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Problem statement. We consider a reference (i.e defect-free) 3D elastic solid Ω characterized by Hooke's tensor C and mass density ρ. The time-harmonic background displacement u then solves u, w C Ωω 2 (u, w) ρ Ω = F(w) ∀w ∈ W, (1) where ., . C D and (., .) ρ D denote the stiffness and mass bilinear forms associated to a given domain D characterized by (C, ρ), W ⊂ H 1 (Ω) is the function space incorporating the relevant essential boundary conditions (if any), the linear form F ∈ W defines the applied time-harmonic loading and ω is the angular frequency.

Assuming the presence of a defect inside Ω, and that we can measure the resulting displacement u ex on a surface Γ, we define the leastsquares cost functional J(w), with the elastodynamic displacement w associated to the given excitation and a known trial defect, by:

J(w) = 1 2 Γ |w(x) -u ex (x)| 2 dS x (2) 
We now consider a specific trial defect B a = z + aB (Fig 1), centered at z ∈ Ω, of small size a and reference shape B. It is a perfectly bonded inclusion filled with a material characterized by its Hooke tensor C = C + ∆C and mass density ρ = ρ + ∆ρ. We denote u a the displacement in the perturbed domain, and v a = u au the displacement perturbation. J(u a ) admits the Ω : (C, ρ) exact expansion about u:

(C ⋆ , ρ ⋆ ) z B a (z) B a (z) = z + aB a Γ
J(u a ) = J(u) + J (u; v a ) + J (u; v a , v a ) = J(u) + Γ (u -u ex )•v a + 1 2 Γ |v a | 2 (3)
The goal is now to expand J(u a ) in powers of a.

Similar expansions have been studied in e.g. [START_REF] Bonnet | Inverse acoustic scattering by small-obstacle expansion of a misfit function[END_REF] for rigid obstacles in 3D acoustic media and [START_REF] Silva | Higher order topological derivatives in elasticity[END_REF] for holes in 2D elastic bodies. Define the adjoint field p as the solution of

p, w C Ω -ω 2 (p, w) ρ Ω = J (u; w) ∀w ∈ W. (4) We can then compute J (u; v a ) as J (u; v a ) = -p, u a ∆C Ba + ω 2 (p, u a ) ∆ρ Ba (5)
Expanding v a in powers of a is now needed. As we will see, J (u; v a , v a ) requires only the leading contribution of v a | Γ whereas a higher-order expansion of v a | Ba is needed for evaluating [START_REF] Silva | Higher order topological derivatives in elasticity[END_REF].

Expansion of the solution perturbation. Following e.g. [START_REF] Bonnet | The topological derivative in anisotropic elasticity[END_REF], v a solves the integro-differential Lippmann-Schwinger equation:

L a [v a ](x) = -u, G ∆C Ba + ω 2 (u, G) ∆ρ Ba (6) with L a [v](x) := v(x) + v, G ∆C Ba -ω 2 (v, G) ∆ρ Ba and G = G(•, x)
is the elastodynamic Green's tensor for a unit point force applied at x and satisfying homogeneous boundary conditions consistent with problem (1) on ∂Ω. Substituting the ansatz

v a (x) = aV 1 (x) + a 2 V 2 (x) + 1 2 a 3 V 3 (x) + 1 6 a 4 V 4 (x) + δ a (x),
x ∈ B a (7) (with x := (x-z)/a ∈ B) into (6) and expanding the resulting equation in powers of a (in particular using that G(ξ, x) = a -1 G ∞ ( ξ-x)+O( 1), with G ∞ denoting the static full-space Kelvin fundamental solution) yields a sequence of integral equations for the V j . These equations correspond to elastostatic problems for the normalized inclusion B embedded in an unbounded reference medium, and are solved with the help of Eshelby's equivalent inclusion method [START_REF] Mura | Micromechanics of defects in solids[END_REF].

The remainder δ a in (7) solves an integrodifferential equation of the form L a [δ a ] = γ a . The operator L a : H 1 (B a ) → H 1 (B a ) is shown to be invertible with bounded inverse, while γ a can be estimated as γ a H 1 (Ba) = O(a 11/2 ). Consequently, there exists a constant C > 0 independent of a such that

δ a H 1 (Ba) ≤ Ca 11/2 . ( 8 
)
For x / ∈ B a , plugging (7) in the form v a (x) ≈ aV 1 (x) into (6) yields the outer expansion

v a (x) = -a 3 ∇u(z) : A : ∇G(z, x) -ω 2 ∆ρ|B|u(z)•G(z, x) + o(a 3 ), (9)
A being the elastic moment tensor associated B, C and ∆C [START_REF] Ammari | Polarization and moment tensors[END_REF][START_REF] Bonnet | The topological derivative in anisotropic elasticity[END_REF].

Cost functional expansion. Substituting (7) into ( 5) and ( 9) into (3), J(u a ) is finally found to have an expansion of the form:

J(u a ) = J 6 (a, z) + o(a 6 ) (10) with J 6 (a, z) = J(u) + a 3 T 3 (z) + a 4 T 4 (z) + a 5 T 5 (z) + a 6 T 6 (z),
the o(a 6 ) estimate resulting from (8) and ( 9). The T j (z) are found to be given in terms of (i) the background field u and its derivatives at z, (ii) the adjoint field p and its derivatives at z, (iii) A and other elastic moment tensors that involve the material parameters, the shape B and the angular frequency ω, and (iv) the complementary part of

G, i.e. G -G ∞ = (G ∞,ω -G ∞ )+G C
, where G ∞,ω is the elastodynamic full-space fundamental solution and G C accounts for the boundedness of Ω. In particular, T 3 (z) is the well-known topological derivative:

T 3 (z) = -∇u : A : ∇p -ω 2 ∆ρ|B|u•p (z).
Moreover, T 4 (z) = 0 for any centrally-symmetric shape B. The complementary part G ∞,ω -G ∞ (known analytically) is involved in T 5 (z) and T 6 (z), while G C appears in T 6 (z) only. Since the exact computation of G C would require solving an elastodynamic problem on Ω for each trial location z, we plan to use an approximation method to save computational time.

Closed-form formulae for the T j can be obtained when B is spherical (for which case we provide explicit expressions) or ellipsoidal.

Identification. Following [START_REF] Bonnet | Inverse acoustic scattering by small-obstacle expansion of a misfit function[END_REF], estimates of the location z est and size a est of the real defect can then be sought as minimizers of J 6 (a, z), with z spanning a predefined sampling grid. This entails computing the T j (z) over the sampling grid and minimizing a → J 6 (a, z) for each z, the latter step being very fast and straightforward A preliminary example is set in free space (so that G C = 0) for a spherical scatterer of radius 0.1λ S illuminated by a plane P-wave travelling along the positive x-direction, with a discrete array of displacement sensors lying behind the scatterer. The above procedure yields the size estimate a est ≈ 0.105λ S ; moreover, the estimated location z est is found to be very close to the true center of the scatterer. The contour plot of J 6 (a est , z) (Fig 2 ) shows improved localisation (relative to the topological derivative T 3 (z)) for this partial-aperture configuration.
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 1 Figure 1: Computational domain and inclusion.
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 2 Figure 2: T 3 (z) and J 6 (a est , z) plotted in the (XZ) plane around the obstacle (in white).