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Abstract 

  We propose in this article an adaptation of the basic techniques of the deterministic network 

calculus theory to the road traffic flow theory. Network calculus is a theory based on min-plus 

algebra. It uses algebraic techniques to compute performance bounds in communication 

networks, such as maximum end-to-end delays and backlogs. The objective of this article is to 

investigate the application of such techniques for determining performance bounds on road 

networks, such as maximum bounds on travel times. The main difficulty to apply the network 

calculus theory on road networks is the modeling of interaction of cars inside one road, or 

more precisely the congestion phase. We propose a traffic model for a single-lane road 

without passing, which is compatible with the network calculus theory. The model permits to 

derive a maximum bound of the travel time of cars through the road. Then, basing on that 

model, we explain how to extend the approach to model intersections and large-scale 

networks. 

 

Keywords: traffic flow theory, maximum travel time, network calculus, min-plus algebra. 
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Notations 

 

𝑢(𝑡) inflow at time 𝑡. 
 

𝑈(𝑡) cumulated inflow from time zero to time 𝑡. 
 

𝑦(𝑡) outflow at time 𝑡. 
 

𝑌(𝑡) cumulated outflow from time zero to time 𝑡. 
 

𝛼 maximum arrival curve (time function). 

 

𝛽 minimum service curve (time function). 

 

𝐹 the set of time functions  𝑓 is non − decreasing and  𝑓 𝑡 = 0,∀ 𝑡 < 0 . 
 

⊕ element-wise operation (min-plus addition in 𝐹).       𝑓 ⊕ 𝑔  𝑡 ≔

min 𝑓 𝑡 ,𝑔 𝑡  . 

 

∗ min-plus convolution in 𝐹.       𝑓 ∗ 𝑔  𝑡 ≔ inf0≤𝑠≤𝑡 𝑓 𝑠 + 𝑔 𝑡 − 𝑠  . 

 

⊘ min-plus de-convolution in 𝐹.        (𝑓 ⊘ 𝑔)(𝑡) ≔ sup𝑠≥0 𝑓 𝑡 + 𝑠 − 𝑓 𝑠  . 

 

휀 the zero element of the dioid (𝐹,⊕,∗).      휀 𝑡 = +∞,∀𝑡 ≥ 0. 

 

𝑒 the unity element of the dioid (𝐹,⊕,∗).       𝑒 𝑡 = +∞,∀𝑡 > 0, and 𝑒 0 = 0. 

 

𝑓𝑘  convolution power.  𝑓𝑘 = 𝑓 ∗ 𝑓 ∗ … ∗ 𝑓   (𝑘 times). 

 

𝐵(𝑡) the backlog at time 𝑡.     𝐵 𝑡 ≔ 𝑈 𝑡 − 𝑌(𝑡). 

 

𝑑(𝑡) the virtual delay at time 𝑡.       𝑑 𝑡 ≔ Inf  ≥ 0,𝑌 𝑡 +  ≥ 𝑈 𝑡  . 
 

𝛾𝑝  a particular function in 𝐹.     𝛾𝑝 𝑡 = +∞ ∀𝑡 > 0, and 𝛾𝑝 0 = 𝑝. 

 

𝛿𝑇 a particular function in 𝐹.      𝛿𝑇 𝑡 = 0 ∀𝑡 ≤ 𝑇, and 𝛿𝑇 𝑡 = +∞ ∀𝑡 > 𝑇. 

 

[expr]+ max 0, 𝑒𝑥𝑝𝑟 .  
 

𝑞 car-flow. 

 

𝑞𝑚𝑎𝑥   the maximum car-flow. 

 

𝑞𝑖(𝑡) the car outflow from the 𝑖th
 section at time 𝑡. 

 

𝑄𝑖(𝑡) the cumulated car outflow from the 𝑖th
 section from time zero to time 𝑡. 

 

𝑛𝑖  the number of cars in the 𝑖th
 section at time zero. 

  

𝑛𝑚𝑎𝑥  the maximum number of cars that a section can contain. 
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𝜌 the average car-density in the road. 

 

𝜌𝑐  the critical car-density. 

 

𝜌𝑗  the jam car-density. 

 

𝑣 the free car speed. 

 

𝑤 the backward wave speed. 

 

∆𝑥 the section length. 

 

𝑞(𝜌) the car-flow function of the car-density (fundamental traffic diagram). 

 

𝜏(𝜌) the travel time function of the car-density. 

 

𝜏𝑚𝑎𝑥 (𝜌) a maximum bound of the travel time, function of the car-density. 

 

 

 𝑓(𝑘)
𝑚

𝑘=1
 

 

 
min1≤𝑘≤𝑚 𝑓(𝑘). 

 

 

1 Introduction 

The recent advances in information and communication technologies permit to obtain 

valuable information on the traffic state by means of probe vehicles (Amin & al, 2008), 

(Herrera & Bayen, 2008). The information is then either used to derive reliable traffic 

indicators, or sent (after required analyses, filtrations and reformulations) to connected 

vehicles via intelligent transportation equipments, in order to improve the traffic conditions. 

One of the most important traffic indicators that drivers need to receive in order to optimize 

their trip, is the travel time through the possible paths to their destinations. Even though the 

average value of the travel time estimation is determinant for drivers, its deviation may be 

very important in some cases. In order to evaluate the deviation of the travel time, one can 

determine either the probability distribution of the travel time, or minimum and maximum 

bounds for it.  Several methods exist in the literature to estimate travel times (Coifman, 2002), 

(Claudel & Bayen, 2008), (Claudel, Hofleitner, Mignerey, & Bayen, 2008), (Ng, Szeto, & 

Waller, 2011). 

We present in this article a traffic model that permits to derive a maximum bound of the travel 

time of cars passing through a single-lane road. The model is deterministic and uses algebraic 

techniques of the network calculus theory (a theory for performance bound calculus in 

communication and computer networks) (Chang, 2000), (Le Boudec & Thiran, 2001), (Jiang 

& Liu, 2008). The objective of our work is to adapt the algebraic approach of the Network 

Calculus theory to transportation networks. 
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We propose in this article a first step of applying the deterministic network calculus to 

determine the maximum bound of the travel time. The main contribution of this article is a 

traffic model that permits the derivation of that bound with a theoretic formula. Moreover, the 

maximum bound of the travel time is derived as a function of the average car-density on the 

road, and is then compared to the formula that gives the average travel time, basing on the 

same modeling. In section 2 we give a short review in the network calculus theory and in the 

min-plus algebra (Baccelli, Cohen, Olsder, & Quadrat, 1992), in order to fix the notations and 

the language. The model is presented in section 3. It is inspired from the cell transmission 

model (Daganzo, 1994), (Daganzo, 1995), and written on a single-lane road. The cumulative 

flows are seen as time signals and the car-dynamics is written algebraically as a min-plus 

linear system (Baccelli, Cohen, Olsder, & Quadrat, 1992). The impulse response of that 

system is then interpreted in term of guaranteed minimum service on the road. A maximum 

travel time of cars through the road is then derived from that guaranteed minimum service, as 

done basically in deterministic network calculus (Chang, 2000), (Le Boudec & Thiran, 2001). 

Thus, a formula giving a maximum bound for the travel time as a function of the average car-

density in the road is obtained. In section 4, we propose a procedure for extending our 

approach to intersections and large transportation networks. 

2 Review in network calculus 

 

The procedure here is to consider a single-lane road as a server and apply the network 

calculus theory to determine a maximum bound of the travel time of cars through the road. In 

this short section we recall some basic results of the network calculus theory. In order to fix 

notations, a time function 𝑓(𝑡) (written with a small letter) expresses a given flow at time 𝑡, 

while 𝐹(𝑡) (written with a capital letter) denotes the cumulative flow  𝑓(𝑠)𝑑𝑠
𝑡

0
. For an 

arrival flow 𝑈 arriving to a server that is empty of data at time zero, a maximum arrival curve 

𝛼 is associated in order to upper-bound the arrivals. 

Arrival curve. 𝛼 is a (maximum) arrival curve for 𝑈 if  

𝑈 𝑡 − 𝑈 𝑠 ≤ 𝛼 𝑡 − 𝑠 ,∀ 0 ≤ 𝑠 ≤ 𝑡. 
 

In the other side, a minimum service curve 𝛽 is associated to the server, in order to lower-

bound the service. If the output from the server is denoted 𝑌, then 𝛽 is defined as follows. 

Service curve. 𝛽 is a (minimum) service curve for the server if  

𝑌 𝑡 ≥ min
0≤𝑠≤𝑡

 𝑈 𝑠 + 𝛽 𝑡 − 𝑠  ,∀𝑡 ≥ 0. 

Two indicators of the service performance are considered. 

 The backlog 𝐵(𝑡) of data in the server at a given time 𝑡 is defined by 

𝐵 𝑡 = 𝑈 𝑡 − 𝑌 𝑡 . 

 The virtual delay 𝑑(𝑡) caused by the server at time 𝑡 is defined by 

𝑑 𝑡 = Inf  ≥ 0,𝑌 𝑡 +  ≥ 𝑈 𝑡  . 

In the case where initial data 𝑛0 is assumed in the server at time zero, the definition of the 

virtual delay remains correct by replacing the signal 𝑌 by 𝑌 − 𝑛0. 

It is easy to see that arrival and service curves are not unique. In order to obtain good bounds 
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on the backlog and on the virtual delay on a given server, it is necessary to consider “good” 

arrival and service curves. A good arrival (resp. service) curve is simply the minimal (resp. 

maximal) one; see (Le Boudec & Thiran, 2001) and (Chang, 2000) for more details. 

We recall below a basic result of the deterministic network calculus (Le Boudec & Thiran, 

2001) (Chang, 2000), that gives three bounds for a unique server. If 𝛼 is an arrival curve for 

an arrival flow 𝑈 to a given server that offers a minimum service curve 𝛽, then we have 

 The virtual delay is bounded as follows. 

𝑑(𝑡) ≤ sup
𝑡≥0

 Inf  ≥ 0,𝛼 𝑡 ≤ 𝛽 𝑡 +    ,     ∀ 𝑡 ≥ 0. 

 The backlog is bounded as follows. 

𝐵(𝑡) ≤ sup
𝑠≥0

 𝛼 𝑠 − 𝛽 𝑠  ,    ∀𝑡 ≥ 0. 

 The curve 𝑡 ↦  sup𝑠≥0(𝛼 𝑡 + 𝑠 − 𝛽 𝑠 ) is an arrival curve for the departure flow 𝑌 

from the server. 

The maximum backlog and delay on a server are then given simply as the maximal vertical 

and horizontal distances between the arrival and the service curves; see Figure 1. 

 

 

 
Figure 1. On the left side: Schema of the server. On the right side: The maximum delay 𝑑 and 

the maximum backlog 𝑏 determined graphically as the maximum horizontal and vertical 

distances between the arrival and the service curves, respectively. 

 

3 Guaranteed service on a single-lane road (the model) 

We present in this section an elementary model for the calculus of minimum guaranteed 

service for a single-lane road seen as a server. The objective of this modeling is to derive the 

maximum travel time of cars passing through the road, from the guaranteed minimum service 

of the road. The model is written on the cumulative car-flow variables 𝑄 (see notations 

below). It is inspired from the cell transmission model (Daganzo, 1994), (Daganzo, 1995); see 

also (Lebacque, 1996). The min-plus linear system theory (Baccelli, Cohen, Olsder, & 

Quadrat, 1992)  is then used to derive the minimum guaranteed service. 

Let us consider a single-lane road where cars move without passing. In order to be able to fix 

the car-density, and to simplify the model, we consider a ring road; see Figure 2. The road is 

divided into 𝑚 sections of length ∆𝑥. The maximum number of cars on one section is denoted 

by 𝑛𝑚𝑎𝑥 . The jam density 𝜌𝑗  on the road is then given by 
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 𝜌𝑗 =
𝑛𝑚𝑎𝑥

∆𝑥
 . (1)  

We use the following notations: 

 𝑈 𝑡  : The cumulated inflow of cars to the road from time zero up to time  𝑡. 

 𝑌 𝑡  : The cumulated outflow of cars from the road, from time zero up to time 𝑡. 

 𝑞𝑖(𝑡) : The car outflow from the 𝑖𝑡  section (the section between positions 𝑖 ∆𝑥 and 

  𝑖 + 1 ∆𝑥) at time 𝑡. 

 𝑄𝑖(𝑡) =   𝑞𝑖 𝑠 𝑑𝑠
𝑡

0
 : The cumulated car outflow from the 𝑖𝑡  section up to time 𝑡. 

 𝑛𝑖  : The number of cars in the 𝑖𝑡  section (the section between positions 𝑖 ∆𝑥 and 

  𝑖 + 1 ∆𝑥) at time zero. 

 

 

Figure 2.  A single-lane ring road and the corresponding event-graph model. 
 

Moreover, we assume the following fundamental traffic diagram for the road. 

 𝑞 𝜌 = min  𝑣𝜌 ,𝑤 𝜌𝑗 − 𝜌  , (2)  

Where 𝑞, 𝜌, 𝑣,𝑤 denote respectively the car-flow, the car-density, the free car-speed and 

the backward wave speed on the road; see Figure 3. The maximum flow is then given by 

 𝑞𝑚𝑎𝑥 =  
𝜌𝑗

1
𝑣 +  

1
𝑤

. (3)  
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Figure 3. The fundamental traffic diagram. 

 

Let us first recall the well known case (Farhi, 2008) of an autonomous single-lane ring road, 

with no entry 𝑈 and no exit 𝑌. In this case the dynamics of the system is written as follows. 

 

𝑄1 𝑡 = min 𝑄𝑚 𝑡 − ∆𝑥 𝑣   +  𝑛𝑚 ,𝑄2 𝑡 −  ∆𝑥 𝑤  +  𝑛 1 .

𝑄𝑖 𝑡 = min 𝑄𝑖−1 𝑡 −  ∆𝑥 𝑣  +  𝑛𝑖−1,𝑄𝑖+1 𝑡 −  ∆𝑥 𝑤  + 𝑛 𝑖 ,∀ 𝑖 ∈  2,3,… ,𝑚 − 1 .

𝑄𝑚 𝑡 = min 𝑄𝑚−1 𝑡 −  ∆𝑥 𝑣   +  𝑛𝑚−1,𝑄1 𝑡 −  ∆𝑥 𝑤  +  𝑛𝑚  ,

 (4)  

where 𝑛 𝑘 =  𝜌𝑗∆𝑥 −  𝑛𝑘  = 𝑛𝑚𝑎𝑥 −  𝑛𝑘 . 

The system (4) is a discrete time event system for which the dynamics is well understood. 

Indeed, the system (4) can be represented by an event graph (a class of Petri nets), and its 

dynamics can be written linearly in min-plus algebra (Baccelli, Cohen, Olsder, & Quadrat, 

1992). Since the event graph representing the system (4) is strongly connected, the 

asymptotic car flow on the road is then the same at every section, and is given by the 

minimum over the average weights of the graph circuits (Farhi, 2008). Three circuits are 

distinguished in the event graph of Figure 2. 

 The interior circuit with the average growth rate  

   𝑛𝑖  
𝑚
𝑖=1

𝑚 ∆𝑥/𝑣
=   

 𝑛𝑖  
𝑚
𝑖=1  

𝑚 ∆𝑥
 𝑣 =  𝑣𝜌. 

 The exterior circuit with the average growth rate 

  𝑛 𝑖  
𝑚
𝑖=1

𝑚 ∆𝑥 𝑤 
=  𝑤  𝜌𝑗 − 𝜌 . 

 The loops over each section, with the average growth rate 

𝑛𝑚𝑎𝑥

∆𝑥/𝑣 +  ∆𝑥 𝑤 
=

𝜌𝑗∆𝑥

∆𝑥/𝑣 +  ∆𝑥 𝑤 
=  𝑞𝑚𝑎𝑥 . 

The asymptotic car-flow is then given by 

𝑞 𝜌 = 𝑞𝑖(𝜌) = min{𝑣𝜌,− 𝑤 (𝜌 −  𝜌𝑗 ) } ,∀𝑖. 

and retrieves then the fundamental diagram (2) assumed in the model. 
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The average travel time through the road is then given by 

𝜏(𝜌) = 𝑚∆𝑥 
𝜌

𝑞(𝜌)
= max  𝑚 

∆𝑥

𝑣
,𝑚

∆𝑥

𝑤
 

𝜌

 𝜌𝑗 −  𝜌 
 . 

In the following, we are interested on the maximum travel time through the road, rather 

than the average travel time. For that, we introduce an inflow and outflow of cars on the 

road. We assume that cars enter into the road from the entry of section 1, and exit it from 

the same point after passing through the road. The dynamics (4) are then rewritten as 

follows: 

 

𝑄1 𝑡 = min 𝑈 𝑡 ,𝑄𝑚 𝑡 −  ∆𝑥 𝑣  +  𝑛𝑚 ,𝑄2 𝑡 −  ∆𝑥 𝑤  +  𝑛 1 .

𝑄𝑖 𝑡 = min 𝑄𝑖−1 𝑡 −  ∆𝑥 𝑣  +  𝑛𝑖−1,𝑄𝑖+1 𝑡 −  ∆𝑥 𝑤  + 𝑛 𝑖 ,∀ 𝑖 ∈  2,3,… ,𝑚 − 1 .

𝑄𝑚 𝑡 = min 𝑄𝑚−1 𝑡 −  ∆𝑥 𝑣   +  𝑛𝑚−1,𝑄1 𝑡 −  ∆𝑥 𝑤  +  𝑛 𝑚  .

𝑌 𝑡 =  min 𝑄𝑚 𝑡 − ∆𝑥 𝑣  +  𝑛𝑚 ,𝑄2 𝑡 −  ∆𝑥 𝑤  +  𝑛 1 .

 (5)  

Let us notice the difference between the dynamics of 𝑄1 which is conditioned by the inflow 

𝑈, and the dynamics of 𝑌 which is not conditioned by the inflow 𝑈. 

We consider the same modeling approach as above, but here we will see the variables as 

signals; see (Baccelli, Cohen, Olsder, & Quadrat, 1992). We first show that the dynamic 

system (5) is linear in a certain algebraic structure, and then use this linearity to derive a 

guaranteed service of the road seen as a car server. 

Let us consider the set of time functions 

𝐹 =  𝑓 is non − decreasing and  𝑓 𝑡 = 0,∀ 𝑡 < 0 , 
endowed with the following two operations. 

 Addition (element-wise minimum):  𝑓 ⊕ 𝑔  𝑡 ≔ min 𝑓 𝑡 ,𝑔 𝑡  ,∀𝑡 ≥ 0. 

 Product (min-plus convolution):  𝑓 ∗ 𝑔  𝑡 ≔ min0≤𝑠≤𝑡{𝑓 𝑠 + 𝑔(𝑡 − 𝑠)} ,∀𝑡 ≥ 0. 

We then obtain a dioid structure (𝐹, ⊕, ∗) (Baccelli, Cohen, Olsder, & Quadrat, 1992) (Le 

Boudec & Thiran, 2001). The zero element of that dioid is denoted by 휀 and defined by 

휀 𝑡 = +∞,∀𝑡 ≥ 0, while the unity element is denoted by 𝑒 and defined by  

𝑒 𝑡 =  
0 if 𝑡 = 0.

+∞ for 𝑡 ≥ 0.
  

In addition, we consider the following notations: 

 Power: 𝑓𝑘  denotes the product (min-plus convolution) of 𝑓 with itself 𝑘 times. 

 Additive closure: 𝑓∗ 𝑡 ≔ 𝑒 ⊕ 𝑓 ⊕ 𝑓2 ⊕𝑓3 ⊕… 

 De-convolution: (𝑓 ⊘ 𝑔)(𝑡) ∶=  sup𝑠≥0 𝑓 𝑡 + 𝑠 − 𝑔 𝑠  . 

and the two particular signals 𝛾𝑝  (the gain signal) and 𝛿𝑇 (the shift signal) in 𝐹 (see Appendix 

A for more details on those signals). 

𝛾𝑝 𝑡 =   
𝑝 if 𝑡 = 0

+∞ for 𝑡 > 0
               and          𝛿𝑇 𝑡 =  

0 if 𝑡 ≤ 𝑇
+∞  otherwise
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We notice that by using the notation of the min-plus convolution, the definitions of arrival and 

service curves can be rewritten as follows. 

 𝛼 is an arrival curve for 𝑈 if 𝑈 ≤ 𝛼 ∗ 𝑈. 

 𝛽 is a (minimum) service curve for the server if 𝑌 ≥ 𝛽 ∗ 𝑈. 

Now, since the cumulative flows 𝑈,𝑄𝑖 , 1 ≤ 𝑖 ≤ 𝑚, and 𝑌 are time functions (or signals) in 𝐹, 

then by using the notations of addition and product in 𝐹, the system (5) is linear according to 

those operations, and is written as follows
1
. 

 

𝑄1 =  𝛾𝑛𝑚 𝛿∆𝑥 𝑣 𝑄𝑚  ⊕  𝛾𝑛 1𝛿∆𝑥/𝑤𝑄2 ⊕𝑈.

𝑄𝑖 = 𝛾𝑛𝑖−1𝛿∆𝑥 𝑣 𝑄𝑖−1   ⊕  𝛾𝑛 𝑖𝛿∆𝑥/𝑤𝑄𝑖+1  ,   ∀ 𝑖 ∈  2,3,… ,𝑚 − 1 .

𝑄𝑚 =  𝛾𝑛𝑚−1𝛿∆𝑥 𝑣 𝑄𝑚−1  ⊕  𝛾𝑛 𝑚 𝛿∆𝑥/𝑤𝑄1.

𝑌 =  𝛾𝑛𝑚 𝛿∆𝑥 𝑣 𝑄𝑚  ⊕  𝛾𝑛 1𝛿∆𝑥/𝑤𝑄2.

 (6)  

Moreover, since we are not only interested in the average quantities, but on the maximum 

bounds, we include the initial conditions of the system (5) (the signals are null at time zero). 

To include those conditions, it is sufficient to add (min-plus addition) to each signal of system 

(6) the signal unity 𝑒. Then, the dynamics (6) are written as follows. 

 

𝑄1 =  𝛾𝑛𝑚 𝛿∆𝑥 𝑣 𝑄𝑚  ⊕  𝛾𝑛 1𝛿∆𝑥/𝑤𝑄2 ⊕𝑈⊕ 𝑒.

𝑄𝑖 = 𝛾𝑛𝑖−1𝛿∆𝑥 𝑣 𝑄𝑖−1   ⊕  𝛾𝑛 𝑖𝛿∆𝑥/𝑤𝑄𝑖+1  ⊕𝑒,   ∀ 𝑖 ∈  2,3,… ,𝑚− 1 .

𝑄𝑚 =  𝛾𝑛𝑚−1𝛿∆𝑥 𝑣 𝑄𝑚−1  ⊕  𝛾𝑛 𝑚 𝛿∆𝑥/𝑤𝑄1 ⊕ 𝑒.

𝑌 =  𝛾𝑛𝑚 𝛿∆𝑥 𝑣 𝑄𝑚  ⊕  𝛾𝑛 1𝛿∆𝑥/𝑤𝑄2 ⊕ 𝑒.

 (7)  

The system (7) is then written as follows. 

 𝑄 = 𝐴 ∗ 𝑄 ⊕  𝐵 ∗ 𝑈⊕𝐸
𝑌 = 𝐶 ∗ 𝑄 ⊕ 𝑒

 
(8)  

where 𝑄 = (𝑄1 𝑄2 ⋯ 𝑄𝑚)′, 

A =  

 

 
 
 
 

ε 𝛾𝑛 1  𝛿∆𝑥 𝑤 ε ⋯ ε 𝛾𝑛𝑚  𝛿∆𝑡

𝛾𝑛1  𝛿∆𝑡 ε 𝛾𝑛 2  𝛿∆𝑥 𝑤 ε ⋯ ε

ε 𝛾𝑛2  𝛿∆𝑡 ε 𝛾𝑛 3  𝛿∆𝑥 𝑤 ε ⋮
⋮ ⋱ ⋱ ⋱ ⋱ ε
ε ⋯ ε 𝛾𝑛𝑚−2  𝛿∆𝑡 ε 𝛾𝑛 𝑚−1  𝛿∆𝑥 𝑤 

𝛾𝑛 𝑚  𝛿∆𝑥 𝑤 ε ⋯ ε 𝛾𝑛𝑚−1  𝛿∆𝑡 휀  

 
 
 
 

,   B =  

 

  
 

e
ε
⋮
⋮
ε
ε 

  
 

, 

 

𝐶 =   휀 𝛾𝑛 1𝛿∆𝑥/𝑤 휀 ⋯ 휀 𝛾𝑛𝑚 𝛿∆𝑡    and   𝐸 = (𝑒 𝑒 ⋯ 𝑒)′. 

The system (8) is a min-plus linear system. A basic result of the min-plus system theory 

(Baccelli, Cohen, Olsder, & Quadrat, 1992) gives then the impulse response of system (8): 

                                                           
1 Note that, as in the standard algebra, the product operation is sometimes just not symbolized (that is 

to say that   𝑓 ∗ 𝑔 can simply be written 𝑓𝑔.) 
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 𝑌 = 𝐶𝐴∗ 𝐵𝑈⊕ 𝐸 ⊕ 𝑒 = 𝐶𝐴∗𝐵𝑈⊕ 𝐶𝐴∗𝐸 ⊕ 𝑒. (9)  

Note that an impulse response 𝑌 = 𝐶𝐴∗𝐵𝑈 would be obtained if system (6) is considered 

instead of system (7) (that is if the initial conditions of system (6) are not taken into account). 

In that case, we would conclude directly that 𝐶𝐴∗𝐵 is a minimum service curve of the road 

seen as a server (since we have 𝑌 ≥  𝐶𝐴∗𝐵 ∗ 𝑈), and derive a maximum bound for the travel 

time through the road. But here, as mentioned above, it is necessary to take into account the 

initial conditions of the dynamical system, since we are interested in the maximum bound of 

the travel time through the road, rather than the average travel time. In order to be able to 

derive maximum bounds from the formula (9), as done from a service curve, we propose the 

following extension. 

 

Minimum service couple 

We consider here the case where the curve service is given with an additional affine term. 

More precisely, we say that  𝛽, 𝜆  is a service couple for a server if 

𝑌 ≥ 𝛽 ∗ 𝑈⊕ 𝜆. 

Then we can easily check (see Appendix B), that to obtain the three bounds given above, for 

that case, it is sufficient to replace 𝛽 with 𝛽 ⊕ 𝜆. That is to say that: 

 The maximum backlog is bounded as follows.  

𝐵(𝑡) ≤ sup
𝑠≥0

 𝛼 𝑠 − (𝛽 ⊕ 𝜆) 𝑠  ,    ∀𝑡 ≥ 0. 

 The maximum delay is bounded as follows. 

𝑑 𝑡 ≤ sup
𝑡≥0

 Inf  ≥ 0,𝛼 𝑡 ≤ (𝛽 ⊕ 𝜆) 𝑡 +    ,     ∀ 𝑡 ≥ 0. 

 An arrival curve for the departure flow is 𝛼 ⊘ (𝛽 ⊕ 𝜆). That is 

 𝑌 ≤ (𝛼 ⊘ (𝛽 ⊕ 𝜆)) ∗ 𝑌. 

Note that the curve (𝛽 ⊕ 𝜆) is not necessarily a minimu service curve for the server. 

The two first bounds are then given by the maximum vertical and horizontal distances 

between the curves 𝛼 and 𝛽 ⊕ 𝜆.  

Theorem 1. A minimum service couple for the single-lane road, seen as a server, is  𝛽, 𝜆  

given by  

𝛽 =  𝛾− 𝑚𝜌∆𝑥 ∗ 𝑎∗ +

𝜆 = 𝛽 ⊕  𝛾− 𝑚𝜌∆𝑥   𝛾 𝑚𝜌−𝑘𝜌𝑗  
+
∆𝑥𝛿(𝑚−𝑘)∆𝑥 𝑣 ⊕  𝛾 𝑘𝜌𝑗−𝑚𝜌  

+
∆𝑥𝛿𝑘  ∆𝑥 𝑤 

𝑚−1

𝑘=1

𝑚−1

𝑘=1

⊕ 𝑒  

+

 

where 

𝑎 = 𝛾𝑚𝜌∆𝑥𝛿𝑚∆𝑥/𝑣 ⊕𝛾𝜌𝑗∆𝑥𝛿∆𝑥 𝑣 +∆𝑥 𝑤 ⊕𝛾𝑚(𝜌𝑗−𝜌)∆𝑥𝛿𝑚∆𝑥 𝑤  

Proof. The system (8) is an affine min-plus system. We then have 𝑌 = 𝐶𝐴∗𝐵𝑈⊕ 𝐶𝐴∗𝐸 ⊕ 𝑒. 

We need to compute 𝐴∗. Several methods can be used to compute 𝐴∗. By definition of 𝐴∗, one 

can simply compute 𝐴2 ,𝐴3 ,…etc, then deduce 𝐴∗ =  𝐴𝑘
𝑘≥0  by simplifying all the terms. We 

can easily check that 𝐴∗ is given as follows. 
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(𝐴∗)𝑖𝑗 =  
𝑎∗ if 𝑖 = 𝑗

𝑎∗  𝛾 𝑛𝑘
𝑖−1
𝑘=𝑗  𝛿 𝑖−𝑗  ∆𝑡  ⊕  𝛾 𝑛 𝑘

𝑗−1
𝑘=𝑖  𝛿 𝑗−𝑖 ∆𝑥 𝑤     if  𝑖 ≠ 𝑗, with k cyclic in  1,2,… ,𝑚 

 . 

In order to compute 𝐶𝐴∗𝐵, we need only the first column of 𝐴∗, since only the first entry of  𝐵 

is not null. Thus,  𝐴∗𝐵 = (𝐴∗)∙1 and is given by 

𝐴∗𝐵 = 𝑎∗ ∗  𝑒  𝛾𝑛1  𝛿∆𝑡  ⊕  𝛾 𝑛 𝑘
𝑚
𝑘=2  𝛿 𝑚−1 ∆𝑥 𝑤  ⋯  𝛾 𝑛𝑘

𝑚−1
𝑘=1  𝛿 𝑚−1 ∆𝑡  ⊕  𝛾𝑛 𝑚  𝛿∆𝑥 𝑤   . 

Therefore, 𝐶𝐴∗𝐵 = 𝑎∗ ∗ 𝑎. 

Similarly, we can check that 

𝐶𝐴∗𝐸 = 𝑎∗ ∗ 𝑎 ⊕  𝛾 𝑛𝑖
𝑚
𝑖=𝑘+1 𝛿(𝑚−𝑘)∆𝑥 𝑣 ⊕  𝛾 𝑛 𝑖

𝑘
𝑖=1 𝛿𝑘  ∆𝑥 𝑤 

𝑚−1

𝑘=1

𝑚−1

𝑘=1

 

Then, it is not difficult to check that 

 𝑛𝑖

𝑚

𝑖=𝑘+1

≥ [𝑚𝜌 − 𝑘𝜌𝑗 ]+∆𝑥.

 𝑛 𝑖

𝑘

𝑖=1

≥ [𝑘𝜌𝑗 −𝑚𝜌]+∆𝑥.

 

Now, since we are interested in the car outflow from the road that comes from the car inflow, 

without counting the cars being in the road at time zero (and stay there all time because the 

road is circular), we need to express the variable 𝑍 = [𝑌 −  𝑛𝑖]
𝑚
𝑖=1

+
=  𝛾− 𝑚𝜌∆𝑥𝑌 + in 

function of 𝑈. We then conclude that the couple of curves  𝛾− 𝑚𝜌∆𝑥𝐶𝐴∗𝐵, 𝛾− 𝑚𝜌∆𝑥   𝐶𝐴∗𝐸 ⊕

𝑒   is a minimum service couple for the ring road (see property (P4) in Appendix A). 

Finally, we have  𝛾− 𝑚𝜌∆𝑥 ∗ 𝑎 ∗ 𝑎∗ + =  𝛾− 𝑚𝜌∆𝑥 ∗ 𝑎∗ +, since  𝑎 ∗ 𝑎∗  𝑡 = 𝑎∗ 𝑡 ,∀𝑡 > 0 

and  𝑎 ∗ 𝑎∗  0 = 𝑎(0) < 𝑚𝜌∆𝑥 (see properties (P2) and (P5) in Appendix A). 

■ 

In order to show the shape of the minimum service couple given in Theorem 1, let us take an 

academic example. 

Example 1. Let 𝑚 = 6,∆𝑥 = 1, 𝑣 = 1,𝑤 = 1 2 ,𝜌𝑗 = 1. Then we have 𝑛𝑚𝑎𝑥 = 1, 𝜌𝑐 = 1 3  

and 𝑞𝑚𝑎𝑥  = 1 3 . In addition, we take three cases, where we vary the average car-density on 

the road. Let us first notice that 𝑎∗ can also be written as follows (see property (P3) in 

Appendix A). 

𝑎∗ = (𝛾𝑚𝜌∆𝑥𝛿𝑚∆𝑥/𝑣)∗ ∗  𝛾𝜌𝑗∆𝑥𝛿∆𝑥 𝑣 +∆𝑥 𝑤  
∗
∗ (𝛾𝑚 𝜌𝑗−𝜌 ∆𝑥𝛿𝑚∆𝑥 𝑤 )∗ 

Then we have the three cases: 

  𝑛𝑖 = 1𝑚
𝑖=1 , that is 𝜌 =  1 6  <  𝜌𝑐 . Then 𝑎 = 𝛾1𝛿6 ⊕𝛾5𝛿12 and 𝑎∗ = (𝛾1𝛿6)∗. 
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Hence the minimum service couple (𝛽, 𝜆) is given by 

𝛽 =  𝛾−1 𝛾1𝛿6 ∗ + =  𝛾−1 ∗  𝛾1𝛿6 ∗.

𝜆 = 𝛽 ⊕ 𝛾0𝛿5 ⊕𝛾1𝛿6 ⊕𝛾2𝛿8 ⊕𝛾3𝛿10 = 𝛽.
  

  𝑛𝑖 = 2𝑚
𝑖=1 , that is 𝜌 =  1 3 =  𝜌𝑐 . Then 𝑎 = 𝛾1𝛿3 and 𝑎∗ =  𝛾1𝛿3 ∗. Hence the 

minimum service couple (𝛽, 𝜆) is given by 

𝛽 =  𝛾−2 𝛾1𝛿3 ∗ +.

𝜆 = 𝛽 ⊕ 𝛾0𝛿8 ⊕𝛾1𝛿10 .
  

  𝑛𝑖 = 3𝑚
𝑖=1 , that is 𝜌 =  1 2 >  𝜌𝑐 . Then 𝑎 = 𝛾1𝛿3 ⊕𝛾3𝛿12, 𝑎∗ =

 𝛾1𝛿3 ∗ 𝛾3𝛿12 ∗. 

Hence the minimum service couple (𝛽, 𝜆) is given by 

𝛽 =  𝛾−3 𝛾1𝛿3 ∗ 𝛾3𝛿12 ∗ +.

𝜆 = 𝛽 ⊕ 𝛾0𝛿10 = 𝛽.
  

The minimum service couples (given in Theorem 1) corresponding to each of the three cases, 

are shown in Figure 4. 

■ 

We give below a corollary of Theorem 1, where by relaxing the minimum service couple 

given in Theorem 1, we obtain practical formulas. 

Corollary 1. A minimum service couple (𝛽, 𝜆) for the road is given by 

𝛽 𝑡 = q ρ  t −  τ ρ  +

𝜆 𝑡 = 𝛽(𝑡) ⊕𝑤𝜌𝑗  𝑡 −
2𝑚𝜌

𝜌𝑗

∆𝑥

𝑤
 

+
 

where 𝑞(𝜌) and 𝜏(𝜌) are the average flow and average travel time given by the fundamental 

diagram (given in section 2). 
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Figure 4. Calculus of the service couple for the single-lane ring road in three cases of low, 

critical and high car-density. 

 

Proof.  

1. From the curve 𝛽 given by Theorem 1, we have 

  𝛾 𝑛𝑖
𝑚
𝑖=1 𝛿𝑚

∆𝑥

𝑣  
∗

 ≥  𝜌𝑣 𝑡, 

  𝛾𝑛𝑚𝑎𝑥 𝛿
∆𝑥

𝑣
+
∆𝑥

𝑤  
∗

 ≥  𝑞𝑚𝑎𝑥  𝑡, 

   𝛾 𝑛 𝑖
𝑚
𝑖=1 𝛿𝑚

∆𝑥

𝑤  
∗

 ≥  𝜌𝑗 − 𝜌 𝑤𝑡. 
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Then  𝛾 𝑛𝑖
𝑚
𝑖=1 𝛿𝑚

∆𝑥

𝑣  
∗

∗  𝛾𝑛𝑚𝑎𝑥 𝛿
∆𝑥

𝑣
+
∆𝑥

𝑤  
∗

∗  𝛾 𝑛 𝑖
𝑚
𝑖=1 𝛿𝑚

∆𝑥

𝑤  
∗

 ≥ min 𝜌𝑣, 𝑞𝑚𝑎𝑥 ,  𝜌𝑗 − 𝜌 𝑤  𝑡. 

But since ∀𝜌, min 𝜌𝑣,  𝜌𝑗 − 𝜌 𝑤 ≥ 𝑞𝑚𝑎𝑥 , then 

 𝛾 𝑛𝑖
𝑚
𝑖=1 𝛿𝑚

∆𝑥

𝑣  
∗

∗  𝛾𝑛𝑚𝑎𝑥 𝛿
∆𝑥

𝑣
+
∆𝑥

𝑤  
∗

∗  𝛾 𝑛 𝑖
𝑚
𝑖=1 𝛿𝑚

∆𝑥

𝑤  
∗

 ≥ min 𝜌𝑣,  𝜌𝑗 − 𝜌 𝑤  𝑡. 

Hence 

  𝛾 𝑛𝑖
𝑚
𝑖=1 𝛿𝑚

∆𝑥
𝑣  

∗

∗  𝛾𝑛𝑚𝑎𝑥 𝛿
∆𝑥
𝑣

+
∆𝑥
𝑤  

∗

∗  𝛾 𝑛 𝑖
𝑚
𝑖=1 𝛿𝑚

∆𝑥
𝑤  

∗

− 𝜌𝑚∆𝑥 

+

 

≥ min 𝜌𝑣,  𝜌𝑗 − 𝜌 𝑤  𝑡 −
𝜌𝑚∆𝑥

min 𝜌𝑣,  𝜌𝑗 − 𝜌 𝑤 
 

+

≥  min 𝜌𝑣,  𝜌𝑗 − 𝜌 𝑤   𝑡 − max  𝑚
∆𝑥

𝑣
,

𝜌

𝜌𝑗 − 𝜌
 𝑚 

∆𝑥

𝑤
  

+

. 

2. From the curve λ given in theorem 1, we have 

 𝛾 𝑚𝜌−𝑘𝜌𝑗  
+
∆𝑥𝛿(𝑚−𝑘)∆𝑥 𝑣 

𝑚−1

𝑘=1

≥ max   𝑣𝜌𝑗  𝑡 −  𝑚 −
𝑚𝜌

𝜌𝑗
 
∆𝑥

𝑣
 

+

, 𝛾 𝑚𝜌−𝜌𝑗  
+
∆𝑥𝛿 𝑚−1 ∆𝑥 𝑣   

then 

𝛾− 𝑚𝜌∆𝑥  𝛾 𝑚𝜌−𝑘𝜌𝑗  
+
∆𝑥𝛿(𝑚−𝑘)∆𝑥 𝑣 

𝑚−1

𝑘=1

≥ 𝑣𝜌𝑗  𝑡 − 𝑚
∆𝑥

𝑣
 

+

. 

In the other hand, we have 

 𝛾 𝑘𝜌𝑗−𝑚𝜌  
+
∆𝑥𝛿𝑘  ∆𝑥 𝑤 

𝑚−1

𝑘=1

≥ max  𝑤𝜌𝑗  𝑡 −
𝑚𝜌

𝜌𝑗

∆𝑥

𝑤
 

+

, 𝛾 (𝑚−1)𝜌𝑗−𝑚𝜌  
+
∆𝑥𝛿(𝑚−1) ∆𝑥 𝑤   

then 

𝛾− 𝑚𝜌∆𝑥  𝛾 𝑘𝜌𝑗−𝑚𝜌  
+
∆𝑥𝛿𝑘  ∆𝑥 𝑤 

𝑚−1

𝑘=1

≥ 𝑤𝜌𝑗  𝑡 −
2𝑚𝜌

𝜌𝑗

∆𝑥

𝑤
 

+

. 

3. Finally, it is easy to check that 

𝛽(𝑡) ≤ 𝑣𝜌𝑗  𝑡 − 𝑚
∆𝑥

𝑣
 

+

 

since 𝑞(𝜌) ≤ 𝑣𝜌𝑗  and 𝜏(𝜌) ≥ 𝑚∆𝑥 𝑣 .                                                                               ■ 

Let us notice that the term  𝑤𝜌𝑗  𝑡 −
2𝑚𝜌

𝜌𝑗

∆𝑥

𝑤
 

+

is more important than the term 𝛽(𝑡) in the 

service couple given in Corollary 1. Indeed the curve 𝛽(𝑡) gives simply the average service of 

the road, since 𝑞(𝜌) is the average car-flow and 𝜏 𝜌  is the average travel time on the road. 
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Corollary 2. If 𝛼 𝑡 = 𝜎 + 𝑟𝑡 is an arrival curve for the inflow 𝑈 to the road, then the 

following bounds are guaranteed. 

 A maximum bound for the travel time of cars through the road is  

τmax = max  𝜏 +
𝜎

𝑞
,
2𝑚𝜌

𝜌𝑗

∆𝑥

𝑤
+

𝜎

𝑤𝜌𝑗
 . 

 A maximum bound for the number of cars waiting at the entry of the road (not confuse 

with the number of cars queuing at the exit of the road) is 

𝑏𝑚𝑎𝑥 = max  𝜎 + 𝑟𝜏,𝜎 + 𝑟
2𝑚𝜌

𝜌𝑗

∆𝑥

𝑤
 . 

 An arrival curve for the departure flow from the road is 

𝛼  𝑡 = 𝑏𝑚𝑎𝑥 + 𝑟𝑡. 

 

Proof.  It is well known (Le Boudec & Thiran, 2001) that if a flow with an arrival curve 

𝛼 𝑡 = 𝜎 + 𝑟𝑡 is served in a server with a minimum service curve 𝛽 𝑡 = 𝑅(𝑡 − 𝑇)+, then 

the maximum delay is 𝑇 + 𝜎 𝑅 , the maximum backlog is 𝜎 + 𝑟𝑇, and the curve 𝜎 + 𝑟𝑇 + 𝑟𝑡 

is an arrival curve for the departure flow. The result is then obtained by adapting these bounds 

to the case of couple service instead of minimum service curve (see Appendix B), and by 

using the couple service given in Corollary 1. 

■ 

In the road traffic, it is probably not interesting to assume arrival curves with no null 𝜎. One 

may simply estimate the arrival flow rate (linear arrival curve) and the car-density on the 

road, at a given time, and want to determine the maximum three bounds at the considered 

time instant. In this case, we simply have from Corollary 2:  

 

τmax (ρ) = max  𝜏 𝜌 ,
2𝑚𝜌

𝜌𝑗

∆𝑥

𝑤
 

= max  
1

𝑣
,

𝜌

𝜌𝑗 − 𝜌
 
1

𝑤
,
2𝜌

𝜌𝑗
 
1

𝑤
  𝑚∆𝑥, 

(10)  

and 𝑏𝑚𝑎𝑥  = 𝑟 𝜏𝑚𝑎𝑥 , and 𝛼  𝑡 = 𝑟(𝑡 + 𝜏𝑚𝑎𝑥 ). 

 

The formula (10) tells that the maximum travel time through the road is greater than the 

average travel time only in the car-density interval [ 𝜌𝑗 2   𝑤 𝑣  ,𝜌𝑗 2 ] when 𝑤 < 𝑣. That is 

to say that 

 
𝜌𝑗

2

𝑤

𝑣
< 𝜌 <

𝜌𝑗

2
 ⇔  𝜏𝑚𝑎𝑥  𝜌 > 𝜏 𝜌 . (11)  

 

In Figure 5, we show the average and the maximum travel times in function of the car-density 

in the case where 𝑤 < 𝑣. 
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Figure 5. The average and the maximum travel times through the road in the case where 

𝑤 = 𝑣/2. 
 

Let us notice that the choice of the traffic flow model (cell transmission model) and that of the 

fundamental traffic diagram (triangular one) are very important. Indeed these two choices 

permitted to write the car-dynamics on the road linearly in the min-plus algebra. This is 

necessary because the service couple is derived as an impulse response of a min-plus linear 

system.  

4 Road network calculus 
  

We give in this section the first ideas on how to use the results obtained on a single-lane road 

to extend the approach to intersections and whole transportation networks. First we notice that 

for multi-lane roads, one may just use one fundamental diagram for all lanes and apply the 

same approach as done for a single-lane road. We assume here that the same model and 

results are used for multi-lane roads. However, other models similar to the one given above 

can also be developed for multi-lane traffic.  

Before presenting the procedure of extending our approach to intersections and networks, we 

need to recall and extend  an important result of the deterministic network calculus on the 

series composition of servers (it shows in particular the power of the algebraic approach 

against other approaches). The result tells that a minimum service curve of the series 

composition of two servers guaranteeing 𝛽1 and 𝛽2 as minimum service curve for each of 

them, is simply the curve 𝛽1 ∗ 𝛽2. The result can easily be proved by using the associative 

property of the min-plus convolution; see (Chang, 2000) (Le Boudec & Thiran, 2001) for 

more details. Moreover, since the min-plus convolution is also commutative, then the order of 

the composition of the two servers is not important.  

For our model, we need to have a similar result for a composition of servers offering 

minimum service couples (rather than minimum service curves). It is easy to see that the 

composition of two servers offering two service couples  𝛽1,𝜆1  and  𝛽2,𝜆2  guarantees a 

service couple  𝛽1 ∗ 𝛽2,𝛽1 ∗ 𝜆2 ⊕𝜆1 . Indeed from 𝑌 = 𝛽1 ∗ 𝑍 ⊕ 𝜆1 and 𝑍 = 𝛽2 ∗ 𝑈 ⊕ 𝜆2, 

we get 𝑌 = (𝛽1 ∗ 𝛽2) ∗ 𝑈 ⊕ (𝛽1 ∗ 𝜆2 ⊕𝜆1). 



N. Farhi, H. Haj-Salem and J.-P. Lebacque  18 

In communication and computer networks, one determines first the (residual) guaranteed 

service for all (input, output) couples through every switching router. Then, it is sufficient to 

compose (with a min-plus convolution) all the guaranteed services through all the arcs of a 

given path, to determine the service guaranteed through the whole path. Finally, one 

determines the maximum end-to-end delays on a communication network by calculating the 

maximum delay on each (origin-destination) path on the network, by simply using its 

guaranteed service curve, and considering the whole path as an elementary server. The 

residual guaranteed service calculus on a given input-output couple of a given router takes 

into account the control policy set in that router; see (Chang, 2000) and (Le Boudec & Thiran, 

2001) for more details. 

We think that we can proceed similarly for transportation networks. Indeed, the main 

difference between data traffic in communication networks and car-traffic in transportation 

networks is the interaction between particles (drivers observe reaction times contrary to data 

packets), expressed in the fundamental diagram of the road. Since this difference is already 

taken into account in the one road model (presented above), then to extend the approach to 

complicated transportation networks, it remains the adaptation of the residual guaranteed 

service calculus on input-output couples of routers to apply in intersections, for transportation 

control policies. Then one only needs to compose elementary road services and residual 

guaranteed services, to obtain guaranteed services on whole paths. Maximum travel times can 

then be derived similarly. We notice here that one of the most difficult issues to solve, in 

order to extend the approach presented in this article to big networks, is the presence of cyclic 

dependencies of inflows arriving to one intersection, even though some elementary results 

exist to deal with that issue (Chang, 2000). 

Let us explain the calculus of maximum bounds of travel times in a tree-like network. Let us 

consider the transportation network of Figure 6. 

 
Figure 6. Tree-like network. The car-traffic goes from the left side to the right side. 

 

In Figure 6, the notation 𝐴+ indicates some point downstream of intersection 𝐴. The 

notation 𝐶𝐴
− indicates some point upstream of intersection 𝐶 in the direction of intersection 

𝐴. All other notations are interpreted similarly. We assume that we have the fundamental 

diagrams of the roads (𝐴+,𝐶𝐴
−), (𝐵+,𝐶𝐵

−), (𝐶+,𝐸𝐶
−), (𝐷+,𝐸𝐷

−) and (𝐸+,𝐹𝐸
−). The approach 

for calculating a maximum bound for the travel time from 𝐴 to 𝐹 in Figure 6 is the following. 
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1. Determine the guaranteed service on each of the roads (𝐴+,𝐶𝐴
−), (𝐵+,𝐶𝐵

−), (𝐶+,𝐸𝐶
−), 

(𝐷+,𝐸𝐷
−) and (𝐸+,𝐹𝐸

−), independent of the intersections. We simply use the 

fundamental diagrams of the roads, and the model presented above. 

2. Calculate the residual services on the merge 𝐶: 

a. The service guaranteed on 𝐶 for the aggregate inflows coming from 𝐶𝐴
− and 𝐶𝐵

− is 

assumed to be simply the guaranteed service on the road (𝐶+,𝐸𝐶
−). 

b. The control policy on 𝐶 is assumed to be known. 

c. From these two information (a and b), calculate the residual guaranteed services 

for the flows  𝐶𝐴
−,𝐶+  and (𝐶𝐵

−,𝐶+). This shall be done by adapting well known 

results of network calculus theory on the calculus of residual guaranteed service. 

(This is not yet done). 

3. Calculate the residual services on the merge 𝐸. By the same method as in 2. Calculate 

the residual guaranteed services for the flows  𝐸𝐶
−,𝐸+  and (𝐸𝐷

−,𝐸+). 

4. Finally, the guaranteed service for the flow  𝐴+,𝐹𝐸
−  , or simply (𝐴,𝐹), is given by the 

series composition of the services  𝐴+,𝐶𝐴
− ,  𝐶𝐴

−,𝐶+ ,  𝐶+,𝐸𝐶
− ,  𝐸𝐶

−,𝐸+  and  𝐸+,𝐹𝐸
− , 

respectively. The guaranteed services for  𝐵,𝐹  and  𝐷,𝐹  are obtained similarly. 

The maximum travel times from 𝐴 (resp. 𝐵 and 𝐷) to 𝐹 are then derived from the 

guaranteed services  𝐴,𝐹 ,  𝐵,𝐹  and  𝐷,𝐹  respectively, as done on a single road. 

Conclusion  

We presented in this article a network calculus traffic model that permits the derivation of a 

maximum bound for the travel time of cars passing through a single-lane road. An important 

advantage of this model is its algebraic formulation which is very powerful comparing to 

other formulations (e.g. the series composition). Even though the model is basic and 

elementary, its developments and extensions may be promising. Our future work shall be on 

the realization of the model extension process presented in section 5. We shall also 

demonstrate the effectiveness of our approach by performing numerical investigations on 

effective data sets.   

Appendix A (Details on the signals 𝜸𝒑 and 𝜹𝑻) 

We give here some particular signals in 𝐹 as well as some properties used in section 3 (traffic 

model). 

 The gain signal 𝛾𝑝 : 

𝛾𝑝 𝑡 =   
𝑝 𝑖𝑓 𝑡 = 0

+∞ 𝑓𝑜𝑟 𝑡 > 0
  

 The shift signal 𝛿𝑇: 

𝛿𝑇 𝑡 =  
0 𝑖𝑓 𝑡 ≤ 𝑇

+∞ 𝑜𝑡𝑒𝑟𝑤𝑖𝑠𝑒
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It is then easy to obtain the following signals: 

 The signal 𝛾𝑝 ∗ 𝛿𝑇: 

 𝛾𝑝 ∗ 𝛿𝑇  𝑡 =  
𝑝 if 𝑡 ∈ [0,𝑇]
+∞ if 𝑡 > 𝑇

  

 The signal  𝛾𝑝 ∗ 𝛿𝑇 ∗: 

 𝛾𝑝 ∗ 𝛿𝑇 ∗ 𝑡 =  
0 𝑖𝑓 𝑡 ≤ 0

𝑘𝑝 𝑓𝑜𝑟 𝑘𝑇 ≤ 𝑡 <  𝑘 + 1 > 𝑇,    𝑘 ∈ 𝑁 
  

Moreover, we can easily check (see Figure 7) that 

 𝛾𝑝 ∗ 𝛿𝑇 ∗ 𝑡 ≥
𝑝

𝑇
 𝑡,   ∀𝑡. 

We explain here the convolution of the signals 𝛾𝑝  and 𝛿𝑇with a signal 𝑓. 

  𝛾𝑝𝑓  𝑡 ≔ (𝛾𝑝 ∗ 𝑓) 𝑡 = 𝑓 𝑡 + 𝑝,∀𝑡. 

  𝛿𝑇𝑓  𝑡 ≔  𝛿𝑇 ∗ 𝑓  𝑡 = 𝑓 𝑡 − 𝑇 ,∀𝑡. 

  𝛾𝑝𝛿𝑇𝑓  𝑡 ≔  𝛾𝑝 ∗ 𝛿𝑇 ∗ 𝑓  𝑡 = 𝑓 𝑡 − 𝑇 + 𝑝,∀𝑡. 

 

 
 

Figure 7.The signals 𝛾2, 𝛿3, 𝛾2𝛿3 and  𝛾2𝛿3 ∗  respectively from left side to right side. 

 

 

We recall the following additional properties; see (Baccelli, Cohen, Olsder, & Quadrat, 1992) 

and/or (Le Boudec & Thiran, 2001). 

 (P1):   ∀𝑓 ∈ 𝐹, 𝑓∗ ≤ 𝑓 ∗ 𝑓∗ ≤ 𝑓. 

 (P2):   ∀𝑓 ∈ 𝐹, 𝑓 0 = 0 ⇒ 𝑓 ∗ 𝑓∗ = 𝑓∗. 

 (P3):   ∀𝑓,𝑔 ∈ 𝐹, (𝑓 ⊕ 𝑔)∗ = 𝑓∗ ∗ 𝑔∗. 

 (P4):   ∀𝑓,𝑔 ∈ 𝐹, 𝑓 ≥ 0,𝑔 ≥ 0 ⇒ [ 𝑓 ∗ 𝑔 ∗ 𝛾−𝑎]+ = 𝑓 ∗ [𝑔 ∗ 𝛾−𝑎]+. 

 (P5):   ∀𝑓 ∈ 𝐹, 𝑒 ⊕ 𝑓 ∗ 𝑓∗ = 𝑓∗. 

Appendix B (minimum service couple) 

We clarify here the three bounds of network calculus in the case where we have a minimum 

service couple  𝛽, 𝜆  instead of a minimum service curve 𝛽. That is to say that we have 

𝑌 ≥ 𝛽 ∗ 𝑈⊕ 𝜆 instead of 𝑌 ≥ 𝛽 ∗ 𝑈. 
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 The maximum backlog: 

𝐵 𝑡 = 𝑈 𝑡 − 𝑌 𝑡 ≤ 𝑈 𝑡 − min  𝑚𝑖𝑛
0≤𝑠≤𝑡

 𝑈 𝑡 − 𝑠 + 𝛽 𝑠  , 𝜆 𝑡  

≤ max  𝑚𝑎𝑥
0≤𝑠≤𝑡

 𝛼 𝑠 − 𝛽 𝑠  ,𝛼 𝑡 − 𝜆 𝑡  

≤ max  𝑚𝑎𝑥
𝑧≥0

𝑚𝑎𝑥
0≤𝑠≤𝑧

 𝛼 𝑠 − 𝛽 𝑠  ,𝑚𝑎𝑥
𝑧≥0

 𝛼 𝑧 − 𝜆 𝑧   

≤ max  𝑚𝑎𝑥
𝑠≥0

 𝛼 𝑠 − 𝛽 𝑠  ,𝑚𝑎𝑥
𝑠≥0

 𝛼 𝑠 − 𝜆 𝑠   

≤max
𝑠≥0

 𝛼 𝑠 − (𝛽 ⊕ 𝜆) 𝑠  . 

 The maximum delay: 

Let 𝑡 ≥ 0. Let 𝜏 ≥ 0 such that 𝜏 < 𝑑 𝑡 ≔  inf{ ≥ 0,𝑈(𝑡) ≤ 𝑌(𝑡 + )}. Then we 

have 𝑈(𝑡) > 𝑌(𝑡 + 𝜏). We have 

𝑌 𝑡 + 𝜏 ≥ min  min
0≤𝑠≤𝑡+𝜏

 𝑈 𝑡 + 𝜏 − 𝑠 + 𝛽 𝑠  , 𝜆 𝑡 + 𝜏  . 

That is  

∃ 𝑠0 , 0 ≤ 𝑠0 ≤ 𝑡 + 𝜏, 𝑌 𝑡 + 𝜏 ≥ min 𝑈 𝑡 + 𝜏 − 𝑠0 + 𝛽 𝑠0 ,𝜆 𝑡 + 𝜏  . 

Then  

∃ 𝑠0, 0 ≤ 𝑠0 ≤ 𝑡 + 𝜏, 𝑈(𝑡) ≥ min 𝑈 𝑡 + 𝜏 − 𝑠0 + 𝛽 𝑠0 ,𝜆 𝑡 + 𝜏  . 

Therefore 

 If  𝑈(𝑡) ≥ 𝑈 𝑡 + 𝜏 − 𝑠0 + 𝛽 𝑠0  then 𝑠0 > 𝜏 and thus 

𝛼 𝑠0 − 𝜏 ≥ 𝑈 𝑡 − 𝑈 𝑡 + 𝜏 − 𝑠0 > 𝛽(𝑠0) 

Hence 

𝜏 < sup
𝑡≥0

inf  ≥ 0,𝛼 𝑡 ≤ 𝛽 𝑡 +   ≤ sup
𝑡≥0

inf  ≥ 0,𝛼 𝑡 ≤ (𝛽 ⊕ 𝜆) 𝑡 +   . 

 If 𝑈(𝑡) ≥ 𝜆(𝑡 + 𝜏) then since 𝑈 0 = 0, we have 𝛼(𝑡) ≥ 𝑈(𝑡) ≥ 𝜆(𝑡 + 𝜏). 

Hence  

𝜏 < sup
𝑡≥0

inf  ≥ 0,𝛼 𝑡 ≤ 𝜆 𝑡 +   ≤ sup
𝑡≥0

inf  ≥ 0,𝛼 𝑡 ≤ (𝛽 ⊕ 𝜆) 𝑡 +   . 

 The departure flow: 

𝑌 𝑡 − 𝑌 𝑠 ≤ U t − max  min
0≤z≤s

 U s − z + β z  , λ s  

≤ max  max
0≤z≤s

 𝑈 𝑡 − 𝑈 𝑠 − 𝑧 − 𝛽 𝑧  ,𝑈 𝑡 − 𝜆 𝑠  

≤ max  max
0≤z≤s

 𝛼  𝑡 − 𝑠 + 𝑧 − 𝛽 𝑧  ,𝛼 𝑡 − 𝜆 𝑠  

≤ max  max
0≤z≤s

 𝛼  𝑡 − 𝑠 + 𝑧 − 𝛽 𝑧  , max
0≤z≤s

 𝛼  𝑡 − 𝑠 + 𝑧 − 𝜆 𝑧    

≤ max
0≤z≤s

 𝛼  𝑡 − 𝑠 + 𝑧 − min 𝛽, 𝜆  𝑧  ≤ (𝛼 ⊘ (𝛽 ⊕ 𝜆))(𝑡 − 𝑠). 
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