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The identification of parallel segments in parallel or comparable corpora can be performed at various levels. Alignments at the sentence level are useful for many downstream tasks, and also simplify the identification of finer grain correspondences. Most state-of-the-art sentence aligners are unsupervised, and attempt to infer endogenous alignment clues based on the analysis of the sole bitext. The computation of alignments typically relies on multiple simplifying assumptions, so that efficient dynamic programming techniques can be used. Because of these assumptions, high-precision sentence alignment remains difficult for certain types of corpora, in particular for literary texts. In this paper, we propose to learn a supervised alignment model, which represents the alignment matrix as two-dimensional Conditional Random Fields (2D CRF), converting sentence alignment into a structured prediction problem. This formalism enables us to take advantage of a rich set of overlapping features. Furthermore, it also allows us to relax some assumptions in decoding.

Introduction

The extraction of parallel segments in parallel or comparable corpora can be performed at various levels of granularity (documents, paragraphs, sentence, phrases, chunks, words, etc). For parallel texts or bitexts, i.e. pairs of texts assumed to be mutual translations, sentence alignment is a well-defined task in the processing pipeline [START_REF] Wu | Alignment[END_REF][START_REF] Tiedemann | Bitext Alignment[END_REF]. For comparable corpora, sentence alignment techniques are used to mine parallel segments [START_REF] Munteanu | Improving machine translation performance by exploiting non-parallel corpora[END_REF][START_REF] Uszkoreit | Large scale parallel document mining for machine translation[END_REF]. Sentence alignment is used in many applications, such as Statistical Machine Translation (SMT) [START_REF] Brown | Aligning sentences in parallel corpora[END_REF], Computer-Assisted Tools, Translator Training (Simard et al., 1993a) and Language Learning [START_REF] Nerbonne | Parallel Texts in Computer-Assisted Language Learning[END_REF][START_REF] Kraif | Using a bilingual annotated corpus as a writing aid: An application for academic writing for EFL users[END_REF]. In SMT, sentence alignment mostly aims at extracting parallel sentence pairs from large-scale corpora (e.g. bilingual parliament proceedings, web-crawled multilingual materials) to fuel downstream statistical processing. For such use, the alignment problem is considered to be solved: on the one hand, it is possible to discard unreliable alignments or difficult pairs (although, as pointed out by [START_REF] Uszkoreit | Large scale parallel document mining for machine translation[END_REF], this might lead to a waste of training material); on the other hand, [START_REF] Goutte | The impact of sentence alignment errors on phrase-based machine translation performance[END_REF] showed that the translation quality of SMT (as measured by BLEU and METEOR) is robust to noise levels of ≈ 30% in sentence alignments. For other applications, the situation is quite different: First, a requirement may be to align the full bitext, for instance in translation checking [START_REF] Macklovitch | Using bi-textual alignment for translation validation: the TransCheck system[END_REF] or bilingual reading [START_REF] Pillias | Bilingual reading experiences: What they could be and how to design for them[END_REF][START_REF] Yvon | Transread: Designing a bilingual reading experience with machine translation technologies[END_REF]. Second, certain types of corpora exhibit important translational irregularities, making high precision alignment difficult. In particular, [START_REF] Yu | Revisiting sentence alignment algorithms for alignment visualization and evaluation[END_REF][START_REF] Lamraoui | Yet Another Fast, Robust and Open Source Sentence Aligner. Time to Reconsider Sentence Alignment[END_REF] showed the link-level F-score of state-of-the-art sentence aligners on bilingual fictions remains unsatisfactory. It was for instance found that the best link-level F-score obtained for "De la Terre à La Lune" (J. Verne), a subpart of the BAF corpus [START_REF] Simard | The BAF: a corpus of English-French bitext[END_REF], was only around 78%. In this paper, we consider the full sentence alignment problem for difficult bitexts, e.g. literary works and study how supervised learning techniques can help improve this state of affair. More precisely, inspired by the approach of [START_REF] Mújdricza-Maydt | High-precision sentence alignment by bootstrapping from wood standard annotations[END_REF], we propose to represent the alignment matrix by a two-dimensional CRF model, supervised by both reference alignments and external parallel corpora. We use a binary variable to represent the existence of alignment relation between each source and target sentence pair. Once all variables are predicted, we can recover conventional alignment links from the posterior matrix. This representation is very general and dispenses with problematic assumptions, at the cost of a more complex inference procedure. The rest of this paper is structured as follows. In Section 2., we review some state-of-the-art methods, analyze their limitations and motivate our model. We detail the training and inference in Section 3. Experiments are reported in Section 4. Finally, we conclude and give perspectives for future work in Section 5.

Motivations

The development of bitext sentence alignment techniques dates back to the early 90s [START_REF] Brown | Aligning sentences in parallel corpora[END_REF][START_REF] Gale | A program for aligning sentences in bilingual corpora[END_REF][START_REF] Simard | Using cognates to align sentences in bilingual corpora[END_REF][START_REF] Chen | Aligning sentences in bilingual corpora using lexical information[END_REF]. Thanks to a sustained research effort, many high-quality aligners are nowadays publicly available, see e.g. [START_REF] Moore | Fast and accurate sentence alignment of bilingual corpora[END_REF][START_REF] Varga | Parallel corpora for medium density languages[END_REF][START_REF] Braune | Improved unsupervised sentence alignment for symmetrical and asymmetrical parallel corpora[END_REF][START_REF] Lamraoui | Yet Another Fast, Robust and Open Source Sentence Aligner. Time to Reconsider Sentence Alignment[END_REF]. A recent evaluation of these tools is in [START_REF] Xu | Sentence alignment for literary texts[END_REF]. Most state-of-the-art aligners share a two-step approach. 1 A first, relatively coarse decoding pass extracts a set of parallel sentence pairs that the system deems reliable (for instance using length-based information). These pairs serve as either anchor points to reduce the search space of subsequent steps, or as seeds to obtain better parallelism estimation tools (for instance a classifier or a bilingual lexicon), or both. A second decoding pass, using the information gathered during the first step, realigns the bitext. Most of these alignments tools are unsupervised, so that the system has to collect information from the sole bitext(s) that need to be aligned. In decoding, aligners often make the following assumptions: (a) alignment links lie around the bitext diagonal; (b) there exist limited number of link types. These two assumptions, together with the convention that alignment links are monotone and associate continuous spans, 2 warrant the use of dynamic programming (DP) techniques to perform the search. The resulting alignment tools are often light-weight and efficient, a major requirement if one wishes to process very large bitexts. Despite their efficiency and good empirical performance on many corpora, existing sentence alignment tools suffer from a number of problems:

• probabilistic alignment models typically assume a fixed prior distribution over link types, as well as specific choices for length distributions (e.g. Gaussian or Poisson). However, [START_REF] Wu | Aligning a parallel English-Chinese corpus statistically with lexical criteria[END_REF] demonstrated that these assumptions could be inaccurate, especially for language pairs that are not closely related;

• as shown in [START_REF] Yu | Revisiting sentence alignment algorithms for alignment visualization and evaluation[END_REF], DP-based methods often give poor results for null links, i.e. links for which one side is empty. Among the five methods compared in this study, only [START_REF] Melamed | Bitext maps and alignment via pattern recognition[END_REF] predicted a similar number of null links as the reference, while others tended to miss a significant portion of them. A possible reason for this problem is the lack of a coherent scoring mechanism which would allow to fairly compare null and non-null links; this especially applies to methods using lexical clues;

• probabilistic alignment models rely on local features, and ignore contextual evidences. It might be beneficial to explore structural dependencies in the training;

• the limitation on link types is also overly restrictive.

Six main link types are used in most studies: 0:1, 1:0, 1 : 1, 2 : 1, 1 : 2, 2 : 2, and it is a fact that these types rassemble a large majority of links for most text genres. [START_REF] Xu | Sentence alignment for literary texts[END_REF] 

The 2D CRF Model

The model

Given a sequence of source language sentences E I 1 = E 1 , ..., E I and a sequence of target sentences F J 1 = F 1 , ..., F J ,3 we propose a 2D CRF model to predict the presence of link between any pair of sentences [E i ; F j ], where 1 ≤ i ≤ I, 1 ≤ j ≤ J. Note that similar models have also been developed for sub-sentential alignments [START_REF] Niehues | Discriminative word alignment via alignment matrix modeling[END_REF][START_REF] Cromières | An alignment algorithm using belief propagation and a structure-based distortion model[END_REF][START_REF] Burkett | Fast inference in phrase extraction models with belief propagation[END_REF]. Each pair [E i ; F j ] gives rise to a binary variable y i,j , whose value is 1 (positive) if E i is aligned to F j , and 0 (negative) otherwise. For the sequence pair E I 1 and F J 1 , there are I × J such variables, collectively denoted as y. Dependencies between links are modeled as follows. For each pair [E i ; F j ], we assume that the associated variable y i,j depends on y i-1,j , y i+1,j , y i,j-1 , y i,j+1 , y i-1,j-1 and y i+1,j+1 . In other words, it depends on the presence of links The topology of our model differs from the proposal of [START_REF] Mújdricza-Maydt | High-precision sentence alignment by bootstrapping from wood standard annotations[END_REF], where each diagonal of the alignment matrix was modeled as a linear chain CRF. This topology captured the important diagonal direction dependency, but did not encode the horizontal or vertical dependencies. Another important difference lies on the generation of final outputs. [START_REF] Mújdricza-Maydt | High-precision sentence alignment by bootstrapping from wood standard annotations[END_REF] variable labels to encode the corresponding link type (e.g. 1:1, 2:1). Note that this encoding makes it impossible to include all link types, and has also a bearing on the computational cost, since the inference complexity of a linear chain CRF is quadratic in the number of labels. As a result, these authors only considered 6 link types (1:1, 1:2, 2:1, 1:3, 3:1, F ). 4 In our model, all prediction variables are binary. We generate final links using the transitive closure operation according to sentence alignment conventions, which can theoretically lead to any possible link type. For instance, an all zerovalued j th column indicates an unaligned target sentence F j ; if y p,q is the only positive value in the p th row and q th column, then there is a 1:1 link [E p ; F q ], etc. In fact, the model can express finer correspondences than conventional alignment link representations. For example, if both E u-1 and E u are aligned to F v-1 , E u is further aligned to F v , our formalism can represent exactly the relation, while the alignment link representation would contain a coarser 2:2

[E i-1 ; F j ], [E i+1 ; F j ], [E i ; F j-1 ], [E i ; F j+1 ], [E i-1 ; F j-1 ] and [E i+1 ; F j+1 ]. Figure 1 dis- plays a graphical representation of the model. E 1 F 1 E 2 E 3 F 1 F 2 F 3 F 4 E 1 E 2 F 2 F 3 E 3 F 4
link [E u-1 , E u ; F v-1 , F v ].
We use two kinds of clique potentials in our model: node potentials and edge potentials. We impose that all single node cliques use the same clique template, i.e. they share the same set of feature functions and corresponding weights. For edge potentials, we use distinct clique templates for vertical, horizontal and diagonal edges. One main limitation of this model is that it does not include long distance dependencies, which makes it difficult to encode certain types of constraints (e.g. that alignment links should not cross). The model for a pair of sentence sequences

[E; F ] (as a shorthand for [E I 1 ; F J 1 ]
) can be written as:

p(y|E, F ) = 1 Z(E, F ) ν Φ n (y ν )Φ v (y ν )Φ h (y ν )Φ d (y ν ) where ν ∈ {(i, j) : 1 ≤ i ≤ I, 1 ≤ j ≤ J}, Φ n (y ν )
stands for the single node potential at ν, Φ v (y ν ) represents the potential on the vertical edge connecting ν and the node just below it:

∀j, Φ v (y i,j ) = 1 if i = I Φ v (y i,j , y i+1,j ) if 1 ≤ i < I Φ h (y ν ) (the horizontal potential) and Φ d (y ν ) (the di- agonal potential) are defined similarly. Z(E, F ) = y ν Φ n (y ν )Φ v (y ν )Φ h (y ν )Φ d (y ν )
is the normalization factor (the partition function) of the CRF. All potentials take the generic form of a log-linear combination of feature functions:

Φ ν (y ν ) = exp{θ θ θ F ν (y ν )},
where F ν and θ θ θ are the feature and weight vectors. We also use 2 regularization with scaling parameter α > 0.5 

Learning the 2D CRF model

The conventional learning criteria for CRF is the Maximum Likelihood Estimation (MLE). For a set of fully observed training instances A = {(E (s) , F (s) , y (s) )}, MLE consists of maximizing the log-likelihood of the training set with respect to model parameters Θ Θ Θ = {θ θ θ, α}. The log-likelihood is concave with respect to the weight vector, which warrants the use of convex optimization techniques to obtain parameter estimates. In order to do this, we need the gradient of the likelihood function with respect to the weight vector. Computing the gradients requires two kinds of marginal probabilities: single node marginals p(y i,j |E (s) , F (s) ) and edge marginals p(y i,j , y i+1,j |E (s) , F (s) ), p(y i,j , y i,j+1 |E (s) , F (s) ), and p(y i,j , y i+1,j+1 |E (s) , F (s) ). We need to perform inference to compute these marginals. Since the topology of our model contains loops, we use the Loopy Belief Propagation (LBP) inference algorithm. Even though LBP is an approximate inference algorithm with no convergence guarantee, [START_REF] Murphy | Loopy belief propagation for approximate inference: An empirical study[END_REF] observe that it often gives reasonable estimates (assuming it converges). For a tree-structured undirected graphical model, the message from a node y µ to a neighboring node y ν takes the following form [START_REF] Wainwright | Graphical models, exponential families, and variational inference[END_REF]:

m µν (y ν ) ∝ yµ Φ(y µ )Φ(y ν , y µ ) γ∈N (µ)\ν m γµ (y µ )
where N (µ) denotes the set of neighbors of µ. LBP is performing such message passing procedure on a cyclic graph. Once message passing has converged, the single node and edge marginals (a.k.a. "beliefs") are expressed as:

b ν (y ν ) ∝ Φ(y ν ) γ∈N (ν) m γν (y ν ) b µν (y µ , y ν ) ∝ Φ(y µ )Φ(y ν )Φ(y ν , y µ ) δ∈N (µ)\ν m δµ (y µ ) γ∈N (ν)\µ m γν (y ν )
In practice, it is possible that LBP does not converge for certain training instances. In this case, we simply stop it after 100 iterations. Convex optimization routines also require to compute the log-partition function log Z(E, F ), as a part of the likelihood function. LBP approximates this quantity with the Bethe Free Energy [START_REF] Yedidia | Generalized belief propagation[END_REF]. In learning, we first train the CRF without any edge potential (thus making the model similar to the simpler MaxEnt model), and use it to initialize the parameter vector of node potentials. We then randomly initialize other parameters, 6and use the L-BFGS algorithm [START_REF] Liu | On the limited memory BFGS method for large scale optimization[END_REF] implemented in the SciPy package to perform parameter learning, this time with all potentials.

Search in the 2D CRF model

For the 2D CRF model, we perform the search in multiple steps. First, we run the BMA algorithm [START_REF] Moore | Fast and accurate sentence alignment of bilingual corpora[END_REF] to extract high-confidence 1:1 links. This algorithm first extracts reliable 1:1 sentence pairs from a bitext, using only length information, then trains a small IBM Model 1 based on these links, finally realigns the bitext using both length and lexical information. It returns a set of 1 : 1 sentence pairs. As reported in [START_REF] Yu | Revisiting sentence alignment algorithms for alignment visualization and evaluation[END_REF], BMA tends to obtain a very good precision, at the expense of a less satisfactory recall. Furthermore, BMA computes posterior probabilities for every possible link, which are then used as confidence scores. We filter the result links with a very high posterior probability threshold (≥ 0.99999) (this threshold is much higher than BMA's default choice). These links segment the entire search space into sub-blocks. For each sub-block, we construct a 2D CRF model, and perform decoding. As exact Maximum A Posteriori decoding is intractable, instead, we run max-product LBP independently, and pick the local best label for each node. The label assigned to a variable y i,j is arg max

l∈{0,1} b i,j (l)
This procedure returns a set of sentence-level links. Since the sizes of the sub-blocks are often small (generally smaller than 10 × 10), decoding is very fast in practice. Two types of errors exist in the alignment prediction matrix: false negatives (cyan cells with hatted scores) and false positives (yellow cells with overlined scores). We cannot easily deal with false negatives. False positives introduce noises, for example, the pair (50, 44) in Figure 2 (the upper right corner). The two positive pairs (50, 39) and (50, 44) lead to two separate links involving the same source sentence, which violates the general convention of sentence alignment. In fact, the pair (50, 44) is clearly wrong: it links the first source sentence with the last target one, thus overlapping with all other positive sentence-level links. 8 In our experiments, in all sub-blocks, true positive sentence-level links always lie around the main diagonals. We have used the following heuristics to smooth the alignment prediction

In practice, step 3 was hardly performed.

Finally, to turn sentence-level links into alignment-level links, we apply the following rules:

1. consecutive sentence-level links in the horizontal or vertical directions are combined into a large alignment-level link;

2. a sentence-level link without horizontal or vertical neighbors becomes a 1:1 type alignment-level link.

These rules follow from the interpretation of our model, where an n:m type alignment-level link decomposes into n * m sentence-level links.

Experiments

Features

In the 2D CRF model, feature functions take the form f (E I 1 , F J 1 , i 1 , j 1 , i 2 , j 2 , y i1,j1 , y i2,j2 ), where E I 1 is the source sequence of I sentences, F J 1 the target sequence of J sentences, (i 1 , j 1 ) and (i 2 , j 2 ) neighboring source-target indices, y i1,j1 and y i2,j2 respectively corresponding labels (0 or 1). For each pair (E i , F j ), we compute the following set of features:

1. The length difference ratios. We first compute

r 1 = |len(E i ) -len(F j )| len(E i ) , r 2 = |len(E i ) -len(F j )| len(F j )
where the len() function returns the number of characters in one string. Both r 1 and r 2 are rounded into the interval [0, 1], then discretized into 10 indicator features. This family thus contains 20 features.

2. The ratio of identical tokens. Let the function token() return the number of tokens in a string. We count the number of shared tokens in E i and F j , denote the count by s, compute two ratios s token(Ei) and s token(Fj ) , then discretize each into 10 features.

3. The relative index difference. We discretize the quantity 4. The lexical translation scores. Let token(E i ) = m and token(F j ) = n, we compute the IBM Model 1 scores:

| i I -j J | into
T 1 (E i , F j ) = 1 n n s=1 log( 1 m * m k=1 p(F js |E ik )) T 2 (E i , F j ) = 1 m m k=1 log( 1 n * n s=1 p(E ik |F js ))
where F js is the s th token of F j . The lexical translation probabilities p are computed using an IBM 1 model trained on the EN-FR Europarl corpus [START_REF] Koehn | Europarl: A parallel corpus for statistical machine translation[END_REF]. After discretizing T 1 and T 2 , we obtain 10 features for each alignment direction.

5. The span coverage. We split a string into several spans by segmenting on punctuations (except for the quotation marks). For each source span span e, we compute the translation score T 2 (span e, F j ). If the score is larger than a threshold, 10 we consider span e as being covered. We then compute the ratio of covered source spans and the ratio of covered target spans, and discretize each into 10 features.

6. The label transition. These features capture the regularity of the transition of labels from one node (E i , F j ) to one of its neighbors (e.g. (E i+1 , F j )). For each of the three types of neighbors (vertical, horizontal, diagonal), we define four label transition features (because our prediction variables are binary). For example, for the vertical template, we define g 00 (i, j) = δ{y i,j = 0 ∧ y i+1,j = 0} g 01 (i, j) = δ{y i,j = 0 ∧ y i+1,j = 1} g 10 (i, j) = δ{y i,j = 1 ∧ y i+1,j = 0} g 11 (i, j) = δ{y i,j = 1 ∧ y i+1,j = 1}

10 In our experiments, the threshold is set to log(1e -3)

where δ is the Kronecker delta function. We have similar features for horizontal and diagonal transitions. In total, this family contains 12 features.

7. The augmented length difference ratio. This family only applies to the vertical and horizontal edge potentials, under the condition that the two neighboring pairs are both positive. In the vertical (resp. horizontal) case, we combine the two consecutive source (resp. target) sentences E i , E i+1 (resp. F j , F j+1 ) into one new sentence E (resp. F ), then apply the computations carried out for feature family 1 for the pair (E , F j ) (resp. (E i , F )).

8. The augmented translation score. This family only applies to vertical and horizontal edge potentials, under the condition that the two neighboring pairs are both positive. We construct E (resp. F ) as in the previous feature family. We then compute the augmented translation score

T 1 (E , F j ) -T 1 (E i , F j ) (resp. T 2 (E i , F ) -T 2 (E i , F j )).
The intuition is that a longer partial translation is better than a shorter one. Each score is discretized into 10 features.

Note feature families 6, 7 and 8 are computed only when possible. Feature families 5, 7 and 8 are new in our model.

Others have been used in previous methods, for instance, [START_REF] Munteanu | Improving machine translation performance by exploiting non-parallel corpora[END_REF][START_REF] Yu | Revisiting sentence alignment algorithms for alignment visualization and evaluation[END_REF][START_REF] Tillmann | A unified alignment algorithm for bilingual data[END_REF][START_REF] Mújdricza-Maydt | High-precision sentence alignment by bootstrapping from wood standard annotations[END_REF].

Learning corpus

The training of the 2D CRF model requires reference alignments. We have used the reference sentence alignments collected for an ongoing project. 11 The training corpus contains alignment links of four books: "Alice's Adventures in Wonderland" (L. Carroll), "Candide" (Voltaire), "Vingt A training instance is a fully observed sentence-level alignment matrix. In order to make train conditions as close as possible to test conditions, each fully aligned book was segmented into sub-blocks, again using high confidence 1:1 links computed by BMA as anchor points. Each sub-block, annotated with reference alignments, is then turned into one training instance. This strategy has the additional benefit to greatly reduce the total number of prediction variables, hence make the training less memory consuming. Besides, the training can enjoy better parallelization. There is potentially another advantage of using smaller training instances. Since our model contains one predictive variable for each pair of source-target sentences, there are roughly quadratically many negative examples, and linearly many positive ones. This data unbalance problem becomes more severe as the size of the prediction matrix grows larger. Using smaller training instances helps alleviate this problem. Using this strategy, we obtain 450 fully observed alignment matrices. We use 360 for the training set, 90 as the development set. Among the 7,095 labeled sentence pairs, approximately 77% are negative. For the test, we use the fully aligned novel "De la Terre à la Lune" in the BAF corpus and the manual en-fr corpus composed of 7 partial alignments of literary bitexts. Table 2 gives the statistics of the test corpus. Recall our first step is to use filtered results of BMA as anchor points to segment the search space. With the filtering threshold 0.99999, the anchor point precision is 0.89 on "De la Terre à la Lune", and 0.96 on the manual en-fr corpus.

Results

We evaluate alignment results at two levels of granularity: the alignment level and the sentence level. At the alignment level, a link in the output alignment is considered correct if exact the same link is also in the reference alignment. At the sentence level, we decompose a m : n type link in the reference alignment into m × n sentence pairs, all considered as correct. The same decomposition applies to computed links. We summarize precision and recall ratios into F-scores. Since the 2D CRF model is intrinsically trained to optimize sentence-level metrics, we first look at its sentencelevel performance, summarized in Table 3. For the sake of comparison, we also display the performance of six other state-of-the-art aligners: GMA [START_REF] Melamed | Bitext maps and alignment via pattern recognition[END_REF], BMA, Hunalign [START_REF] Varga | Parallel corpora for medium density languages[END_REF], Garg (as shorthand for Gargantua) [START_REF] Braune | Improved unsupervised sentence alignment for symmetrical and asymmetrical parallel corpora[END_REF], Yasa [START_REF] Lamraoui | Yet Another Fast, Robust and Open Source Sentence Aligner. Time to Reconsider Sentence Alignment[END_REF], MaxEnt [START_REF] Xu | Sentence alignment for literary texts[END_REF]. The CRF model achieves great improvements over BMA and Hunalign. Its average score on the manual en-fr corpus is slightly inferior to other systems, but it obtains the second best Fmeasure on the large bi-text "De la Terre à la Lune". We note that Yasa, perhaps the most lightweight tool, is very robust with respect to the sentence-level measure. The first decoding step of both MaxEnt and CRF uses a subset of BMA's results as anchors to segment the bi-text space. Table 4 compares in more detail the performance of these three methods. [START_REF] Yu | Revisiting sentence alignment algorithms for alignment visualization and evaluation[END_REF][START_REF] Lamraoui | Yet Another Fast, Robust and Open Source Sentence Aligner. Time to Reconsider Sentence Alignment[END_REF] have reported that BMA usually delivers very high precision 1 : 1 links. We observe the 2D CRF model preserves a high sentence level precision, and greatly increases the recall. Thus, the 2D CRF model manages to extract true positive sentence pairs from the gaps defined by BMA's links with a very high accuracy. The behavior of MaxEnt varies on different corpus. On the Manual en-fr corpus, while it slightly decreases the precision, it obtains the best recall, leading to the best overall performance. However, on "De la Terre à la Lune", its precision is too low compared to BMA and CRF, thus its F-score is worse. The alignment level F-scores of the CRF model are in Table 5. 12 The CRF achieves comparable alignment level Fscores to BMA on both sub-corpus. Although their average scores on manual en-fr are worse than MaxEnt, they outperform it considerably on those more difficult bitexts: "De la Terre à la Lune" and "Emma". In our opinion, this calls for further analyses for the deployment of alignment methods: for sentence alignment, it might be beneficial to investigate which types of methods tend to perform well for which types of bitexts, identify indicative characteristics (of methods and bitexts), and deduce operational guidelines. 13Table 4 and Table 5 together show that, while the 2D CRF model obtains much higher sentence level Fscores than BMA (approximately 15 points on average on manual en-fr), their alignment level F-scores are actually comparable. In other words, the CRF does find more true positive sentence pairs, but not all of them contribute to form true links. Take for instance the 2 : 2 link (14, 15; 24, 25) in Figure 3. To correctly recover this link, it is necessary to find at least three among the four cells. Even though the CRF finds one cell (15; 25), this only yields a wrong 1 : 1 link, which, for the alignment level F-score metric, is no better than not finding any pair. While this imbalance between the alignment level and sentence level F-scores can seem surprising, it is by no means uncommon. In fact, this phenomenon was the reason that sentence-level F-score was proposed as an evaluation metric for sentence alignment in [START_REF] Langlais | Methods and practical issues in evaluating alignment techniques[END_REF]. Nonetheless, this reinforces our belief that the deployment strategy of alignment methods, as well as evaluation metrics, needs further study.

Analysis

Error distribution by link type To better understand the behavior of the 2D CRF model, we perform an error analysis of its results on the manual en-fr corpus, with respect to link types. The corresponding statistics are in Table 7. We compare CRF with the MaxEnt approach, which gives the best average score on this corpus. Compared to the MaxEnt method, CRF has a higher recall on null and 1:1 links. Its main weakness lies in the prediction of 1:n and n:1 links. After a closer study of the erroneous instances, we find a common pattern of error: when predicting a m:n link with m * n > 1 (that is, a 1-to-many or many-to-many link), the CRF often correctly labels some sentence pairs as positive, while leaving others as negative.

Figure 3 displays an alignment prediction matrix for a passage of Jean-Jacques Rousseau's "Les Confessions". The corresponding text (correctly aligned) is displayed in Table 8 in the appendix. The CRF fails to predict the 1:2 link (13; 22, 23), only labelling (13; 22) as positive; nor does it find the 2:2 link (14, 15; 24, 25).

The failures of the 2D CRF model on 1-to-many and manyto-many links makes it necessary to study edge potentials. One of the reasons of using a CRF model is its ability to encode the dependencies between neighboring links, with which we expect to better predict non 1:1 links. An obvious direction to investigate is to add more edge features. Current edge features (families 6, 7 and 8) are quite general.

It might be helpful to add features that encode finer level clues to edge potentials, e.g. word alignment information.

Besides of features of edge potentials, it might also be possible to consider other alignment matrix decoding algorithms. Compared to our approach, MaxEnt has the advantage of directly scoring alignment-level links, rather than doing it obliquely through sentence-level ones. This is ), for the manual en-fr corpus. For example, 20 0 : 1 links are in the reference, and MaxEnt missed 18 of them. Only the link types occurring more than 5 times are reported. This filters out 27 links out of 1,792. also possible in the 2D CRF model, since LBP can readily compute marginals over edges, or even larger factors. We might use such marginals to improve our post-processing routines.

Null sentences Another motivation for the 2D CRF model is that it provides a mechanism where null and nonnull links are handled coherently. We summarize its performance for null sentences in Table 6, again, comparing it with the MaxEnt method.

Although the 2D CRF model incorrectly labels many sentences as unaligned, it is indeed able to find the majority of true null sentences, except for "The Last of the Mohicans". This is where our model seems to be improving, especially when compared to MaxEnt.

Conclusion

In this paper, we reviewed state-of-the-art sentence alignment methods, identified several recurring problems, and have accordingly proposed a two-dimensional Conditional Random Fields model for the full text sentence alignment task. Our model is theoretically attractive, since it avoids several risky assumptions, computes posterior probabilities for all sentence alignment links, thereby explicitly representing null links, and warrants structured learning of par-allelism scores.

In the light of our experimental results and analyses, we conclude that there is clear room of improvement for our 2D CRF model. Currently, while the model is effective at identifying true 1 : 1 links with better recall than BMA's, its performance as measured by alignment level metric still needs to be improved. As perspectives, we would like to study the following improvements:

• enforce edge features: current edge features do not seem to be strong enough to balance our rich set of node features. Including features informed with simple word alignment information, such as fertilities and linked regions, seems an obvious way to go;

• add node features that encode the decisions of other systems, e.g. BMA;

• explore ways to simulate a DP process using marginals of edges or larger factors, which might help improve our alignment matrix decoding algorithm.

In the long term, we would like to study ways to characterize tasks and alignment methods, such that it is possible to choose adequate alignment algorithms for specific task requirements.

Figure 1 :

 1 Figure 1: The 2D CRF model, for a bitext of 3 source E 1 -E 3 and 4 target sentences F 1 -F 4 .

Figure 2

 2 displays an alignment prediction matrix.7 It contains four types of cells, corresponding to four types of predictions: true positive (red, with underlined score), true negative (white, with normal score), false positive (yellow, with overlined score), false negative (cyan, with hatted score). The score in each cell is the marginal probability of the pair being positive, as computed by the CRF. A red or yellow cell indicates a sentence-level link predicted by the model.

Figure 2 :

 2 Figure 2: An alignment prediction matrix.

Figure 3 :

 3 Figure 3: An alignment prediction matrix for a passage of "Les Confessions".

Table 2 :

 2 The test corpus, made of the literary part of BAF and the manual en-fr corpus.

	10 features.

Table 3 :

 3 Sentence level F-scores of the 2D CRF method on the test corpus, compared with state-of-the-art methods. Average on manual en-fr 96.8 55.7 69.3 88.5 91.1 89.6 92.0 77.7 84.1

					Sentence level F-score		
		GMA BMA Hunalign Garg Yasa MaxEnt CRF
	De la Terre à la Lune (BAF)	72.9	77.3		81.9	77.3 86.2	76.6		84.0
	Du Côté de chez Swann	95.4	88.9		89.4	95.0 95.2	96.0		94.3
	Emma	73.8	52.1		62.8	61.2 73.8	71.2		69.4
	Jane Eyre	88.0	54.6		59.4	84.2 82.5	88.0		77.2
	La Faute de l'Abbé Mouret	94.8	83.8		82.8	98.7 97.7	98.9		90.8
	Les Confessions	82.8	49.9		48.5	80.5 82.8	86.1		76.6
	Les Travailleurs de la Mer	87.8	79.6		78.8	91.5 90.4	91.9		89.1
	The Last of the Mohicans	94.9	76.0		77.0	95.6 94.5	95.0		91.1
	Average on manual en-fr	88.2	69.3		71.2	86.7 88.1	89.6		84.1
		BMA			MaxEnt		CRF
		P	R	F	P	R	F	P	R	F
	De la Terre à la Lune (BAF)	97.2 64.1 77.3 72.0 81.8 76.6 95.5 74.9 84.0
	Du Côté de chez Swann	99.5 80.3 88.9 97.1 94.9 96.0 96.3 92.5 94.3
	Emma	89.8 36.7 52.1 62.8 82.3 71.2 76.1 63.7 69.4
	Jane Eyre	93.7 38.5 54.6 86.7 89.3 88.0 86.6 69.6 77.2
	La Faute de l'Abbé Mouret	99.5 72.3 83.8 98.9 98.9 98.9 98.2 84.5 90.8
	Les Confessions	98.4 33.4 49.9 89.3 83.2 86.1 92.6 65.4 76.6
	Les Travailleurs de la Mer	97.7 67.2 79.6 90.8 93.0 91.9 97.1 82.2 89.1
	The Last of the Mohicans	98.7 61.8 76.0 94.2 95.8 95.0 97.1 85.7 91.1

Table 4 :

 4 The comparison of BMA, MaxEnt and the 2D CRF model, using sentence-level measures. P stands for Precision, R is Recall, and F is F-score. Mille Lieues sous les Mers", and "Voyage au Centre de la Terre" (both by J. Verne). Table1displays the statistics of the training corpus. We have to convert the training corpus into a training set.

Table 5 :

 5 Alignment level F-scores of the 2D CRF model, compared with BMA and MaxEnt.

		Alignment level F-score
		BMA MaxEnt CRF
	De la Terre à la Lune (BAF)	73.6	66.5	73.3
	Du Côté de chez Swann	91.5	93.3	90.9
	Emma	57.4	51.0	55.4
	Jane Eyre	61.1	78.9	63.2
	La Faute de l'Abbé Mouret	88.4	98.0	82.8
	Les Confessions	59.6	74.0	58.1
	Les Travailleurs de la Mer	83.4	85.3	83.0
	The Last of the Mohicans	82.7	90.1	84.3
	Average on manual en-fr	74.9	81.5	74.0

Table 6 :

 6 Performance of the 2D CRF model and the MaxEnt model on predicting null sentences. "#Null in Ref." is the number of unaligned sentences in the reference alignment; "#Null in Hyp." is the number of unaligned sentences in the hypothesis alignment computed by the model;"'#Correct" is the number of correctly predicted null sentences.

					2D CRF			MaxEnt
				#Null	#Null	#Correct	#Null	#Null	#Correct
				(in Ref.) (in Hyp.)		(in Ref.) (in Hyp.)
		De la Terre à la Lune (BAF)	714	1,311	672	714	150	91
		Du Côté de chez Swann	9	27	8	9	5	3
		Emma		41	85	28	41	2	2
		Jane Eyre		10	77	7	10	0	0
		La Faute de l'Abbé Mouret	2	52	2	2	1	1
		Les Confessions	11	96	11	11	4	2
		Les Travailleurs de la Mer	5	78	3	5	2	0
		The Last of the Mohicans	12	37	3	12	2	2
	Link type in Ref. Error MaxEnt Error CRF		
	0:1	20	18	15			
	1:0	21	18	15			
	1:1	1,366	105	64			
	1:2	179	36	98			
	1:3	32	9	29			
	2:1	96	32	54			
	2:2	24	19	20			
	others	27	15	26			
	Total	1,765	252	321			

Table 7 :

 7 Analyses of the errors of the MaxEnt and the CRF by link type, relative to the number of reference links (in Ref.

[START_REF] Melamed | Bitext maps and alignment via pattern recognition[END_REF]) is a notable exception.

Note we are referring languages as source and target only for convenience. Thus, source does not necessary indicate the original language of the bitext, nor does target indicate the translation language.

4 F stands for all other link types or unaligned sentences.

In the experiments, α is tuned on a development set, and takes the value 0.1.

See(Sutton, 2008, 88-89) for a discussion on parameter initialization of general CRFs trained using LBP.

Note these matrices are drawn just after the CRF decoding, before the post-processing described below.

Note that this particular matrix was computed by an early version of the 2D CRF model. We show it here for illustration purpose. In later versions, the model is augmented with features capturing the relative position information, which effectively prevents this kind of errors. matrix:1. perform a linear regression on all predicted positive sentence-level links, then take a band of fixed width around the regression line, and drop positive links that lie outside of this band

. 9 2. if after this step, there are still separate links involving the same sentence, we take the positive sentencelevel links in the surrounding window with width 5, and discard the ones which are inconsistent with the surrounding links;3. if it is still undecidable, we perform again a linear regression of positive sentence-level links in the surrounding window, and discard the link that is farthest away from the regression line.

The band width is taken to be half of the number of sentences of the shorter one of the two sides.

See http://transread.limsi.fr, where most textual resources can be downloaded.

We only show BMA, MaxEnt and CRF in this table, since[START_REF] Xu | Sentence alignment for literary texts[END_REF] reported MaxEnt obtained the best average alignment F-score on the manual en-fr corpus.

This is in line with the views of[START_REF] Deng | Segmentation and alignment of parallel text for statistical machine translation[END_REF] and[START_REF] Lamraoui | Yet Another Fast, Robust and Open Source Sentence Aligner. Time to Reconsider Sentence Alignment[END_REF], who suggested to model sentence alignment as part of the target application, so that it can benefit the optimization conducted toward the task.
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Appendix

Table 8 contains the text of a passage of Jean-Jacques Rousseau's "Les Confessions", corresponding to the alignment prediction matrix in Figure 3. en10 My mother's circumstances were more affluent; she was daughter of a Mons.

Ma mère, fille du ministre Bernard, était plus riche: elle avait de la sagesse et de la beauté. fr19 en11 Bernard, minister, and possessed a considerable share of modesty and beauty; indeed, my father found some difficulty in obtaining her hand.

Ce n'était pas sans peine que mon père l'avait obtenue. fr20

en12 The affection they entertained for each other was almost as early as their existence; at eight or nine years old they walked together every evening on the banks of the Treille, and before they were ten, could not support the idea of separation. The obstacles that opposed served only to give a decree of vivacity to their affection, and the young lover, not being able to obtain his mistress, was overwhelmed with sorrow and despair.

Le sort, qui semblait contrarier leur passion, ne fit que l'animer .

fr24

Le jeune amant ne pouvant obtenir sa maîtresse se consumait de douleur: elle lui conseilla de voyager pour l'oublier . fr25 en15 She advised him to travel -to forget her.

en16 He consented -he travelled, but returned more passionate than ever, and had the happiness to find her equally constant, equally tender.

Il voyagea sans fruit, et revint plus amoureux que jamais.

fr26

Il retrouva celle qu'il aimait tendre et fidèle. fr27

Table 8: The correct alignment of a passage of Jean-Jacques Rousseau's "Les Confessions", corresponding to the alignment prediction matrix in Figure 3.