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MuLoG, or How to apply Gaussian denoisers
to multi-channel SAR speckle reduction?

Charles-Alban Deledalle, Loı̈c Denis, Sonia Tabti, Florence Tupin

Abstract—Speckle reduction is a longstanding topic in synthetic
aperture radar (SAR) imaging. Since most current and planned
SAR imaging satellites operate in polarimetric, interferometric or
tomographic modes, SAR images are multi-channel and speckle
reduction techniques must jointly process all channels to recover
polarimetric and interferometric information. The distinctive na-
ture of SAR signal (complex-valued, corrupted by multiplicative
fluctuations) calls for the development of specialized methods
for speckle reduction. Image denoising is a very active topic
in image processing with a wide variety of approaches and
many denoising algorithms available, almost always designed
for additive Gaussian noise suppression. This paper proposes a
general scheme, called MuLoG (MUlti-channel LOgarithm with
Gaussian denoising), to include such Gaussian denoisers within
a multi-channel SAR speckle reduction technique. A new family
of speckle reduction algorithms can thus be obtained, benefiting
from the ongoing progress in Gaussian denoising, and offering
several speckle reduction results often displaying method-specific
artifacts that can be dismissed by comparison between results.

Index Terms—SAR, speckle, variance stabilization, ADMM,
Wishart distribution

I. INTRODUCTION

Synthetic aperture radar (SAR) imaging is a widely used
technique for earth observation. It offers complementary in-
formation to the more common optical imaging. Among its
distinctive features, one may cite its all-weather and day-
and-night imaging capabilities [43], the interferometric con-
figurations that give access to 3-D reconstructions for digital
elevation models [48] and displacement estimation [42], [20]
or the polarimetric and tomographic modes that give access to
estimates of the biomass in forested areas [34].

Coherent combination of several radar echoes within each
resolution cell results in interferences and the well-known
speckle phenomenon [26]. Due to speckle, regions with ho-
mogeous radar properties display strong fluctuations in SAR
images. Direct estimation of the reflectivity, the interfero-
metric phase or polarimetric properties is unusable given
its prohibitively large variance. Speckle reduction is thus a
longstanding topic in SAR imagery.
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Since speckle statistics departs from the additive Gaussian
noise model widely used for processing optical images, a
whole line of denoising methods have been designed specif-
ically for speckle reduction. Restoration of intensity images
(i.e., single-channel SAR images) remains the first and most
studied case. Many different schemes have been proposed
in this context, see the recent reviews [3] and [12]. Among
the different possible strategies, selection-based methods use
various criteria to identify homogeneous collections of neigh-
boring pixels. Pixels may be selected by locally choosing the
best neighborhood within a fixed set of oriented windows [36].
Another approach consists of selecting connected pixels by
region growing [54]. Patch-comparison has been shown to
provide a robust way to get a (weighted) selection of similar
pixels [15], [12]. Variational methods formulate the estimation
problem as an optimization problem depending on the whole
image. The objective function that is optimized is composed of
two terms: a data-fitting term and a regularization term. Due to
the non-Gaussian distribution of the intensity of SAR images,
the data-fitting term differs from the usual sum of squared
differences that arises from a Gaussian assumption. Several
regularization terms have been considered in the literature,
e.g., total variation (TV) [49], [51], [17], [52], [7], curvelets
[18], Gaussian mixture models [53]. Yet another strategy is
to transform the data so the noise becomes additive and ap-
proximately Gaussian and stationary by using a homomorphic
transform. As further discussed in Sec.II, the log-transformed
intensity is approximately Gaussian distributed and can thus
be restored using a Gaussian denoiser, e.g., based on wavelet
thresholding [56], [1], [6] or on patch redundancy [41].

Not all these speckle reduction methods generalize well to
multi-channel SAR images. Selection-based methods require
to extend the homogeneity or similarity criteria to multi-
variate data. This can be done by using only part of the
information, for example the span [54] or the scattering
properties [37], or by exploiting the whole covariance matrices
[8], [16]. Once relevant pixels have been selected, estimation
of polarimetric/interferometric information is straightforward,
e.g., by using a linear mean square error approach [35],
[16] or a weighted maximum likelihood estimator [13], [14].
Extension of variational methods to multi-channel SAR data
is more challenging. Direct formulation of the objective func-
tion on the covariance matrices raises several problems: (i)
computational complexity due to the non-convexity of the
data-fitting term; (ii) difficulty to express regularity properties
of the complex-valued terms of the covariance matrices; (iii)
non-stationary variance of speckle that leads to over/under-
smoothing in some areas. These difficulties explain that very
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few works were conducted in this direction, with the excep-
tion of recent works on multi-channel TV regularization ap-
proaches [39], [45], [46], [47]. Finally, while the homomorphic
transform approach is well understood on intensity images, no
variance stabilization transform is known for multi-channel
images.

A generic methodology to apply denoising methods from
the “additive Gaussian noise world” to multi-channel SAR data
is definitely lacking. This paper attempts to fill this gap. The
contributions of this paper are the following:

1) to provide a generic method, called MuLoG, to embed
a Gaussian denoiser in a speckle reduction filter;

2) to apply as well to single channel or to multi-channel
SAR images;

3) to produce estimates of the complex covariance matrix
that capture all polarimetric and/or interferometric infor-
mation,

4) to better account for speckle statistics than other meth-
ods based on a homomorphic transform1;

5) to require no parameter tuning other than possibly within
the Gaussian denoiser.

We introduce our generic methodology by first considering
(single-channel) intensity images (Sec. II), then the extension
to multi-channel SAR images (Sec. III). We discuss imple-
mentation issues (Sec. IV) before illustrating the proposed
methodology with several Gaussian denoisers and different
types of multi-channel SAR images (Sec. V).

II. SPECKLE REDUCTION FOR SAR INTENSITY IMAGES

A. Statistics of univariate SAR images

a) Intensity: Univariate SAR images are by nature
complex-valued and only the modulus (a.k .a., the amplitude)
is informative. The square of the modulus (a.k .a., the in-
tensity) is nevetheless easier to manipulate, and according
to Goodman’s model [26], it follows a gamma distribution
G(R;L) with a probability density given by

pI(I|R) =
LLIL−1

Γ(L)RL
exp

(
−L I

R

)
, (1)

where I ∈ R+ is the observed intensity, R ∈ R+ is the
underlying reflectivity (related to the radar cross-section), and
L > 0 is the number of looks. The intensity I can be
decomposed as a product of the reflectivity R and of a speckle
component S distributed under a standard gamma distribution
(S ∼ G(1;L)):

I = R× S, E[I] = R and Var[I] =
R2

L
. (2)

As the variance depends on the expectation, fluctuations
are said to be signal dependent. The top graph in Fig.2(a)
illustrates how a simple rectangle signal (solid curve) gets
corrupted by speckle: the gray area shows values between
the first and third quartiles, the dots represent the expectation

1note that these other methods are only applicable to intensity SAR images
(i.e., single-channel)

and the dashed line a single noisy realization. The signal-
dependent nature of the fluctuations can be observed: the
difference between first and third quartiles is larger when
the underlying signal values are high. Last but not least, the
gamma distribution has a heavier right-tail caracterizing the
typical bright outliers observed in SAR intensity images.

b) Logarithm: The log-transform y = log I ∈ R is often
employed to convert multiplicative fluctuations to additive
ones. From the gamma distribution (1), y follows the Fisher-
Tippett distribution defined as

py(y|x) =
LL

Γ(L)
eL(y−x) exp

(
−Ley−x

)
, (3)

where x = logR ∈ R. The Fisher-Tippett distribution, denoted
by FT (x;L), models additive corruptions as [57]

y = x+ s , (4)
E[y] = x− logL+ Ψ(L) , (5)

and Var[y] = Ψ(1, L) , (6)

where s ∼ FT (0;L). The log transform stabilizes the
variance, i .e., the fluctuations are made signal independent.
Equation (5) shows that the noise has a non-zero mean. If
noise is assumed zero-mean during a speckle-reduction step
performed on log-transformed data, a subsequent debiasing
step is then necessary.

The bottom graph in Fig.2(a) displays the intensities in a log
scale. By comparing with the top curve, variance stabilization
can be observed, as well as the bias between the expectation
of log-transformed intensities (black dots) and ground truth
signal (solid curve).

B. Homomorphic approach

We now consider I and R as images, such that I ∈ Rn+, and
R ∈ Rn+, where n is the number of pixels. Let y ∈ Rn and
x ∈ Rn be the entry-wise logarithm of I and R respectively,
i .e., such that yk = log Ik and xk = logRk. A classical
approach to estimate R is thus to approach the Fisher-Tippett
distribution by a non-zero mean Gaussian distribution, which
leads to the following estimation procedure

x̂ = fΨ(1,L)(y) + (logL−Ψ(L))1n︸ ︷︷ ︸
debiasing

, (7)

where fσ2 : Rn → Rn is a denoiser for images contaminated
by zero-mean additive white Gaussian noise N (0;σ2Id). Typ-
ically f can be a regularized least-square solver expressed as

fσ2(y) ∈ argmin
x∈Rn

1

2σ2
||y − x||2 +R(x) , (8)

where, within the Maximum A Posteriori (MAP) framework,
R(x) = − log px(x) is a prior term enforcing some regularity
on the solution. Finally, the estimate R̂ is defined as R̂k =
exp x̂k for all pixel index k. This process is summarized on
Fig.1, top row. We illustrate the restored 1D signals obtained
by applying L2+TV minimization [50] within a homomorphic
procedure on Fig.2(b).

The homomorphic approach has been extensively used, e.g.,
for wavelet prior in [56], for patch-based priors as in KSVD
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Fig. 1. Several approaches for speckle reduction discussed in this paper. The proposed scheme generalizes the variational approaches based on a log-transform
to multi-channel SAR images. Similarly to homomorphic or variational approaches on log-transformed data, it embeds a Gaussian denoising step.

[21] or for non-local filtering [41]. While for large values
of L the Fisher-Tippett distribution approaches the Gaussian
distribution, the two distributions differ for low values of L.
In particular, the Fisher-Tippett is asymmetrical with a heavier
left-tail. Hence, this approximation often leads to remaining
dark stains on the resulting images.

C. Variational approach

Rather than applying the homomorphic approach in order
to reduce the original problem to the Gaussian case, an
alternative proposed in [4], [17] is to consider directly the
gamma distribution of I ∈ Rn+ leading to a MAP solver of
the form (see also Fig.1 second row):

R̂ ∈ argmin
R∈Rn

+

− log pI(I|R) +R(R) , (9)

where − log pI(I|R) = L

n∑
k=1

logRk +
Ik
Rk

+ Cst.

Not only is this minimization constrained to positive-valued
images, but the objective function is also non convex. This

non convexity enforces some robustness to the bright outliers
originating from the right tail of the gamma distribution.
As a consequence, when standard iterative solvers are used
(e.g ., gradient descents [4], or the forward backward al-
gorithm [9]), the solution depends on the initialization and
the internal parameters of the solver, even if R is chosen
convex. Convexification by replacing the original objective
function by its convex hull [31] simplifies the minimization
at the cost of a loss of accuracy of the statistical model. In
particular, the convex hull does not capture the right tail of the
gamma distribution, leading to remaining bright outliers on
the resulting images. For some Markov prior regularization,
namely convex pairwise regularizations, the global optimum
can be obtained in finite time [30]. This optimization method
has been applied in the 1D illustration of Fig.2(c). It can
be observed that, since large fluctuations in bright areas are
more strongly penalized than the small fluctuations in low-
level areas, speckle is reduced predominantly in the brightest
areas. In the restored signal, the remaining noise variance is
made uniform, i.e., signal-independent, in linear scale. Thus,
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Fig. 2. Illustration of speckle reduction by 1D total variation minimization: (a) speckle-corrupted rectangle signal (L = 2), (b) restored reflectivity using
the homomorphic approach and “L2 + TV” minimization in log-domain, (c) restored reflectivity using a variational approach “gamma + TV” in the linear
domain, (d) restored reflectivity using a variational approach “Fisher-Tippett + TV” in the log domain. Expectation and quartiles are computed from 50 000
noisy realizations. Restorations computed by exact discrete optimization [30] with 2 000 quantization levels.

small details with identical signal to noise ratio will be more
likely suppressed if placed in areas of large average value.
This phenomenon is also observed on images: speckle noise
is reduced more strongly in brighter areas [17], [52], and bright
punctual targets are found to be spread out.

D. Variational approach on log-transformed data

Another alternative proposed in [51], [52], [7], [18] consists
of formulating the estimation problem in the log domain.
Rather than approximating the likelihood of log-transformed
reflectivities by a Gaussian distribution (as done by homo-
morphic approaches discussed in Sec.II-B), the Fisher-Tippett
distribution (3) is considered. The regularization is also ex-
pressed on the log-transformed reflectivities x ∈ Rn, leading
to a MAP optimization problem of the form:

x̂ ∈ argmin
x̂∈Rn

− log py(y|x) +R(x) , (10)

where − log py(y|x) = L

n∑
k=1

xk + eyk−xk + Cst.

The final estimate is defined as R̂k = exp x̂k for all pixel index
k. Remark that log py(y|x) = log pI(exp(y)| exp(x)) + Cst.,
so that problems (9) and (10) only differ in terms of the prior
regularization. Nevertheless, this change of variable leads to
several advantages compared to (9). First, the optimization is
unconstrained as x can be any vector of Rn. More importantly,
the data fidelity becomes convex. As a consequence, if R is
also chosen convex, solutions depend neither on the initial-
ization or the choice of the internal parameters of the solver.
Such internal parameters only affect the speed of convergence
and thus the number of iterations to perform in practice.

The multiplicative image denoising by augmented La-
grangian (MIDAL) algorithm [7] considers a convex regular-
ization, TV, and minimizes (10) using the alternating direction
method of multipliers (ADMM) algorithm [25], [23], [19] that

repeats, for an internal parameter β > 0, the updates

ẑ ← argmin
z

β

2
||z − x̂+ d̂||2 +R(z) , (11)

d̂← d̂+ ẑ − x̂ , (12)

x̂← argmin
x

β

2
||x− ẑ − d̂||2 − log py(y|x) . (13)

Clearly the minimization for z in (11) depends on the choice
of R and can be solved by a dedicated regularized least
square solver (corresponding to a Gaussian denoiser). This
is schematized on Fig.1, third row. The minimization for x in
(13) amounts to solving n separable convex problems of the
form

argmin
xk

β

2
(xk − ak)2 + L

(
xk + eyk−xk

)
, (14)

where ak = ẑk + d̂k. The explicit solution is given by the
Lambert W functions [7], or can be computed more efficiently
with a few iterations of Newton’s method as

x̂k ← x̂k −
β(x̂k − ak) + L(1− eyk−x̂k)

β + Leyk−x̂k
. (15)

Using ten iterations is usually enough to offer good per-
formances within a reasonable computational time, see,
e.g ., [53].

As already mentioned, when R is convex, the parameter
β only acts on the speed of convergence. Interestingly, as the
noise variance is independent from the signal, the convergence
is in practice uniform meaning that for a finite number of
iterations the same amount of smoothing will be performed
both in dark and bright regions. Small details with identical
signal to noise ratio will be identitically smoothed whatever the
average value of the area. If moreover β is chosen proportional
to Ψ(1, L)−1, a similar smoothing will be reached for a fixed
number of iterations whatever the initial number of looks L.

When R is non-convex, but satisfies some weak conditions
and β is chosen large enough, ADMM still converges to
a local minimum [29]. In this case, the solution depends
on both the initialization and the choice of β. Again, even
in this case, the fact that the variance is stabilized helps
at approaching local solutions in finite time with a uniform
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amount of smoothing, independently of L when β is chosen
proportional to Ψ(1, L)−1.

This shows that taking the logarithm not only makes the
data fidelity term convex, but also ensures a uniform speed of
convergence of a non-constrained optimization problem. These
are two key practical ingredients that challenges non-convex
strategies that directly deal with gamma distributed values.

We illustrate on Fig.2(d) that minimization of the total
variation of log-transformed intensities produces a smaller loss
of contrast of bright structures and reduces speckle equally in
all regions.

III. EXTENSION TO MULTI-VARIATE SAR IMAGERY

A. Statistics of covariance matrices

Multi-variate complex SAR images carry much more in-
formation than univariate SAR images since inter-channel
cross-correlations capture geophysical features (e.g ., height is
related to the interferometric phase, geometrical configuration
with the polarimetric properties). All relevant information of
these complex valued images can be gathered together at each
pixel by forming a D × D complex covariance matrix C.
Goodman’s model [26] describes speckle in this matrix as
being circular complex Wishart distributed, for L ≥ D:

pC(C|Σ) =
LLD|C|L−D

ΓD(L)|Σ|L
exp

(
−L tr(Σ−1C)

)
, (16)

where Σ is the underlying covariance matrix encoding reflec-
tivities and complex correlations, and L ≥ D is the number
of looks. Both C and Σ belong to the open cone of complex
hermitian positive definite matrices. While fluctuations in
univariate SAR images are multiplicative, the Wishart distribu-
tion, denoted by W(Σ;L) models fluctuations in multivariate
SAR images as

C = Σ1/2SΣ1/2 , (17)
E[C] = Σ , (18)

Var[Cij ] =
1

L
ΣiiΣjj , (19)

where S ∼ W(Id;L) (see, e.g ., [40])2. Note that the variance
for off-diagonal elements does not depend on Σij but on Σii

and Σjj , which indicates that the fluctuations are not only intra
channel signal dependent but inter channel signal dependent.
Interestingly, according to [27], [40], we have the following
relations regarding the determinant and the trace

|C| = |Σ||S| , (20)
trC = tr(ΣS) , (21)

E[trC] = tr Σ , (22)

Var[trC] =
1

L
tr Σ2 , (23)

and E[tr(C2 −Σ2)] =
1

L
(tr Σ)2 . (24)

2for complex random variables Var[Cij ] = E[|Cij |2]− |E[Cij ]|2

B. Limit of a direct variational approach

As for the univariate case, a variational approach consider-
ing the Wishart distribution of C can be expressed as

Σ̂ ∈ argmin

Σ
H
�0

− log pΣ(Σ|C) +R(Σ) , (25)

where− log pΣ(Σ|C) = L

n∑
k=1

log |Σk|+ tr(Σ−1
k Ck) + Cst.

where Σ
H
� 0 reads as “Σ is hermitian positive definite”. While

estimating directly the reflectivity in a variational framework
in the case of univariate data requires to enforce a non-
negativity constraint, optimizing for Σ requires optimizing on
the open cone of complex hermitian positive definite matrices,
which is much more challenging. Moreover, as noted for
the univariate case, the neg-log-likelihood associated to the
Wishart distribution is highly non-convex, so that finding a
good quality local optimum is very difficult. This approach is
summarized on the second row of Fig.1.

To circumvent the difficulty arising from the non convexity
of the neg-log-likelihood, Nie et al. approximated it by its
convex envelope [45], [46]. In their first algorithm, WisTV
[45], R was chosen as a matricial total-variation regularizer,
and next in [46] it was replaced by a matricial non-local total-
variation regularizer [24] to better preserve textures. Replacing
the neg-log-likelihood by its convex envelope is a rather crude
approximation since it leads to underestimating the right tail
of the distribution, and thus prevents from being robust against
bright outliers.

The noise components in C are intensively signal depen-
dent, so that speckle suppression is not as strong in all regions.
Last but not least, as for the univariate case, it has been
recently observed that the performance of WisTV can drop
significantly when the dynamic range of the input SAR image
becomes very high [47]. To cope with these different issues
we suggest mimicking the univariate case by making use of
the matrix logarithm, thereby extending MIDAL approach [7]
to multi-channel SAR images.

C. The Wishart-Fisher-Tippett distribution

Our objective is to generalize the use of the log transform in
univariate SAR images to multi-variate SAR images. To that
end, we resort to the matrix logarithm defined as

Σ 7→ Σ̃ = log Σ = E diag(Λ̃)E−1 where Λ̃i = log Λi ,
(27)

E ∈ CD×D is the matrix whose column vectors are eigen-
vectors (with unit norm) of Σ and Λ ∈ RD+ is the vector
of corresponding eigenvalues, such that Σ = E diag(Λ)E−1,
and Λ̃ ∈ RD. Its inverse transform is the matrix exponential
defined similarly as

Σ̃ 7→ Σ = eΣ̃ = E diag(Λ)E−1 where Λi = exp Λ̃i .
(28)

While Σ lies in the open cone of complex hermitian positive
definite matrices, Σ̃ lies in the vector space of complex
hermitian matrices which is isomorphic to RD2

. The change
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Fig. 3. Three two dimensional sections of the Wishart-Fisher-Tippett negative log likelihood with respect to (x1, x2), (x1, x3) and (x3, x4).

of variables C̃ = logC and Σ̃ = log Σ lead to the distribution
of log-transformed matrices C̃:

pC̃(C̃|Σ̃) =
LLDf(C̃)

ΓD(L)
eL tr(C̃−Σ̃) exp

(
−L tr(eC̃e−Σ̃)

)
(29)

with f(C̃) = |Jexp(C̃)|/ exp[D tr(C̃)] a normalization factor
that involves the jacobian of log transform |Jexp(C̃)| and that
is equal to 1 when D = 1. We call such a distribution the
Wishart-Fisher-Tippett distribution, denoted as WFT (Σ̃;L),
as it generalizes the Fisher-Tippett distribution to the case
where D > 1. The expectation and variance of C̃ do not seem
to be known in closed form in the literature. Nevertheless,
according to [2] its trace (which coincides with the logarithm
determinant of C: tr C̃ = log |C|) has the following statistics

tr C̃ = tr Σ̃ + tr S̃ , (30)

E[tr C̃] = tr Σ̃ +

D∑
i=1

Ψ(0, L− i+ 1)−D logL , (31)

and Var[tr C̃] =

D∑
i=1

Ψ(1, L− i+ 1) , (32)

where S̃ ∼ WFT (0;L). This shows that the trace of the
matrix logarithm suffers from additive non-zero mean signal
independent corruptions. Note that (30) is a direct consequence
of (20). If follows that the D2 channels of C̃ can reasonably
be assumed to have approximately a stabilized variance (see
Section III-G for numerical evidences), which opens the
door to regularization with iterative schemes. Note that we
cannot use the matrix log transform directly as a variance
stabilization procedure, as done in the univariate homomorphic
case, because we do not have an inversion formula (i.e., a bias
correction formula). We will thus adopt a variational strategy.

D. Log-channel decomposition

As mentioned in the previous paragraph, Σ̃ lies in the vector
space of complex Hermitian matrices that is isomorphic to
RD2

. In this section we describe a re-parameterization of the
log-transformed covariance matrix Σ̃ as a vector of D2 reals
denoted x. We first define in (26) a transform K that maps
real-valued vectors α of RD2

to Hermitian D×D matrices. We
also introduce a whitening affine map (A, b) so that the D2

channels of x are better decorrelated, and a scaling transform
Φ (i .e., a diagonal matrix) to balance the variance of noise
between channels. The transform Ω between (log-transformed)
covariance matrices Σ̃ and the vector of parameter x is:

Σ̃ = Ω(x) = K(AΦx+ b) . (33)

We denote its inverse Ω−1(Σ̃) = Φ−1A−1(K−1(Σ̃) − b)
and introduce the linear operator Ω∗ = ΦA∗K∗, where ∗
denotes the adjoint. The re-parameterized log-transformed data
are noted y ∈ RD2

and defined by y = Ω−1(C̃), see Fig. 1.
The affine transform (A, b) is chosen such that the channels

xi of the re-parameterized vector are approximately indepen-
dent:

pΣ̃(Σ̃) = px(x) ≈
D2∏
i=1

pxi(xi) . (34)

The affine transform (A, b) is obtained by principal compo-
nent analysis, as described in Section III-G. Moreover, the
scaling matrix Φ is chosen such that the variance of yi is
equal to 1 for all channels i, see Section III-G.

E. Proposed variational approach

We now extend x and y into images of n real-valued vectors
each of dimension D2. Writing − log pxi(xi) = R(xi) and
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∆k,i
∞ =

β(xik − aik) + L

[
Ω∗
(

Id−
∫ 1

0

e(u−1)Ω(xk)eΩ(yk)e−uΩ(xk)du

)]i
β + L

∣∣∣∣Ω∗ ∫ 1

0

e(u−1)Ω(xk)eΩ(yk)e−uΩ(xk)du

∣∣∣∣i
. (35)

∆k,i
Q =

β(xik − aik) + L

[
Ω∗

(
Id− 1

Q

Q∑
q=1

e(uq−1)Ω(xk)eΩ(yk)e−uqΩ(xk)

)]i

β + L

∣∣∣∣∣Ω∗ 1

Q

Q∑
q=1

e(uq−1)Ω(xk)eΩ(yk)e−uqΩ(xk)

∣∣∣∣∣
i

, uq =
q − 1

2

Q
. (36)

using the relations (34) within the MAP framework leads to
the following minimization problem

x̂ ∈ argmin
x

− log py(y|x) +

D2∑
i=1

R(xi) , (37)

where, from (29), we have

− log py(y|x) = L

n∑
k=1

tr
(

Ω(xk) + eΩ(yk)e−Ω(xk)
)

+ Cst. ,

(38)

and the final estimate Σ̂k at pixel index k is defined as
Σ̂k = exp Ω(x̂k). Note the difference between xk a vector
of D2 coefficients at pixel k and xi a scalar image of n pixels
corresponding to the i-th channel of x.

While the direct multivariate variational approach (25) re-
quires optimizing on the cone of complex hermitian matrices, a
first major advantage is that Problem (37) is unconstrained on
RD2

. Even though the likelihood term (38) is still non convex,
it appears to be much more suitable for optimization. Figure 3
illustrates the evolution of this term (with D = 2, and n = 1)
on three two-dimensional cross sections of R4 showing that
for each of such sections the energy appears to be convex.
Unlike the direct multivariate variational approach (25), (38)
appears to be convex in many scenarios, e.g ., in the univariate
case (10), and more generaly when x̂k is restricted to the
vectorial subspace where e−Ω(x̂k) commutes with eΩ(yk),
hence satisfying eΩ(yk)e−Ω(x̂k) = eΩ(yk−xk). Convexity in
this case follows from the fact that the trace is linear, hence
convex, the function xk → tr eΩ(−xk+yk) is a convex spectral
function [22], [38], and Ω is affine.

As for the mono-dimensional case, we will thus consider
the ADMM algorithm which iteratively performs the updates

ẑ ← argmin
z

β

2
||z − x̂+ d̂||2 +

D2∑
i=1

R(zi) , (39)

d̂← d̂+ ẑ − x̂ , (40)

x̂← argmin
x

β

2
||x− ẑ − d̂||2 − log py(y|x) . (41)

Since the noise variance is approximately stabilized and equal
to about 1 on each channel (see, III-G), a single value for
β can be chosen for all channels and all possible number of

looks L. With such a choice, the same amount of smoothing is
reached in practice for a fixed number of iterations, whatever
L and D.

Equation (39) is separable on the different channels, and
can then be solved by applying D2 regularized least-square
solvers. Equation (41) amounts to solving n separable prob-
lems of the form

argmin
xk

β

2
||xk − ak||2 + L tr

(
Ω(xk) + eΩ(yk)e−Ω(xk)

)
(42)

where ak = ẑk + d̂k. As for the univariate case, we will
consider Newton’s method to solve this optimization problem.
Its gradient is given by

β(xk − ak) +

LΩ∗
(

Id−
∫ 1

0

e(u−1)Ω(xk)eΩ(yk)e−uΩ(xk)du

)
, (43)

see the development in Appendix A. By mimicking the uni-
variate case, we consider the following approximation for the
Hessian

diag

(
βId + LΩ∗

∫ 1

0

e(u−1)Ω(xk)eΩ(yk)e−uΩ(xk)du

)
, (44)

leading to quasi Newton’s iterations given by

x̂ik ← x̂ik −∆k,i
∞ , (45)

where ∆k,i
∞ is defined in equation (35). As for the univariate

case, we notice that ten iterations is enough to offer good
performance with a reasonable computational time.

The update matrix ∆k,i
∞ , defined in equation (35), requires

numerical integration. We use Riemann integral approximation
with Q rectangles as defined in equation (36). Of course, the
smaller Q, the faster the iteration (45). Figure 4 shows the
evolution of ||∆100||/||x̂|| with respect to D (with L = D and
β = 10L) after 10 iterations of Newton’s method where ∆∞
is substituted by ∆Q, for Q = {1, 2, 4, 8, 16}. We furthermore
define ∆0 by substituting the integral by exp(Ω(yk−xk)) as
a crude approximation of the gradient (and exact in the case
where e−Ω(x̂k) commutes with eΩ(yk)). Ideally, the algorithm
would reach the optimum solution such that ∆∞ ≈ ∆100 =
0 (as for the univariate case). This error is relatively small
whatever Q and D. For low values of D, the error reduces
by about a factor 10 each time Q is multiplied by 4. The
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Dimension D
2 4 6 8 10 12 14 16

‖∆
1
0
0
‖/
‖x

‖

10
-5

10
-4

10
-3

10
-2

∆
0

∆
1

∆
2

∆
4

∆
8

∆
16

Fig. 4. Evolution with respect to the matrix dimension D of the error
||∆100||/||x|| after 10 iterations of Newton’s method for which the update
∆∞ is replaced by ∆Q, for Q = {0, 1, 2, 4, 8, 16}. For each D, the results
are averaged over 100 realizations of C (with L = D), each realizations are
obtained from different versions of Σ (also randomly generated).

increase with D is due to accumulation of numerical errors
of the exponential matrix function, even more important when
Q gets larger. This experiment reveals that Q = 1 is a good
practical choice reaching a relative error of about 2 · 10−3

whatever D ∈ [2, 16] with reasonable computation time.

F. Adaptation to advanced filters

As in the univariate case, we notice that ADMM converges
when the regularizer R is chosen as non convex. More re-
markably, as observed in deblurring contexts, e.g ., [55], [11],
replacing the minimization problem in (39) by the solution of
any Gaussian denoiser leads to appealing results. The resulting
algorithm, coined MUlti-channel LOgarithm with Gaussian
denoising (MuLoG), is given as

ẑi ← fβ−1/2(x̂i − d̂i), for i = 1, . . . , D2 , (46)

d̂← d̂+ ẑ − x̂ , (47)

x̂← argmin
x

β

2
||x− ẑ − d̂||2 − log py(y|x) , (48)

where f2
σ is again a denoiser for images contaminated by zero-

mean white Gaussian noise N (0;σ2Id), and (48) is solved as
mentioned in the previous paragraph. While it is difficult to
make a general statement, we believe that such an algorithm
converges as soon as the denoiser fβ−1/2 is at least non-
expansive. We depict this algorithm on the last row of Fig.1.

G. Calibration

In practice, the operators A, b and Φ are obtained from
the log matrix of the input image C with n pixels. Let
{α1, . . . ,αn} be the collection of n vectors extracted from the
matrix logarithm of the input image as αk = K−1(C̃k). We
thus define b = 1

n

∑n
k=1αk and A the matrix whose columns

are the eigenvectors (with unit norm) of 1
n

∑n
k=1(αk −

b)(αk − b)t. As a result, the vector A−1(αk − b) is the
representation of αk in the principal component analysis of

{α1, . . . ,αn} known to maximize channel de-correlation, and
thus leads to (34). By assuming the noise variance is stabilized
on each channel of A−1(α−b), we define the diagonal matrix
Φ as diag(σ̂2

1 , . . . , σ̂
2
D), where σ̂2

1 , . . . , σ̂
2
D are obtained by

estimating separately the variance of the noise on each channel
of A−1(α−b). This procedure ensures that the noise variance
is about 1 on each channel of y. In practice, we resort to the
median absolute deviation estimate (MAD) [28] for this task,
but other strategies could be used.

Figure 5 displays the nine components of y for an image
of 3× 3 matrices C. While the noise variance in C is clearly
signal dependent, the amplitudes of the fluctuations in the
different channels of y appear fairly constant whatever the
underlying signal Σ. Nevertheless, the noise is not signal
independent, we can observe that some regions are a smidgen
noisier than others. Remark also that the noise variance is
also about the same for all channels. Then, we can reasonably
claim from this experiment that our log channel decomposition
approximately stabilizes the noise variance.

Thanks to this approximate stabilization, we notice in prac-
tice that choosing β = 4 and 6 iterations provide satisfying
solutions in all tested situations, whatever the dimension D,
the number of looks L and the embedded Gaussian denoiser.
We always choose Q = 1 according to Sec. III-E.

When L < D, the matrix Ck is rank deficient, and
the likelihood term (38), though convex when restricted to
commutative matrices, is however no longer strictly convex
and has an infinite number of minimizers. Worse, its logarithm
C̃ is undefined which prevents the computation of A, b and
Φ used in our log-channel decomposition. To deal with these
issues a practical solution is to perform a small diagonal
loading of the input matrices Ck. We perform a spatially
varying re-scaling of the off-diagonal elements as

(Ck)new
i,j ←

|
∑
l wk,l(Cl)i,j |√∑

l wk,l(Cl)ii
∑
l wk,l(Cl)jj

(Ck)i,j , (49)

where wk,l are the weights of a Gaussian kernel with band-
width 1 pixel. This procedure inevitably introduces some bias
in the solution, but this bias does not seem to be significant.

IV. EFFICIENT MATRIX LOG AND EXP TRANSFORMS

Our algorithm requires several times to compute n matrix
logarithms, matrix exponentials and matrix-by-matrix prod-
ucts. It is thus important to make these operations as fast as
possible. Our first attempt to call n times Matlab’s functions
logm, expm and mtimes leads to very slow computations. It
is in fact important to use a vectorial implementation of these
functions. When D = 2, we can write the matrix C and C̃ as

C =

(
a c∗

c b

)
and C̃ =

(
ã c̃∗

c̃ b̃

)
, (50)

and the relation between both are given, for C̃ = logC, as
ã = 1

δ [(a− b+ δ)l1 − (a− b− δ)l2] ,

b̃ = 1
δ [−(a− b− δ)l1 − (a− b+ δ)l2] ,

c̃ = 1
δ [cl1 − cl2] ,

(51)
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(a) Log channels

(b) Underlying image (c) Observed image

Fig. 5. (a) the nine log channels x1, . . . ,x9, with approximate unit stabilized
variance, of (c) the image C generated from (b) the image Σ displayed with
a RGB representation based on its decomposition in Pauli’s basis.

and, for C = exp C̃, as
a = 1

δ̃

[
(ã− b̃+ δ̃)e1 − (ã− b̃− δ̃)e2

]
,

b = 1
δ̃

[
−(ã− b̃− δ̃)e1 − (ã− b̃+ δ̃)e2

]
,

c = 1
δ̃

[c̃e1 − c̃e2] ,

(52)

where δ =
√

4|c| − (a− b)2, l1 = log
(
a+b+δ

2

)
, l2 =

log
(
a+b−δ

2

)
, δ̃ =

√
4|c̃| − (ã− b̃)2, e1 = exp

(
ã+b̃+δ̃

2

)
and

e2 = exp
(
ã+b̃−δ̃

2

)
. With these established relations, we can

compute the matrix logarithm in a vectorial way, starting by
computing for the n pixels the coefficient ã, and next b̃ and
finally c̃. We have implemented this vectorial procedure in
Matlab (using the element wise operators .* and ./). and
observed an acceleration by a factor larger than 600 compared
to calling n times the dedicated Matlab’s function. We were
also able to derive closed form formula for the case where
D = 3 (the formulas are too long to be inserted in this paper),
leading in this case to an acceleration by a factor 75. The
same workaround is applied for the matrix exponential and
the matrix-by-matrix product.

V. NUMERICAL EXPERIMENTS

Figures 6, 7 and 8 give three illustrations of the proposed
technique. Figure 6 corresponds to an airborne single-look
SAR interferometric image (D = 2, L = 1) of a building
in Toulouse, France (sensed by RAMSES). Figure 7 corre-
sponds to a spaceborne single-look SAR interferometric image
(D = 2, L = 1) of the dam of Serre-Ponçon, France (sensed
by TerraSAR-X). Figure 8 corresponds to an airborne SAR

polarimetric image (D = 3, L = 1) of the city of Kaufbeuren,
Germany (sensed by F-SAR).

In the sub-figures (b) are displayed the results for the
isotropic total-variation (TV) regularization, i.e., R(xi) =
λ
∑n
k=1 ||(∇xi)k|| which corresponds to the multivariate ex-

tension of [7]. The parameter λ has been tuned by hand once
and kept the same for all data-sets, whatever the dimension
D or the number of looks L. In this case, ADMM find a
local minimum of (37). We can observe that the solution in
each channel inherits from the well-known behavior of the
univariate TV regularization: the solution appears piece-wise
constant, small details and low contrasted features are lost,
and a slight bias can be observed.

In the sub-figures (c) and (d) are displayed the results for
DDID [33] and BM3D [10]. The inner parameters of these
two algorithms have been kept the same as the one provided
in the authors’ implementation. In these cases, our proposed
algorithm does not explicitly minimize a given energy but we
can observe that it converges in practice to relevant solutions.
As for TV, we can observe that the solution in each channel
inherits from the behavior of the original method: in this case
the small details and low contrasted features are well restored
but some known typical artifacts (small oscillating features)
of these two methods can be observed as well.

Table I reports the computation time of our proposed ap-
proach for different Gaussian denoisers, different image sizes
and different covariance matrix sizes. Our implementation uses
parallelization obtained by running eq. (46) in parallel on the
D2 channels, and running eq. (48) an different subsets of the
n pixels. Our experiments were conducted on a processor
with 4 cores. In this experiment, we observe that the total
computation time is always faster than running successively
6×D2 times the original algorithm.

This paper only deals with the problem of how to apply
Gaussian filters to multi-variate SAR data. The study of
comparing their relative performance or comparing them to
state-of-the-art multi-variate SAR filters is out of the scope
of this paper. We however believe that this study should be
performed in a future work and is of main interest for the SAR
community. For this reason, we have released a Matlab script3,
under CECILL license, that takes as input a multivariate SAR
image, its number of looks and a Gaussian denoiser provided
by the user, and outputs the filtered SAR image.

VI. CONCLUSION

While a large diversity of speckle reduction methods exist
for intensity images, only few can be extended to process
multi-channel SAR images. In particular, extension of varia-
tional methods lead to challenging optimization problems due
to the non-convexity of the neg-log-likelihood and the positive
definitness constraint on the covariance matrices. Furthermore,
signal and channel dependent variance lead to restoration
results with an uneven suppression of speckle. This paper
introduced a general scheme based on a matrix logarithm

3http://www.math.u-bordeaux.fr/∼cdeledal/mulog
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(a) Original interferometric image (b) MuLoG with TV (multivariate extension of [7])

(c) MuLoG with DDID (d) MuLoG with BM3D

Fig. 6. (a) A single-look interferometric image (D = 2, L = 1) of Toulouse (France) sensed by RAMSES ( c©ONERA). Estimation with our proposed multi-
variate framework MuLoG for (b) Total-Variation (TV), (c) DDID and (d) BM3D. For each image, the four log channels are displayed on top x1,x2,x3,x4,
below are the trace trC, the phase argC12 and the coherence |C12|/

√
|C11C22| respectively.

TABLE I
COMPUTATION TIME ON AN “INTEL(R) CORE(TM) I5-4590S CPU @ 3.00GHZ”. TIME FOR GD IS THE RUNNING TIME OF THE GAUSSIAN DENOISER

ON ONE SCALAR CHANNEL. TIME FOR NM IS FOR THE 10 ITERATIONS OF NEWTON’S METHOD WITH Q = 1. TOTAL TIME IS THE ACTUAL TIME OF OUR
IMPLEMENTATION WITH 6 ITERATIONS OF THE ADMM SCHEME WHERE SOME PARTS OF THE CODE ARE RUNNED IN PARALLEL ON 4 DIFFERENT CORES.

Image size D2 File size Gaussian denoiser Time for GD Time for NM Total time

256× 256 2× 2 2Mb
BM3D 0.87s

0.35s
8.97s

TV 1.43s 17.08s
DDID 38.4s 4min 29s

256× 256 3× 3 4.5Mb
BM3D 0.87s

2.20s
29.21s

TV 1.43s 48.18s
DDID 38.4s 12min 6s

512× 512 3× 3 18Mb
BM3D 3.6s

9.97s
2min 09s

TV 6.3s 4min 4s
DDID 2min 37s 48s 52s

transform to approximately stabilize speckle variance and
produce close to independent channels. Each channel can then
be processed with a user-defined Gaussian denoiser. Upon
re-iterating, a good fit of the restored multi-channel image
with the Wishart distribution of input covariance matrices is
enforced.

Special care is paid to ensure that the method requires
no parameter tuning other than possibly within the Gaussian
denoiser, and that these parameters, if any, can be tuned once
for all. The resulting generic method can then include Gaus-
sian denoisers selected by the user and tremendously extends

the set of available speckle reduction methods applicable to
multi-channel SAR images. We believe that this offers several
notable advantages: (i) the SAR imaging community will
directly benefit from upcoming progress made in the field of
image denoising; (ii) several images with reduced speckle can
be produced by very different denoising algorithms, and these
images can be compared to discard artifacts and confirm weak
structures; (iii) this family of speckle reduction methods can
serve as a reference to benchmark future specialized speckle
reduction algorithms. This motivated the release of an open-
source code implementing our method3.
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(a) Original interferometric image (b) MuLoG with TV (multivariate extension of [7])

(c) MuLoG with DDID (d) MuLoG with BM3D

Fig. 7. (a) A single-look interferometric image (D = 2, L = 1) of Serre-Ponçon (France) sensed by TerraSar-X (image courtesy to Airbus Defence and
Space). Estimation with our proposed multi-variate framework MuLoG for (b) Total-Variation (TV), (c) DDID and (d) BM3D. For each image, the four log
channels are displayed on top x1,x2,x3,x4, below are the trace trC, the phase argC12 and the coherence |C12|/

√
|C11C22| respectively.
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APPENDIX A
GRADIENT OF THE NEG LOG LIKELIHOOD

In this section, we establish the part of formula (43)
corresponding to the gradient of tr

(
Ω(x) + eΩ(y)e−Ω(x)

)
. To

this end, recall that for a real valued differentiable function f ,

df(x) = tr[g(x)dx]⇔ ∇xf(x) = g(x)∗ . (53)

where g is a matrix valued function whose dimension depends
on that of x, and ∗ denotes the adjoint operator. Since Ω(x) =
K(AΦx+ b) is affine, this directly implies that

∇x tr Ω(x) = Φ∗A∗K∗ = Ω∗ . (54)

We now use that for any matrix valued function h, we have
(proven in [32], [5] according to [44])

deh(x) =

∫ 1

0

euh(x)(dh(x))e(1−u)h(x)du . (55)

It follows that, for any matrix L, we have

d tr
[
Leh(x)

]
= tr

[
L(deh(x))

]
, (56)

= tr

[
L

∫ 1

0

euh(x)(dh(x))e(1−u)h(x)du

]
, (57)

=

∫ 1

0

tr
[
Leuh(x)(dh(x))e(1−u)h(x)

]
du , (58)

=

∫ 1

0

tr
[
e(1−u)h(x)Leuh(x)(dh(x))

]
du , (59)

= tr

[(∫ 1

0

e(1−u)h(x)Leuh(x)du

)
(dh(x))

]
. (60)

Choosing h(x) = −Ω(x) and L = eΩ(y) leads to

∇x tr(eΩ(y)e−Ω(x)) = −Ω∗
∫ 1

0

e(u−1)Ω(x)eΩ(y)e−uΩ(x)du ,

(61)
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(a) Noisy image (b) MuLoG with total-variation (c) MuLoG with DDID (d) MuLoG with BM3D

Fig. 8. (a) A single-look interferometric image (D = 3, L = 1) of Kaufbeuren (Germany) sensed by F-SAR ( c©DLR). Estimation with our proposed multi-
variate framework MuLoG for (b) Total-Variation (TV), (c) DDID and (d) BM3D. For each image, the nine log channels are displayed on top x1, . . . ,x9,
below are a RGB representation of Σ̂ based on its decomposition in Pauli’s basis.

the integral term being Hermitian since it reads as the integral
of Hermitian matrices∫ 1

2

0

e(u−1)Ω(x)eΩ(y)e−uΩ(x) + e−uΩ(x)eΩ(y)e(u−1)Ω(x)︸ ︷︷ ︸
Hermitian

du .
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[41] M. Mäkitalo, A. Foi, D. Fevralev, and V. Lukin. Denoising of single-look
SAR images based on variance stabilization and nonlocal filters. In 2010
International Conference on Mathematical Methods in Electromagnetic
Theory, pages 1–4. IEEE, 2010.

[42] D. Massonnet and K. L. Feigl. Radar interferometry and its application
to changes in the earth’s surface. Reviews of geophysics, 36(4):441–500,
1998.

[43] A. Moreira, P. Prats-Iraola, M. Younis, G. Krieger, I. Hajnsek, and K. P.
Papathanassiou. A tutorial on synthetic aperture radar. IEEE Geoscience
and Remote Sensing Magazine, 1(1):6–43, 2013.

[44] I. Najfeld and T. F. Havel. Derivatives of the matrix exponential and
their computation. Advances in Applied Mathematics, 16(3):321–375,
1995.

[45] X. Nie, H. Qiao, and B. Zhang. A variational model for PolSAR data
speckle reduction based on the Wishart distribution. IEEE Transactions
on Image Processing, 24(4):1209–1222, 2015.

[46] X. Nie, H. Qiao, B. Zhang, and X. Huang. A nonlocal TV-based vari-
ational method for PolSAR data speckle reduction. IEEE Transactions
on Image Processing, 25(6):2620–2634, 2016.

[47] X. Nie, B. Zhang, Y. Chen, and H. Qiao. A new algorithm for optimizing
TV-based PolSAR despeckling model. IEEE Signal Processing Letters,
23(10):1409, 2016.

[48] B. Rabus, M. Eineder, A. Roth, and R. Bamler. The shuttle radar
topography mission – a new class of digital elevation models acquired
by spaceborne radar. ISPRS journal of photogrammetry and remote
sensing, 57(4):241–262, 2003.

[49] L. Rudin, P.-L. Lions, and S. Osher. Multiplicative denoising and
deblurring: Theory and algorithms. In Geometric Level Set Methods
in Imaging, Vision, and Graphics, pages 103–119. Springer, 2003.

[50] L. I. Rudin, S. Osher, and E. Fatemi. Nonlinear total variation
based noise removal algorithms. Physica D: Nonlinear Phenomena,
60(1):259–268, 1992.

[51] J. Shi and S. Osher. A nonlinear inverse scale space method for a
convex multiplicative noise model. SIAM Journal on Imaging Sciences,
1(3):294–321, 2008.

[52] G. Steidl and T. Teuber. Removing multiplicative noise by Douglas-
Rachford splitting methods. Journal of Mathematical Imaging and
Vision, 36(2):168–184, 2010.

[53] S. Tabti, C.-A. Deledalle, L. Denis, and F. Tupin. Modeling the
distribution of patches with shift-invariance: application to SAR image
restoration. In 2014 IEEE International Conference on Image Processing
(ICIP), pages 96–100. IEEE, 2014.
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