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Orientation-Independent Empirical Mode

Decomposition for Images Based

on Unconstrained Optimization
Marcelo A. Colominas, Anne Humeau-Heurtier, and Gastón Schlotthauer, Member, IEEE

Abstract— This paper introduces a 2D extension of the
empirical mode decomposition (EMD), through a novel approach
based on unconstrained optimization. EMD is a fully data-driven
method that locally separates, in a completely data-driven and
unsupervised manner, signals into fast and slow oscillations. The
present proposal implements the method in a very simple and
fast way, and it is compared with the state-of-the-art methods
evidencing the advantages of being computationally efficient,
orientation-independent, and leads to better performances for
the decomposition of amplitude modulated–frequency modu-
lated (AM-FM) images. The resulting genuine 2D method is
successfully tested on artificial AM-FM images and its capabilities
are illustrated on a biomedical example. The proposed framework
leaves room for an nD extension (n > 2).

Index Terms— Empirical mode decomposition, unconstrained
optimization, data-driven, non-stationary image.

I. INTRODUCTION

THE separation of non-stationary images into locally,

but not globally, frequency disjoint components is

often necessary for applications such as texture classifica-

tion [1]–[3], face recognition [4]–[6], and digital watermark-

ing [7]. The main goal is to extract local quantities, such as

amplitudes, phases, and frequencies. In all cases, the images

that are processed can be seen as a sum of a usually small num-

ber of amplitude modulated–frequency modulated (AM-FM)
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components plus a final trend:

X (x, y) =

K
∑

k=1

αk(x, y) cosφk(x, y) + AK (x, y), (1)

where every local detail Dk(x, y) = αk(x, y) cos φk(x, y) is

riding on a local mean Ak =
∑K

i=k+1 Di + AK .

Empirical Mode Decomposition (EMD) [8] provides av

separation of the form of Eq. (1) for 1D-signals. It locally

separates, in a completely data-driven and unsupervised man-

ner, signals into fast and slow oscillations. A post-processing

via Hilbert Transform (HT) provides an estimation of the local

frequencies and amplitudes. The global procedure of EMD

plus HT is the so-called Hilbert Huang Transform (HHT).

In the EMD jargon the local details are called Intrinsic Mode

Functions (IMFs) or simply modes: functions symmetrically

oscillating around zero, albeit with modulation both in ampli-

tude and frequency. The final trend, usually a monotonic

function, is called the residue.

The adaptivity and flexibility of EMD encouraged several

researchers to adapt this method for 2D-data. Nunes et al. [9]

developed a bidimensional EMD where they used morpholog-

ical operators to detect regional maxima and radial basis func-

tion for surface interpolation. Damerval et al. [10] introduced a

fast bidimensional EMD where a piecewise cubic interpolation

of a Delaunay triangulation is used to find the envelopes.

Linderhed [11] introduced an image EMD where the envelopes

are found through thin plate splines. Wu et al. [12] pro-

posed a multi-dimensional approach where they decomposed

rows and columns independently and combined the results

based on a minimal-scale combination strategy. However,

all of these algorithms rely on an iterative procedure called

sifting process which lacks of convergence guarantees. To

avoid this iterative process, several optimization-based strate-

gies have recently been developed for 1D-signals [13], [14].

In [15], the authors introduced an unconstrained optimization

approach to EMD which is simpler and faster than the other

proposals. The main advantages of the latter method com-

pared to others are the following: the explicit computation

of envelopes to find the local mean is not needed; there is

no use of explicit spline interpolations; the proposed method

provides an analytical solution. Moreover, the computational

cost is similar to the one of EMD and only one parameter has

to be set.

Nevertheless, such an approach for bidimensional data

has not been proposed yet. We therefore herein introduce
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an orientation-independent EMD for images that is based

on an unconstrained optimization problem. We show that,

compared to other 2D-EMD-based methods, our frame-

work has the advantages of being computationally efficient,

orientation-independent, and leads to better performances for

the decomposition of AM-FM images.

The paper is organized as follows. In Section II,

we recall the unconstrained optimization approach to EMD for

1D-signals. Section III introduces the framework that we pro-

pose for the decomposition of bidimensional data. Experimen-

tal results for synthetic and experimental data are presented

and discussed in Section IV. We end with a Conclusion.

II. UNCONSTRAINED OPTIMIZATION APPROACH TO EMD

The separation of a signal in detail (mode) plus approxi-

mation (trend or local mean) can be done in several ways.

Traditional EMD [8] uses the so-called sifting process, which

heavily relies on cubic spline interpolations and does not have

a guaranteed convergence. On the other hand, the optimization

approach to EMD introduced in [15] solves the following

convex optimization problem to find the local mean a ∈ R
N

of a given signal x ∈ R
N :

(P) min
a

||Px(x − a)||22 + λ||La||22, (2)

where matrix Px ∈ R
N×N is an operator, depending only

on the locations of local extrema of x , which models the

penalization imposed on the mode d = x −a at each extrema,

matrix L ∈ R
N×N is a second-order difference matrix,

a and x are considered column vectors, and || · ||2 stands for

the ℓ2-norm. This problem has a unique solution:

a∗ = (PT
x Px + λLT L)−1 PT

x Px x . (3)

The matrix Px is a key element in the problem statement.

It has as many non-zero rows as local extrema of the signal x .

Let tl , l = 1, . . . , L, with t1 < · · · < tl < tl+1 < · · · < tL , be

the locations of the local extrema of x , which act as estimates

of the local extrema of the mode d . The matrix evaluates the

following function in every local extrema:

〈pl, d〉 = d(tl) +
d(tl+1)(tl − tl−1)

tl+1 − tl−1
+

d(tl−1)(tl+1 − tl)

tl+1 − tl−1
,

(4)

where the vector pl ∈ R
N is the tl -th row of matrix Px ,

and it has non-zeros elements only on the tl−1, tl , tl+1-th

positions:

pl = [. . .
tl+1 − tl

tl+1 − tl−1
. . . 1 . . .

tl − tl−1

tl+1 − tl−1
. . . ]. (5)

The goal of Eq. (4) is to compare the extremum d(tl)

with its mirror point on the would-be other envelope which

is locally defined thanks to d(tl−1) and d(tl+1) [16], thus

favoring the symmetry of the mode. It can be clearly seen

that if tl is a local minimum (resp. maximum), then both

tl−1 and tl+1 are local maximum (resp. minimum). In this

approach the IMF conditions (envelope symmetry) are eval-

uated only on the signal local extrema and not throughout

the whole time span. Equations (3) and (5) allow to perform

the decomposition in a deflationary scheme, which is outlined

in Algorithm 1 [15].

Algorithm 1 UOA-EMD for 1D Data (Signals)

III. PROPOSED FRAMEWORK

A. Bidimensional Approach

Let us consider now a function of two real variables

X = X (x, y), with X ∈ R
N1×N2 . The countable set of isolated

local extrema is

L =
{

zl = (xl, yl)/X (zl) > X (z) ∨ X (zl) < X (z),

0 < |z − zl | < δl

}

; (6)

this definition of local extremum may vary depending on

whether a strict inequality is required or not. Our desire is to

find an approximation A ∈ R
N1×N2 such that the penalization

on every local extremum of the desired mode D = X − A is

minimized. To do that, we must apply Eq. (4) in a 2D manner.

If zl is a local maximum (resp. minimum), let us define zi ,

i = 1, 2, 3, as the three closest non-collinear local minima

(resp. maxima) [17]. Then, the penalization on zl is

〈Pl , D〉 = D(zl) + c1 D(z1) + c2 D(z2) + c3 D(z3), (7)

where 〈·, ·〉 stands here for the inner product between matrices,

Pl ∈ R
N1×N2 is a matrix with Pl(zi ) = ci , i = 1, 2, 3, and the

coefficients ci are those necessary to compare the function

D(zl) with the plane intersecting D(zi ):

c2 =
(xl − x1)(y3 − y1) − (x3 − x1)(yl − y1)

(x2 − x1)(y3 − y1) − (x3 − x1)(y2 − y1)
(8a)

c3 =
(x2 − x1)(yl − y1) − (xl − x1)(y2 − y1)

(x2 − x1)(y3 − y1) − (x3 − x1)(y2 − y1)
(8b)

c1 = 1 − c2 − c3. (8c)

To favour smooth solutions, we must use a roughening

matrix. We choose a discrete approximation to the Laplacian

operator L i, j ∈ R
N1×N2 which consists in a matrix of the same

size as X with all zeros except for the kernel

K =

⎡

⎣

0.5 1 0.5

1 −6 1

0.5 1 0.5

⎤

⎦ (9)
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centered at the point i, j . When i, j is at the border of the

matrix, we simply cropped the kernel, and modify the central

value so that the sum of the kernel entries is zero.

With Eq. (7) and the Laplacian operator, we can formulate

the following optimization problem:

(P1-2D) min
A

∑

l/zl∈L

〈Pl , (X − A)〉2 + λ
∑

i, j

〈L i, j , A〉2,

(10)

in which the first term models the penalization in every

local extrema and the second term favours smooth solutions.

However, problem P1-2D can be difficult to solve. We must

modify it. The inner product between matrices can be com-

puted as 〈A, B〉 = Tr(AT B) = (vec(A))T (vec(B)), where

vec(·) is the classical vectorization operation, in which the

columns of a matrix are vertically concatenated to form a

vector; and Tr(·) stands for the trace of a matrix. Let us define

the vectors â ∈ R
N1 N2 = vec(A) and x̂ ∈ R

N1 N2 = vec(X),

the matrix P̂X ∈ R
N1 N2×N1 N2 which contains (vec(Pl ))

T as

rows and L̂ ∈ R
N1 N2×N1 N2 which contains (vec(L i, j ))

T as

rows. The following optimization problem

(P-2D) min
â

||P̂X (x̂ − â)||22 + λ||L̂â||22, (11)

is equivalent to (P1-2D) and has a unique minimizer at

â∗ = (P̂T
X P̂X + λL̂T L̂)−1 P̂T

X P̂X x̂, (12)

from which the desired local mean A can be constructed.

Problem (P-2D) arises as a natural 2D extension of (P),

and paves the road for nD extensions, simply by defining the

penalization tensor for every local extrema, and a roughening

tensor on nD. It also constitutes a true genuine-2D approach,

as a contrast to pseudo-2D approaches, because it does not

separately constraints rows, columns and diagonals. The result

is an orientation-independent image processing tool.

B. Implementation Issues

The sizes of the matrices involved in problem (P-2D)

might look overwhelming at first sight, and therefore the

inversion in Eq. (12) might appear as very expensive in terms

of computational cost. Sparsity must be taken into account

to significantly reduce the cost. Matrices Pl have at most

4 non-zero elements, and therefore P̂X has a proportion of

4|L|/N2
1 N2

2 non-zero elements, with |L| being the cardinality

of the set L, and |L| ≪ N1 N2 . The same applies to L i, j ,

which has at most 9 non-zero elements, and therefore L̂ has a

proportion of 9/N1 N2 of non-zero elements. Efficient routines

to invert sparse matrices make our proposal a very low-cost

method when compared with other bidimensional EMD imple-

mentations. From Eqs. (7)-(9) and (12), we construct a

deflationary scheme to decompose an image X , as shown

in Algorithm 2. We will call our proposal UOA-EMD, for

unconstrained optimization approach.

IV. EXPERIMENTS AND RESULTS

A. 2D Dirac Function

Genuine 2D approaches must be orientation-independent.

In order to test this property on UOA-EMD, we present as

Algorithm 2 UOA-EMD for 2D Data (Images)

Notations: we used the notation M(n; ·) to denote the n-th

row of matrix M .

Fig. 1. Dirac function decomposition. Average results of one hundred
decompositions of noisy 2D Dirac functions.

a first experiment the decomposition of one hundred noisy

copies of a 2D Dirac function and the averaging of the final

results, in an Ensemble EMD fashion [18]. Given � ∈ R
64×64,

with �(32, 32) = 1, we decomposed one hundred realizations

of �(i) = � + βW (i), with W (i) ∼ N (0, 1) and β = 0.001,

into two modes and one residue.

The results are shown in Fig. 1. The latter figure confirms

the orientation-independence of UOA-EMD.
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Fig. 2. Results for Experiment 1. Best results for the four analyzed methods when decomposing an image mixing components described in Eqs. (13).

B. AM-FM Images

In this subsection we present four different experiments

decomposing AM-FM images, measuring both performance in

component retrieval and computational time as a function of

the only parameter λ. Moreover, we compare our results with

those of the state of the art methods: Image EMD (IEMD) [11],

Prox-EMD [17] in its pseudo-2D implementation, and

TV-G texture-geometry decomposition [19].

IEMD uses sifting process to extract every mode,

iterating until |e(x, y)| < ε, ∀(x, y), where e(x, y)

stands for the mean envelope. The toolbox available on

http://aquador.vovve.net/IEMD/ requires 0 < ε ≤ 1. As ε

becomes smaller, more sifting iterations are performed.

Prox-EMD achieves a decomposition by solving a convex

non-smooth criterion which has texture and geometry terms.

The toolbox is available on http://perso.ens-lyon.fr/nelly.

pustelnik/logicielE.html.

TV-G texture-geometry decomposition provides a separation

where the texture component is related with finer scales

and thus can be considered as detail and the geometry

component contents coarser scales and is related with the

trend. The toolbox is available on http://www-rohan.sdsu.edu/

~jegilles.

Both Prox-EMD and TV-G texture-geometry decomposition

contain two parameters to be set: ν for the texture and ρ for

the geometry. Based on [17], we use ν = {1, 5, 10, 50} and

1 ≤ ρ ≤ 20.

For the four methods (UOA-EMD, IEMD, Prox-EMD, and

TV-G texture-geometry decomposition), we decompose the

given image X = A+ D into two components: X �−→ [ Â, D̂].

For UOA-EMD and IEMD, we have X = Â + D̂; for

Prox-EMD and TV-G we have X ≈ Â + D̂.

Therefore, to measure recovering capabilities of UOA-EMD

and IEMD we can use either the error for A or the error

for D, since ||A − Â||F = ||D − D̂||F , where || · ||F stands

for the Frobenius norm. For Prox-EMD and TV-G we use

(||D − D̂||F + ||A − Â||F )/2. For all cases, we also show the

decomposition results for the parameters that minimize the

error, with the images being scaled to use the full colormap.

1) Experiment 1: This experiment consists in decomposing

X = X1 + X2, with

X1 = cos
(

6π(x + y)2
)

+ cos (18π(x − y))

X2 = cos
(

1.5π(x + y)2
)

, (13)

with −1 ≤ x ≤ 1 and −1 ≤ y ≤ 1. The image has a size

of 128 × 128 pixels. The results from the four methods are

shown in Fig. 2. UOA-EMD and IEMD achieve very similar

results, showing good recovering capabilities. On the other

hand, Prox-EMD and TV-G show rather poor performances.

Figure 3 presents both the errors when estimating the com-

ponents, and the computational times. UOA-EMD gives the

lowest error for two thirds of the considered ranges, and a

constant computational time. IEMD evidences three different

regimes: when the threshold value ε goes from 0 to 1, three

different number of sifting iterations are used. Moreover,

this first experiment shows that Prox-EMD and TV-G are

unable to successfully recover AM-FM components for the

image processed. Furthermore, the tuning of their two main

parameters can be tricky.
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Fig. 3. Errors and computational times for Experiment 1 (see text for the details).

Fig. 4. Results for Experiment 2. Best results for the four analyzed methods when decomposing an image mixing components described Eqs. (14).

2) Experiment 2: For this experiment we consider the

decomposition of X = X1 + X2, with

X1 =

{

cos
(

6π(x +y)2
)

+cos (18π(x −y)) , if 0 ≤ y ≤ 1

cos
(

2π(x +y)2
)

, if −1≤ y <0

X2 =

{

cos
(

2π(x + y)2
)

, if 0 ≤ y ≤ 1

cos
(

0.5π(x + y)2
)

, if − 1 ≤ y < 0
(14)

The bottom half of X1 is equal to the top half of X2.

Since X2 is trend to X1, the same spatial frequencies are

trend in one part of the image and detail in the other.

A simple linear filtering is unable to separate the components.

Results obtained with the four methods are shown in Fig. 4.

UOA-EMD presents the best results, among others for the

bottom half of the residue. The errors for Prox-EMD are close

to those of UOA-EMD (Fig. 5). However, when analyzing

the residue, Prox-EMD seems to favor piecewise constant

solutions, which are not suited to catch AM-FM character-

istics. The best performances for the computational times are

obtained with UOA-EMD.

3) Experiment 3: In this experiment we introduce amplitude

modulations:

X1 =

⎧

⎪

⎨

⎪

⎩

cos (24π(x + 0.1y)) , if 0 ≤ y ≤ 1

e−3(x2+y2) (cos (6π(x + y)) + cos (6π(x − y))),

if − 1 ≤ y < 0

X2 =

⎧

⎪

⎨

⎪

⎩

e−3(x2+y2) (cos (6π(x + y)) + cos (6π(x − y))),

if 0 ≤ y ≤ 1

e−3(x2+y2), if − 1 ≤ y < 0

(15)
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Fig. 5. Errors and computational times for Experiment 2 (see text for the details).

Fig. 6. Results for Experiment 3. Best results for the four analyzed methods when decomposing an image mixing those of Eqs. (15).

As before, the bottom half of X1 equals the top half

of X2. The decomposition given by the four methods are

presented in Fig. 6. The errors and computational times are

presented in Fig. 7. For this third experiment, results from

UOA-EMD and IEMD are similar. The errors are of the

same order of magnitude, except for ε = 1 for IEMD

where the error is significantly higher. Although errors for

Prox-EMD are low for small values of geometry parameter ρ,

the results deserve special attention. The Prox-EMD residue

presents isolated squares of almost constant value, which are

not present in the original component. The first mode of

Prox-EMD presents in its bottom half a pattern of vertical,

horizontal and diagonal lines, which do not appear in X1.

This effect is a clear consequence of a pseudo-2D approach,

in which rows, columns and diagonal are separately con-

strained. The top half of TV-G first mode is almost equal to

that of the original image X . Moreover, computational time

remains almost constant for UOA-EMD, being thirteen times

smaller than that of IEMD.

4) Experiment 4: As fourth and final experiment for

this subsection, we masked the images from Experiment 3

with

M =

⎧

⎨

⎩

1, if x2 + y2 <
16

25
0, otherwise,

(16)
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Fig. 7. Errors and computational times for Experiment 3.

Fig. 8. Results for Experiment 4. Best results for the four analyzed methods when decomposing an image mixing those of Eqs. (15) masked with Eq. (16).

in order to test the behaviour of the methods on an image with

a piecewise constant zone.

The results are presented in Fig. 8. Same features as in the

previous example appears. The errors (see Fig. 9) for IEMD

increase, while the performance of UOA-EMD remains almost

unchanged.

C. Real Data

Real standard images are widely used by image proces-

sors in order to test their performances. We herein present

the decomposition of a 512 × 512 version of the image

“Barbara” via the four methods. In every case, the image

was decomposed into two modes plus residue. We used

λ1 = λ2 = 1 for UOA-EMD, ε = 0.5 and K = 2 for IEMD,

and ν1 = ν2 = 1, ρ1 = ρ2 = 10 and K = 2 for both

Prox-EMD and TV-G. The decomposition needed around

5 minutes for UOA-EMD, five and a half hours for IEMD,

17 minutes for Prox-EMD and 50 seconds for TV-G. The

results of the decompositions for the four methods are shown

in Fig. 10.

The first mode of UOA-EMD captures the highest frequen-

cies. The stripes of the woman’s clothes and the tablecloth

are perfectly conserved, along with the edges of the rest of

the image. The second mode of UOA-EMD catches lower

7



Fig. 9. Errors and computational times for Experiment 4.

Fig. 10. Decompositions of Barbara. Results of the decompositions via the four methods.

frequencies but conserves important features such as the folds

of the woman’s pants, of the cloth around her head and of

the tablecloth. A portion of the original image is pointed out.

The same zone in modes first and second is zoomed. In the

zoomed zone of the first mode the stripes of the fabric can

be appreciated, with no traces of the dark areas. The stripes

of the fabrics are absent from this zone in the second mode,

and only the folds can be seen. All the contrast of the original

image is present in the residue.

On the other hand, the other three analyzed methods seem

unable to capture such features. IEMD first mode includes not

only the edges and fabric stripes but also coarser oscillations

such as the folds of the fabrics. The second mode is too

blurry for fine structures to be identified. It also contains most

part of the image contrast, leaving the residue with almost no

relevant information. Prox-EMD retrieves a first mode where

some edges are hard to detect, such as those of the legs of the

table. The second mode and the residue are difficult to analyze.

While the second mode resembles a watercolour version of

the image with no fine details, the residue is too blurry

and no structure can be easily identified (we must remember

that Prox-EMD does not provide an exact reconstruction).
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Fig. 11. Decomposition of a magnetic resonance image with UOA-EMD, from fine to coarse scales.

Finally, TV-G first mode is the most similar, except for the

bright, to the original image among first modes. The legs

of the table are significantly darker than the floor, proving

more than just edge detection; the same can be said about

the woman’s chest. Second mode and residue provide little

information about the original image (as with Prox-EMD,

TV-G reconstruction is not exact).

D. Biomedical Application

We herein present the decomposition of a 256 × 256 med-

ical image. The latter is extracted from the website of

Harvard Medical School for Radiology at http://www.med.

harvard.edu/AANLIB/cases/case1/mr1-tl4/029.html [12]. This

image, a T2-weighted magnetic resonance image (MRI),

is shown in Fig. 11. It has been recorded in a woman

suffering from a glioma. The decomposition of the data

into three components obtained with UOA-EMD is shown

in Fig. 11, where λk = 1, 1 ≤ k ≤ 3 was used. We observe that

the three components represent each a separate scale range: the

first component corresponds to the highest frequencies

(the finest texture); as the number of decomposition grows,

the largest scales are discovered. The trend is observed on the

residue. The first mode clearly reveals the contours of the

lesion. These results show that UOA-EMD can also be useful

for the medical field.

V. CONCLUSION

Local and auto-adaptive decompositions such as EMD have

gained an increasing attention both for signals (1D data) and

images (2D data). For the process of images, most EMD-based

decompositions rely on an iterative procedure (sifting process)

that has the drawback of lacking convergence guarantees. The

recent optimization-based approaches to EMD, on the other

hand, makes no use of such process, paving the road for

mathematical foundations of EMD.

In this work we proposed a 2D extension of an uncon-

strained optimization approach to EMD (UOA-EMD), and

compared its performance to three other decompositions meth-

ods: IEMD, Prox-EMD, and TV-G. Our results on synthetic

and real data show that the proposed framework overcomes

the existing algorithms: it is orientation-independent, shows

a low temporal complexity, and gives better performances in

decomposing AM-FM images.

For the artificial AM-FM images we confirmed the locality

of the method. Applying the here proposed technique to a

well-known standard image (“Barbara”) the capabilities of

our method, when different spatial frequencies are related

to different structures, were illustrated. Finally, we showed a

potential application of our method decomposing a biomedical

image (MRI data).

The simplicity of the proposed framework leaves room for

an nD extension (n > 2).
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