gradient of

the cost function L(lk, x̂
(Q)
k ,W) with respect to the dictionary D(q) of the q-

th layer using backpropagation, we need to compute ∇
x̂
(q)
kΛ

L(lk, x̂
(Q)
k ,W). The

computation of this gradient can be decomposed as follows:

∂L
∂x̂(q)

=
∂L

∂x̂(q+1)

∂x̂(q+1)

∂y(q+1)

∂y(q+1)

∂x̂(q)
(12)

where ∂x̂(q)

∂y(q) :

∂x̂
(q)
Λ

∂y(q)
= (D

(q)>
Λ D

(q)
Λ )−1D

(q)
Λ (13)

and 0 elsewhere.
We remind that the transformation f between x̂(q) and y(q+1) can be the

identity, a pooling operation or a more general transformation (see 3.1) combined
with a decomposition into patches, so the backpropagation includes a image
”reconstruction” step to reverse the patch decomposition (Fig. 4).

Fig. 4. Example of the reconstruction step from 5× 5 patches to 7× 7×K volume.

4 Experimentations

We tested the proposed algorithm on the MNIST [10] dataset and CIFAR-10
dataset [9]. The first well-known MNIST dataset used for classification regroups
a set of handwritten digits divided in 10 classes (i.e 0 - 9) and contains 60000
(28 × 28) pixels images for training and 10000 for testing. These images have
been rescaled to (32× 32) pixels to be able to fit the CIFAR-10 dataset.



We have chosen to use the cross-entropy function (Eq. 14) for the classifica-
tion loss as it has proven to give good results in multiclass classification problems.
The chosen classifier is a linear classifier coupled with softmax for the output.
If we consider a classification problem with C classes, the cross-entropy loss is
computed as follows:

L(lk, x̂
(Q)
k ,W) = −

C∑
i=1

liklog(pik) (14)

where pik is defined by:

pik =
exp(x̂

(Q)>
k wi)∑C

j=1 exp(x̂
(Q)>
k wj)

To demonstrate the proposed method, we choose to use an architecture with
Q = 3 layers. For the first layer, we decompose the input image into patches
of (5 × 5) pixels with a stride of 1 pixels. The second layer use patches of size
(5×5). Then, a pooling step is done on a 2×2 region without overlap. We follow
last layer with size (5 × 5). After the last layer, only one code remains for the
whole image and this code is used as input for the classification.

The optimization method used is the stochastic gradient descent with a batch
size of 10. The training set is shuffled randomly and the training samples for each
batch are used in order. The learning step is initially fixed at 0.3 and divided by
2 every 3 passes on the full dataset.

For parameter λ (Eq. 1), we choose λ = 0.1 for all three layers. Empirically,
this value leads to good reconstruction while giving very sparse codes. Increasing
this value too much can lead to patches not being reconstructed (only zeros)
while reducing the value (i.e by an order of magnitude) increases the number of
non-zero coefficients and the computation costs without necessarily improving
the performances.

We tested two configurations of architecture: we used K = 25, 25, 50 atoms
and K = 50, 50, 100 atoms for the three layers. Increasing the number of atoms
in the intermediate layers leads to very high dimensional input for the subse-
quent layer hindering the computational performances. The tests has been run
on Matlab and we could not test very large dictionaries.

The results in Table 1 are obtained with the classifier directly learned by
the algorithm. We used the original training and test sets with no data aug-
mentation. Supervised learning greatly improves the perfomances for the tested
configurations. Moreover, the gain in perfomances between the two choices of
the number of atoms is small even though the number of atoms is doubled. It
may be explained by the fact that the images in the MNIST dataset are not
really complex so additional atoms are not needed to describe more features.

Table 2 regroups some performances of state of the art methods on the
MNIST dataset. The results for the proposed method are obtained with no data
augmentation as opposed to [11] and [20].



Methods Dictionary size K Error rate

1 layer (unsupervised) 700 3.71%

3 layers (unsupervised) 25, 25, 50 4.93%
(5× 5), (5× 5), (5× 5)

3 layers (unsupervised) 25, 25, 50 2.2%
(5× 5), (5× 5), (5× 5)

3 layers (supervised) 25, 25, 50 0.46%
(5× 5), (5× 5), (5× 5)

3 layers (supervised) 50, 50, 100 0.41%
(5× 5), (5× 5), (5× 5)

Table 1. Performance comparison between supervised and unsupervised learning with
a linear classifier on the MNIST dataset.

Methods Error rate

Yang et al. [20] 0.84%

Mairal et al. [11] 0.54%

Proposed method 0.41%

Table 2. Performance comparison on the MNIST dataset.

We also tested our method on the CIFAR-10 dataset [9] which is constructed
with 60000 real images (50000 images for learning and 10000 images for testing)
of size (32 × 32) pixels, separated into 10 classes. This dataset is more chal-
lenging than the MNIST dataset because the variance of view points, poses and
localizations of the object of interest is much higher. In particular, the dictio-
nary learning methods which process the whole image at once usually have some
difficulties to learn the features efficiently. For this test, we used the same struc-
ture as the one used for the MNIST dataset (3 layers) with the same parameters
(Table 3).

Methods Dictionary size K Accuracy

3 layers (unsupervised) 25, 25, 50 34.98%
(5× 5), (5× 5), (5× 5)

3 layers (unsupervised) 25, 25, 50 42.39%
(5× 5), (5× 5), (5× 5)

3 layers (supervised) 25, 25, 50 78.86%
(5× 5), (5× 5), (5× 5)

3 layers (supervised) 50, 50, 100 83.03%
(5× 5), (5× 5), (5× 5)

Table 3. Performance comparison between supervised and unsupervised learning with
a linear classifier on the CIFAR-10 dataset.



Only a few works present classification results on the CIFAR-10 dataset using
a dictionary learning method only. However, other methods exist (i.e Convolu-
tional neural networks) [8] to deal with this kind of dataset.

Methods Accuracy

Fawzi et al. [7] 53.44%

Coates et al. [4] 79.6%

Coates et al. [5] 81.5%

Proposed method 83.03%

Table 4. Performance comparison on the CIFAR-10 dataset.

Table 4 shows some results on the CIFAR-10 dataset without data augmenta-
tion. Fawzi et al. [7] use a single layer dictionary learning method for comparison.
Coates et al. [4], [5] used unsupervised multi-layer sparse coding with large dic-
tionaries (up to 4k atoms). The proposed method performs better using a few
number of atoms (undercomplete dictionaries) showing the capability of learning
discriminative dictionaries. Better performances may be obtained by increasing
the number of atoms in the layers, however at the moment, the MATLAB im-
plementation used is too slow.

During our experiments, we noticed that the number of atoms in the first
layer (image layer) is important, for example choosing K = 15, 25, 50 (15 instead
of 25 in the first layer) could leave to a drop of about 10% in performances. The
same can also be said of the number of atoms of the last layer (size of the
features) but with a lesser extent.

5 Conclusion

In this paper, we have presented a multi-layer dictionary learning framework. It
can potentially handle an image of any size as input and performs the learning
of features at the patch level. Its goal is to allow the use of supervised dictionary
learning methods on images while evading the computational issues that arise
when dealing with large dictionary atoms.

We still have not fully investigated this method and we will continue to
work on the proposed structure in order to study the effects of the choices of
the different parameters (dictionary size, sparsity, number of layers). For future
work, we will confront this method with more complex datasets, containing larger
images, to challenge the limit of this approach.
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