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Abstract. In this work, least-squares func-
tionals commonly used for defect identification
are expanded in powers of the small radius of a
trial inclusion, in the context of time-harmonic
elastodynamics, generalizing to higher orders
the concept of topological derivative. Such ex-
pansion, whose derivation and evaluation are
facilitated by using an adjoint state, provides
a basis for the quantitative estimation of flaws
whereby a region of interest may be exhaus-
tively probed at reasonable computational cost.
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Problem statement. We consider a refer-
ence (i.e defect-free) 3D elastic solid Ω charac-
terized by Hooke’s tensor C and mass density ρ.
The time-harmonic background displacement u
then solves

〈u,w〉CΩ − ω2(u,w)ρΩ = F(w) ∀w ∈ W, (1)

where 〈., .〉CD and (., .)ρD denote the stiffness and
mass bilinear forms associated to a given do-
main D characterized by (C, ρ), W ⊂ H1(Ω) is
the function space incorporating the relevant es-
sential boundary conditions (if any), the linear
form F ∈ W ′ defines the applied time-harmonic
loading and ω is the angular frequency.

Assuming the presence of a defect inside Ω,
and that we can measure the resulting displace-
ment uex on a surface Γ, we define the least-
squares cost functional J(w), with the elastody-
namic displacement w associated to the given
excitation and a known trial defect, by:

J(w) =
1

2

∫
Γ
|w(x)− uex(x)|2 dSx (2)

We now consider a specific trial defect Ba =
z+aB (Fig 1), centered at z ∈Ω, of small size a
and reference shape B. It is a perfectly bonded
inclusion filled with a material characterized by
its Hooke tensor C? = C+∆C and mass density
ρ? = ρ + ∆ρ. We denote ua the displacement
in the perturbed domain, and va = ua − u the
displacement perturbation. J(ua) admits the
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Figure 1: Computational domain and inclusion.

exact expansion about u:

J(ua) = J(u) + J ′(u;va) + J ′′(u;va,va)

= J(u) + <
∫

Γ
(u−uex)·va +

1

2

∫
Γ
|va|2 (3)

The goal is now to expand J(ua) in powers of a.
Similar expansions have been studied in e.g. [2]
for rigid obstacles in 3D acoustic media and [5]
for holes in 2D elastic bodies.

Define the adjoint field p as the solution of

〈p,w〉CΩ − ω2(p,w)ρΩ = J ′(u;w) ∀w ∈W. (4)

We can then compute J ′(u;va) as

J ′(u;va) = −〈p,ua〉∆CBa
+ ω2(p,ua)

∆ρ
Ba

(5)

Expanding va in powers of a is now needed. As
we will see, J ′′(u;va,va) requires only the lead-
ing contribution of va|Γ whereas a higher-order
expansion of va|Ba is needed for evaluating (5).

Expansion of the solution perturbation.
Following e.g. [3], va solves the integro-differential
Lippmann-Schwinger equation:

La[va](x) = −〈u,G〉∆CBa
+ ω2(u,G)∆ρ

Ba
(6)

with La[v](x) := v(x) + 〈v,G〉∆CBa
−ω2(v,G)∆ρ

Ba

and G = G(·,x) is the elastodynamic Green’s
tensor for a unit point force applied at x and
satisfying homogeneous boundary conditions con-
sistent with problem (1) on ∂Ω. Substituting
the ansatz

va(x) = aV 1(x̄) + a2V 2(x̄) + 1
2a

3V 3(x̄)

+ 1
6a

4V 4(x̄) + δa(x), x∈Ba (7)
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(with x̄ := (x−z)/a ∈ B) into (6) and expanding
the resulting equation in powers of a (in partic-
ular using that G(ξ,x) = a−1G∞(ξ̄−x̄)+O(1),
with G∞ denoting the static full-space Kelvin
fundamental solution) yields a sequence of in-
tegral equations for the V j . These equations
correspond to elastostatic problems for the nor-
malized inclusion B embedded in an unbounded
reference medium, and are solved with the help
of Eshelby’s equivalent inclusion method [4].

The remainder δa in (7) solves an integro-
differential equation of the form La[δa] = γa.
The operator La : H1(Ba) → H1(Ba) is shown
to be invertible with bounded inverse, while γa
can be estimated as ‖γa‖H1(Ba) = O(a11/2).
Consequently, there exists a constant C > 0
independent of a such that

‖δa‖H1(Ba) ≤ Ca11/2. (8)

For x /∈ Ba, plugging (7) in the form va(x) ≈
aV 1(x̄) into (6) yields the outer expansion

va(x) = −a3
[
∇u(z) :A :∇G(z,x)

− ω2∆ρ|B|u(z)·G(z,x)
]

+ o(a3), (9)

A being the elastic moment tensor associated
to B, C and ∆C [1, 3].

Cost functional expansion. Substituting (7)
into (5) and (9) into (3), J(ua) is finally found
to have an expansion of the form:

J(ua) = J6(a, z) + o(a6) (10)

with J6(a, z) = J(u) + a3T3(z) + a4T4(z)

+ a5T5(z) + a6T6(z),

the o(a6) estimate resulting from (8) and (9).
The Tj(z) are found to be given in terms

of (i) the background field u and its deriva-
tives at z, (ii) the adjoint field p and its deriva-
tives at z, (iii) A and other elastic moment ten-
sors that involve the material parameters, the
shape B and the angular frequency ω, and (iv)
the complementary part of G, i.e. G −G∞ =
(G∞,ω−G∞)+GC , whereG∞,ω is the elastody-
namic full-space fundamental solution and GC

accounts for the boundedness of Ω. In particu-
lar, T3(z) is the well-known topological deriva-
tive:

T3(z) = −
[
∇u :A :∇p− ω2∆ρ|B|u·p

]
(z).

Moreover, T4(z) = 0 for any centrally-symmetric
shape B. The complementary part G∞,ω−G∞
(known analytically) is involved in T5(z) and

Figure 2: T3(z) and J6(aest, z) plotted in the
(XZ) plane around the obstacle (in white).

T6(z), while GC appears in T6(z) only. Since
the exact computation ofGC would require solv-
ing an elastodynamic problem on Ω for each
trial location z, we plan to use an approxima-
tion method to save computational time.

Closed-form formulae for the Tj can be ob-
tained when B is spherical (for which case we
provide explicit expressions) or ellipsoidal.

Identification. Following [2], estimates of the
location zest and size aest of the real defect can
then be sought as minimizers of J6(a, z), with
z spanning a predefined sampling grid. This
entails computing the Tj(z) over the sampling
grid and minimizing a 7→ J6(a, z) for each z, the
latter step being very fast and straightforward

A preliminary example is set in free space
(so that GC = 0) for a spherical scatterer of ra-
dius 0.1λS illuminated by a plane P-wave trav-
elling along the positive x-direction, with a dis-
crete array of displacement sensors lying behind
the scatterer. The above procedure yields the
size estimate aest ≈ 0.105λS ; moreover, the es-
timated location zest is found to be very close
to the true center of the scatterer. The contour
plot of J6(aest, z) (Fig 2) shows improved lo-
calisation (relative to the topological derivative
T3(z)) for this partial-aperture configuration.
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