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Abstract

The identification of parallel segments in parallel or comparable corpora can be performed at various levels. Alignments at the sentence
level are useful for many downstream tasks, and also simplify the identification of finer grain correspondences. Most state-of-the-art
sentence aligners are unsupervised, and attempt to infer endogenous alignment clues based on the analysis of the sole bitext. The
computation of alignments typically relies on multiple simplifying assumptions, so that efficient dynamic programming techniques can
be used. Because of these assumptions, high-precision sentence alignment remains difficult for certain types of corpora, in particular for
literary texts. In this paper, we propose to learn a supervised alignment model, which represents the alignment matrix as two-dimensional
Conditional Random Fields (2D CRF), converting sentence alignment into a structured prediction problem. This formalism enables us
to take advantage of a rich set of overlapping features. Furthermore, it also allows us to relax some assumptions in decoding.

Keywords: Sentence Alignment, Conditional Random Fields

1. Introduction

The extraction of parallel segments in parallel or compa-
rable corpora can be performed at various levels of gran-
ularity (documents, paragraphs, sentence, phrases, chunks,
words, etc). For parallel texts or bitexts, i.e. pairs of texts
assumed to be mutual translations, sentence alignment is
a well-defined task in the processing pipeline (Wu, 2010;
Tiedemann, 2011). For comparable corpora, sentence
alignment techniques are used to mine parallel segments
(Munteanu and Marcu, 2005} |Uszkoreit et al., 2010). Sen-
tence alignment is used in many applications, such as Sta-
tistical Machine Translation (SMT) (Brown et al., 1991)),
Computer-Assisted Tools, Translator Training (Simard et
al., 1993a) and Language Learning (Nerbonne, 2000; Kraif
and Tutin, 2011). In SMT, sentence alignment mostly aims
at extracting parallel sentence pairs from large-scale cor-
pora (e.g. bilingual parliament proceedings, web-crawled
multilingual materials) to fuel downstream statistical pro-
cessing. For such use, the alignment problem is considered
to be solved: on the one hand, it is possible to discard un-
reliable alignments or difficult pairs (although, as pointed
out by [Uszkoreit et al. (2010)), this might lead to a waste of
training material); on the other hand, |Goutte et al. (2012)
showed that the translation quality of SMT (as measured by
BLEU and METEOR) is robust to noise levels of ~ 30% in
sentence alignments.

For other applications, the situation is quite different: First,
arequirement may be to align the full bitext, for instance in
translation checking (Macklovitch, 1994) or bilingual read-
ing (P1illias and Cubaud, 2015; Yvon et al., 2016). Second,
certain types of corpora exhibit important translational ir-
regularities, making high precision alignment difficult. In
particular, |Yu et al. (2012; [Lamraoui and Langlais (2013)
showed the link-level F-score of state-of-the-art sentence
aligners on bilingual fictions remains unsatisfactory. It was
for instance found that the best link-level F-score obtained
for “De la Terre a La Lune” (J. Verne), a subpart of the BAF
corpus (Simard, 1998), was only around 78%.

In this paper, we consider the full sentence alignment prob-
lem for difficult bitexts, e.g. literary works and study how

supervised learning techniques can help improve this state
of affair. More precisely, inspired by the approach of
(Mujdricza-Maydt et al., 2013), we propose to represent
the alignment matrix by a two-dimensional CRF model, su-
pervised by both reference alignments and external parallel
corpora. We use a binary variable to represent the exis-
tence of alignment relation between each source and target
sentence pair. Once all variables are predicted, we can re-
cover conventional alignment links from the posterior ma-
trix. This representation is very general and dispenses with
problematic assumptions, at the cost of a more complex in-
ference procedure.

The rest of this paper is structured as follows. In Section[2]
we review some state-of-the-art methods, analyze their lim-
itations and motivate our model. We detail the training and
inference in Section [3] Experiments are reported in Sec-
tion[4] Finally, we conclude and give perspectives for future
work in Section[3]

2. Motivations

The development of bitext sentence alignment techniques
dates back to the early 90s (Brown et al., 1991} |Gale and
Church, 1991} |[Simard et al., 1993b; |(Chen, 1993)). Thanks
to a sustained research effort, many high-quality aligners
are nowadays publicly available, see e.g. (Moore, 2002
Varga et al., 2005; [Braune and Fraser, 2010; |[Lamraoui and
Langlais, 2013)). A recent evaluation of these tools is in (Xu
et al., 2015).

Most state-of-the-art aligners share a two-step approachﬂ
A first, relatively coarse decoding pass extracts a set of par-
allel sentence pairs that the system deems reliable (for in-
stance using length-based information). These pairs serve
as either anchor points to reduce the search space of subse-
quent steps, or as seeds to obtain better parallelism estima-
tion tools (for instance a classifier or a bilingual lexicon), or
both. A second decoding pass, using the information gath-
ered during the first step, realigns the bitext. Most of these
alignments tools are unsupervised, so that the system has

!(Melamed, 1999) is a notable exception.



to collect information from the sole bitext(s) that need to
be aligned. In decoding, aligners often make the following
assumptions: (a) alignment links lie around the bitext di-
agonal; (b) there exist limited number of link types. These
two assumptions, together with the convention that align-
ment links are monotone and associate continuous spans
warrant the use of dynamic programming (DP) techniques
to perform the search. The resulting alignment tools are of-
ten light-weight and efficient, a major requirement if one
wishes to process very large bitexts.

Despite their efficiency and good empirical performance
on many corpora, existing sentence alignment tools suffer
from a number of problems:

e probabilistic alignment models typically assume a
fixed prior distribution over link types, as well as spe-
cific choices for length distributions (e.g. Gaussian
or Poisson). However, [Wu (1994) demonstrated that
these assumptions could be inaccurate, especially for
language pairs that are not closely related;

e as shown in (Yu et al., 2012), DP-based methods of-
ten give poor results for null links, i.e. links for which
one side is empty. Among the five methods compared
in this study, only (Melamed, 1999) predicted a simi-
lar number of null links as the reference, while others
tended to miss a significant portion of them. A pos-
sible reason for this problem is the lack of a coherent
scoring mechanism which would allow to fairly com-
pare null and non-null links; this especially applies to
methods using lexical clues;

e probabilistic alignment models rely on local features,
and ignore contextual evidences. It might be beneficial
to explore structural dependencies in the training;

o the limitation on link types is also overly restrictive.
Six main link types are used in most studies: 0:1, 1:0,
1:1,2:1, 1:2, 2:2, and it is a fact that these types
rassemble a large majority of links for most text gen-
res. | Xu et al. (2015) however report that, in a refer-
ence corpus composed of partial sentence alignments
for seven literary bitexts, the other types account for
approximately 5% of the total number of links, a non-
negligible portion for full-text alignment tasks. Be-
sides, such intrinsic model errors can propagate during
the DP process.

Inspired by the model of Mujdricza-Maydt et al. (2013)), we
propose a two-dimensional CRF model for sentence align-
ment. We use a binary variable to model the existence of the
parallelism relation between one source-to-target sentence
pair, and include contextual information in our predictions.
Decoding consists of classifying each variable as negative
or positive. Furthermore, the model structure is richer than
that of Mujdricza-Maydt et al. (2013) and includes an ex-
plicit representation of null links.

%1f a group of sentences on one side has no correspondence on
the other side, they form a null link.

3. The 2D CRF Model
3.1. The model

Given a sequence of source language sentences Ei =
Ei,..,Er and a sequence of target sentences Fy =
.. F JE] we propose a 2D CRF model to predict the
presence of link between any pair of sentences [E;; F}],
where 1 < ¢ < I,1 < j < J. Note that similar mod-
els have also been developed for sub-sentential alignments
(Niehues and Vogel, 2008; |Cromieres and Kurohashi, 2009;
Burkett and Klein, 2012). Each pair [E;; F;| gives rise to
a binary variable y; ;, whose value is 1 (positive) if E; is
aligned to F};, and 0 (negative) otherwise. For the sequence
pair E{ and FY, there are I x J such variables, collec-
tively denoted as y. Dependencies between links are mod-
eled as follows. For each pair [E;; F}], we assume that the
associated variable y; ; depends on y;_1 j, ¥i+1,5, ¥ij—1
Yij+1, Yi—1,j—1 and y; 41 ;1. In other words, it depends
on the presence of links [Eifl; Fj], [EiJrl; Fj], [EZ, ijl]’
[Ei; Fj+1], [Eifl; ijl] and [Ei+1§ Fj+1]. Figure E] dis-
plays a graphical representation of the model.

Fl FQ Fd F4

FEy ) O Eq
EQ E‘Z
Es O—0O Es

Iy ) Iy Iy

Figure 1: The 2D CRF model, for a bitext of 3 source
FEy — E5 and 4 target sentences F} — Fjy.

The topology of our model differs from the proposal of
Mujdricza-Maydt et al. (2013)), where each diagonal of the
alignment matrix was modeled as a linear chain CRF. This
topology captured the important diagonal direction depen-
dency, but did not encode the horizontal or vertical depen-
dencies. Another important difference lies on the genera-
tion of final outputs. Mujdricza-Maydt et al. (2013) vari-
able labels to encode the corresponding link type (e.g. 1:1,
2:1). Note that this encoding makes it impossible to include
all link types, and has also a bearing on the computational
cost, since the inference complexity of a linear chain CRF is
quadratic in the number of labels. As a result, these authors
only considered 6 link types (1:1, 1:2, 2:1, 1:3, 3:1, F) In
our model, all prediction variables are binary. We generate
final links using the transitive closure operation according
to sentence alignment conventions, which can theoretically
lead to any possible link type. For instance, an all zero-
valued ;" column indicates an unaligned target sentence
Fy; ify, 4 is the only positive value in the p** row and ¢'"

*Note we are referring languages as source and target only for
convenience. Thus, source does not necessary indicate the origi-
nal language of the bitext, nor does target indicate the translation
language.

*F stands for all other link types or unaligned sentences.



column, then there is a 1:1 link [E,; F], etc. In fact, the
model can express finer correspondences than conventional
alignment link representations. For example, if both F,,_
and F, are aligned to F,,_1, F, is further aligned to F;,
our formalism can represent exactly the relation, while the
alignment link representation would contain a coarser 2:2
link [E,_1, Ey; Fy1, Fy).

We use two kinds of clique potentials in our model: node
potentials and edge potentials. We impose that all sin-
gle node cliques use the same clique template, i.e. they
share the same set of feature functions and corresponding
weights. For edge potentials, we use distinct clique tem-
plates for vertical, horizontal and diagonal edges. One main
limitation of this model is that it does not include long dis-
tance dependencies, which makes it difficult to encode cer-
tain types of constraints (e.g. that alignment links should
not cross). The model for a pair of sentence sequences
[E; F] (as a shorthand for [EY; F}]) can be written as:

1

p(Y|E?F) = m H(bn(yV)(bU(YV>q)h(yl/)q)d(YV)

where v € {(i,7) : 1 < i < I,1 < j < J}, D,(yy)
stands for the single node potential at v, ®,(y, ) represents
the potential on the vertical edge connecting » and the node

just below it:
1 if
D, (yij Yigr,j) if

1=1

Vjvq)v(yiﬂ'):{ 1<i<]

®;(y,) (the horizontal potential) and ®4(y,) (the di-
agonal potential) are defined similarly. Z(E,F) =
>y 1L @n(y))@u(y,)®n(y;)Pa(y,) is the normaliza-
tion factor (the partition function) of the CRF. All poten-
tials take the generic form of a log-linear combination of
feature functions:

P, (y,) = exp{oTFl,(yl,)},

where F',, and 0 are the feature and weight vectors. We also
use ¢? regularization with scaling parameter @ > OE]

3.2. Learning the 2D CRF model

The conventional learning criteria for CRF is the Maximum
Likelihood Estimation (MLE). For a set of fully observed
training instances A = {(E®), F(*) y(*))} MLE consists
of maximizing the log-likelihood of the training set with re-
spect to model parameters © = {8, a’}. The log-likelihood
is concave with respect to the weight vector, which warrants
the use of convex optimization techniques to obtain param-
eter estimates. In order to do this, we need the gradient of
the likelihood function with respect to the weight vector.

Computing the gradients requires two  kinds
of marginal probabilities: single node
marginals  p(y;,;|E®), F(®)) and edge marginals

p(Yi,jaYi+1,j|E(S§aF(S)), P(Yij Vi | E®, FE),
and p(yi7j,y,;+17j+1|E(S),F(S)). We need to perform
inference to compute these marginals. Since the topology
of our model contains loops, we use the Loopy Belief

3In the experiments, « is tuned on a development set, and takes
the value 0.1.

Propagation (LBP) inference algorithm. Even though LBP
is an approximate inference algorithm with no convergence
guarantee, Murphy et al. (1999) observe that it often gives
reasonable estimates (assuming it converges).

For a tree-structured undirected graphical model, the mes-
sage from a node y, to a neighboring node y, takes the
following form (Wainwright and Jordan, 2008):

My (Yo) o Z P(yu) (¥, yu) H Moy (Y1)

Yu 'YGN(:U')\V

where N (i) denotes the set of neighbors of u. LBP is per-
forming such message passing procedure on a cyclic graph.
Once message passing has converged, the single node and
edge marginals (a.k.a. “beliefs”) are expressed as:

bu(yu) (08 (I)(yz/) Hm'w(yu)

YEN(v)

b;w(Y;u Yu) fb(yu)@(yy)@(yy, Y;t) H méu()’u) H m'yu(yu)

SEN(p)\v YEN(W)\p

In practice, it is possible that LBP does not converge for
certain training instances. In this case, we simply stop it
after 100 iterations. Convex optimization routines also re-
quire to compute the log-partition function log Z(E, F), as
a part of the likelihood function. LBP approximates this
quantity with the Bethe Free Energy (Yedidia et al., 2001)).
In learning, we first train the CRF without any edge poten-
tial (thus making the model similar to the simpler MaxEnt
model), and use it to initialize the parameter vector of node
potentials. We then randomly initialize other parametersE]
and use the L-BFGS algorithm (Liu and Nocedal, 1989)
implemented in the SciPy package to perform parameter
learning, this time with all potentials.

3.3. Search in the 2D CRF model

For the 2D CRF model, we perform the search in multiple
steps. First, we run the BMA algorithm (Moore, 2002) to
extract high-confidence 1:1 links. This algorithm first ex-
tracts reliable 1:1 sentence pairs from a bitext, using only
length information, then trains a small IBM Model 1 based
on these links, finally realigns the bitext using both length
and lexical information. It returns a set of 1:1 sentence
pairs. As reported in (Yu et al., 2012), BMA tends to obtain
a very good precision, at the expense of a less satisfactory
recall. Furthermore, BMA computes posterior probabilities
for every possible link, which are then used as confidence
scores. We filter the result links with a very high posterior
probability threshold (> 0.99999) (this threshold is much
higher than BMA’s default choice). These links segment the
entire search space into sub-blocks. For each sub-block, we
construct a 2D CRF model, and perform decoding. As ex-
act Maximum A Posteriori decoding is intractable, instead,
we run max-product LBP independently, and pick the local
best label for each node. The label assigned to a variable
Yi,jis
arg max b; ;({)
le{0,1}

%See (Sutton, 2008| 88-89) for a discussion on parameter ini-
tialization of general CRFs trained using LBP.



This procedure returns a set of sentence-level links. Since
the sizes of the sub-blocks are often small (generally
smaller than 10 x 10), decoding is very fast in practice.
Figure [2| displays an alignment prediction matrixﬂ It con-
tains four types of cells, corresponding to four types of pre-
dictions: true positive (red, with underlined score), true
negative (white, with normal score), false positive (yel-
low, with overlined score), false negative (cyan, with hatted
score). The score in each cell is the marginal probability of
the pair being positive, as computed by the CRF. A red or
yellow cell indicates a sentence-level link predicted by the
model.

Target sentence index
39 40 41 42 43 44

50. 0.01 : 0.04 : 0.01 : 0.01 : 0.65 -

51L0.00 £ 047 & 0.00 : 0.00 : 0.00 : 0.01

52}0.09 £0.00 : 0.08 : 0.00 : 0.01 : 0.01 |
5310.00 © 0.26 © 0.00 : 0.01 | 0.00 : 0.01 1
541 0.06 : 0.00

55}10.02 : 0.01

0.00 :

0.01

56 0.01 : 0.00 : 0.00 : 0.04

Source sentence index

57 | 0.00 : 0.00 : 0.00 : 0.00

581 0.00 : 0.00 : 0.00 : 0.00 : 0.00 .

59} 0.00 i 0.00 : 0.01 : 0.00 : 0.00 : 0.01 |

60} 0.11 : 0.01 : 0.04 : 0.00 : 0.01 £0.01

Figure 2: An alignment prediction matrix.

Two types of errors exist in the alignment prediction matrix:
false negatives (cyan cells with hatted scores) and false pos-
itives (yellow cells with overlined scores). We cannot easily
deal with false negatives. False positives introduce noises,
for example, the pair (50, 44) in Figure [2| (the upper right
corner). The two positive pairs (50, 39) and (50, 44) lead
to two separate links involving the same source sentence,
which violates the general convention of sentence align-
ment. In fact, the pair (50,44) is clearly wrong: it links
the first source sentence with the last target one, thus over-
lapping with all other positive sentence-level linksﬂ In our
experiments, in all sub-blocks, true positive sentence-level
links always lie around the main diagonals. We have used
the following heuristics to smooth the alignment prediction

"Note these matrices are drawn just after the CRF decoding,
before the post-processing described below.

8Note that this particular matrix was computed by an early
version of the 2D CRF model. We show it here for illustration
purpose. In later versions, the model is augmented with features
capturing the relative position information, which effectively pre-
vents this kind of errors.

matrix:

1. perform a linear regression on all predicted positive
sentence-level links, then take a band of fixed width
around the regression line, and drop positive links that
lie outside of this band ]

2. if after this step, there are still separate links involv-
ing the same sentence, we take the positive sentence-
level links in the surrounding window with width 5,
and discard the ones which are inconsistent with the
surrounding links;

3. if it is still undecidable, we perform again a linear
regression of positive sentence-level links in the sur-
rounding window, and discard the link that is farthest
away from the regression line.

In practice, step 3 was hardly performed.
Finally, to turn sentence-level links into alignment-level
links, we apply the following rules:

1. consecutive sentence-level links in the horizontal
or vertical directions are combined into a large
alignment-level link;

2. a sentence-level link without horizontal or vertical
neighbors becomes a 1:1 type alignment-level link.

These rules follow from the interpretation of our model,
where an n:m type alignment-level link decomposes into
n x m sentence-level links.

4. Experiments
4.1. Features

In the 2D CRF model, feature functions take the form
f(E{7 F1J7 1,71, 12, J2, yn,jnyw,jz)’ where EII is the
source sequence of I sentences, F the target sequence of
J sentences, (i1, j1) and (42, j2) neighboring source-target
indices, y;, ;, and y;, ;, respectively corresponding labels
(0 or 1). For each pair (E;, F;), we compute the following
set of features:

1. The length difference ratios. We first compute

_|len(E;) — len(F)| _|len(E;) — len(F;)|

= len(E;) 2= len(F})

where the len() function returns the number of charac-
ters in one string. Both r; and r5 are rounded into the
interval [0, 1], then discretized into 10 indicator fea-
tures. This family thus contains 20 features.

2. The ratio of identical tokens. Let the function token/()
return the number of tokens in a string. We count
the number of shared tokens in E; and [}, denote
the count by s, compute two ratios m and

s . . .

Token(F}) then discretize each into 10 features.

3. The relative index difference. We discretize the quan-
P

tity [ — 4| into 10 features.

The band width is taken to be half of the number of sentences
of the shorter one of the two sides.



Book

# Links | # Sent_EN | # Sent_FR

Alice’s Adventures in Wonderland 746 836 941
Candide 1,230 1,524 1,346

Vingt Mille Lieues sous les Mers 778 820 781

Voyage au Centre de la Terre 714 821 754
Total 3,468 4,001 3,822

Table 1: The training corpus of the 2D CRF model.

Book # Links | # Sent_.EN | # Sent_FR

De la Terre a la Lune (BAF) 2,520 2,554 3,319
Du Co6té de chez Swann 463 495 492
Emma 164 216 160
Jane Eyre 174 205 229
La Faute de I’ Abbe Mouret 222 226 258
Les Confessions 213 236 326
Les Travailleurs de la Mer 359 389 405
The Last of the Mohicans 197 205 232

Total of Manual en-fr 1,792 1,972 2,102

Table 2: The test corpus, made of the literary part of BAF and the manual en—fr corpus.

4. The lexical translation scores. Let token(E;) = m

and token(F;) = n, we compute the IBM Model 1
scores:

1 & 1 =

Ty(Ei Fy) = 521%(%*21?(@5\]5@%))
s=1 k=1
1 — -

To(Ei, Fy) = Ezlog(g*ZP(Eik\Fjs))
k=1 s=1

where I is the st" token of F;. The lexical trans-
lation probabilities p are computed using an IBM 1
model trained on the EN-FR Europarl corpus (Koehn,
2005). After discretizing 77 and 75, we obtain 10 fea-
tures for each alignment direction.

. The span coverage. We split a string into several
spans by segmenting on punctuations (except for the
quotation marks). For each source span span_e, we
compute the translation score T5(span_e, F;). If the
score is larger than a thresholdm we consider span_e
as being covered. We then compute the ratio of cov-
ered source spans and the ratio of covered target spans,
and discretize each into 10 features.

. The label transition. These features capture the regu-
larity of the transition of labels from one node (E;, F;)
to one of its neighbors (e.g. (E;+1, F;)). For each of
the three types of neighbors (vertical, horizontal, diag-
onal), we define four label transition features (because
our prediction variables are binary). For example, for
the vertical template, we define

goo(i,7) = 0{yi; = 0N yit1; =0}
901(1,7) = {yi; =0Ayiq1; =1}

(4, 7)
910(4,7) = 0{yij = 1 ANyis1,; = 0}
%)

911(5,J) = {yij = L Ayiz1,; = 1}

1%In our experiments, the threshold is set to log(le — 3)

where ¢ is the Kronecker delta function. We have sim-
ilar features for horizontal and diagonal transitions. In
total, this family contains 12 features.

7. The augmented length difference ratio. This family
only applies to the vertical and horizontal edge po-
tentials, under the condition that the two neighboring
pairs are both positive. In the vertical (resp. hori-
zontal) case, we combine the two consecutive source
(resp. target) sentences E;, F; 1 (resp. F}, F;11) into
one new sentence F’ (resp. F”), then apply the com-
putations carried out for feature family 1 for the pair
(E', F;) (resp. (E;, F')).

8. The augmented translation score. This family only
applies to vertical and horizontal edge potentials, un-
der the condition that the two neighboring pairs are
both positive. We construct E’ (resp. F') as in
the previous feature family. We then compute the
augmented translation score T’ (E’, F;) — T\ (E;, F;)
(resp. Ty(E;, F') — Tx(E;, F;)). The intuition is that
a longer partial translation is better than a shorter one.
Each score is discretized into 10 features.

Note feature families 6, 7 and 8 are computed only when
possible. Feature families 5, 7 and 8 are new in our model.
Others have been used in previous methods, for instance,
(Munteanu and Marcu, 2005; Yu et al., 2012; [Tillmann and
Hewavitharana, 2013} Mujdricza-Maydt et al., 2013).

4.2. Learning corpus

The training of the 2D CRF model requires reference align-
ments. We have used the reference sentence alignments
collected for an ongoing proj ectEr] The training corpus con-
tains alignment links of four books: “Alice’s Adventures
in Wonderland” (L. Carroll), “Candide” (Voltaire), “Vingt

See http://transread.limsi.fr, where most tex-
tual resources can be downloaded.
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Sentence level F-score
GMA | BMA | Hunalign | Garg | Yasa | MaxEnt | CRF
De la Terre a la Lune (BAF) 72.9 71.3 81.9 77.3 | 86.2 76.6 84.0
Du C6té de chez Swann 95.4 88.9 89.4 95.0 | 95.2 96.0 94.3
Emma 73.8 52.1 62.8 61.2 | 73.8 71.2 69.4
Jane Eyre 88.0 54.6 59.4 842 | 82.5 88.0 77.2
La Faute de I’ Abbé Mouret 94.8 83.8 82.8 98.7 | 97.7 98.9 90.8
Les Confessions 82.8 49.9 48.5 80.5 | 82.8 86.1 76.6
Les Travailleurs de la Mer 87.8 79.6 78.8 91.5 | 904 91.9 89.1
The Last of the Mohicans 94.9 76.0 77.0 95.6 | 94.5 95.0 91.1
Average onmanual en—fr | 88.2 69.3 71.2 86.7 | 88.1 89.6 84.1

Table 3: Sentence level F-scores of the 2D CRF method on the test corpus, compared with state-of-the-art methods.

BMA MaxEnt CRF

P R F P R F P R F
De la Terre a la Lune (BAF) | 97.2 | 64.1 | 77.3 || 72.0 | 81.8 | 76.6 || 95.5 | 74.9 | 84.0
Du Coté de chez Swann 99.5 | 80.3 | 889 || 97.1 | 94.9 | 96.0 || 96.3 | 92.5 | 94.3
Emma 89.8 | 36.7 | 52.1 || 62.8 | 82.3 | 71.2 || 76.1 | 63.7 | 69.4
Jane Eyre 93.7 | 385 | 54.6 || 86.7 | 89.3 | 88.0 || 86.6 | 69.6 | 77.2
La Faute de I’Abbé Mouret | 99.5 | 72.3 | 83.8 || 989 | 989 | 98.9 || 98.2 | 84.5 | 90.8
Les Confessions 98.4 | 334|499 || 89.3 | 83.2 | 86.1 || 92.6 | 654 | 76.6
Les Travailleurs de la Mer 97.7 | 67.2 | 79.6 || 90.8 | 93.0 | 91.9 || 97.1 | 82.2 | 89.1
The Last of the Mohicans 98.7 | 61.8 | 76.0 || 94.2 | 95.8 | 95.0 || 97.1 | 85.7 | 91.1
Average onmanual en—-fr | 96.8 | 55.7 | 69.3 || 88.5 | 91.1 | 89.6 || 92.0 | 77.7 | 84.1

Table 4: The comparison of BMA, MaxEnt and the 2D CRF model, using sentence-level measures. P stands for Precision,

R is Recall, and F is F-score.

Mille Lieues sous les Mers”, and “Voyage au Centre de la
Terre” (both by J. Verne). Table|l|displays the statistics of
the training corpus.

We have to convert the training corpus into a training set.
A training instance is a fully observed sentence-level align-
ment matrix. In order to make train conditions as close
as possible to test conditions, each fully aligned book was
segmented into sub-blocks, again using high confidence 1:1
links computed by BMA as anchor points. Each sub-block,
annotated with reference alignments, is then turned into one
training instance. This strategy has the additional benefit
to greatly reduce the total number of prediction variables,
hence make the training less memory consuming. Besides,
the training can enjoy better parallelization. There is poten-
tially another advantage of using smaller training instances.
Since our model contains one predictive variable for each
pair of source-target sentences, there are roughly quadrat-
ically many negative examples, and linearly many positive
ones. This data unbalance problem becomes more severe
as the size of the prediction matrix grows larger. Using
smaller training instances helps alleviate this problem.
Using this strategy, we obtain 450 fully observed alignment
matrices. We use 360 for the training set, 90 as the devel-
opment set. Among the 7,095 labeled sentence pairs, ap-
proximately 77% are negative.

For the test, we use the fully aligned novel “De la Terre a la
Lune” in the BAF corpus and the manual en-fr corpus
composed of 7 partial alignments of literary bitexts. Table[2]
gives the statistics of the test corpus. Recall our first step is
to use filtered results of BMA as anchor points to segment

the search space. With the filtering threshold 0.99999, the
anchor point precision is 0.89 on “De la Terre a la Lune”,
and 0.96 on the manual en-fr corpus.

4.3. Results

We evaluate alignment results at two levels of granularity:
the alignment level and the sentence level. At the alignment
level, a link in the output alignment is considered correct if
exact the same link is also in the reference alignment. At
the sentence level, we decompose a m:n type link in the
reference alignment into m X n sentence pairs, all consid-
ered as correct. The same decomposition applies to com-
puted links. We summarize precision and recall ratios into
F-scores.

Since the 2D CRF model is intrinsically trained to opti-
mize sentence-level metrics, we first look at its sentence-
level performance, summarized in Table E} For the sake of
comparison, we also display the performance of six other
state-of-the-art aligners: GMA (Melamed, 1999), BMA,
Hunalign (Varga et al., 2005), Garg (as shorthand for Gar-
gantua) (Braune and Fraser, 2010), Yasa (Lamraoui and
Langlais, 2013)), MaxEnt (Xu et al., 2015)). The CRF model
achieves great improvements over BMA and Hunalign. Its
average score on the manual en-fr corpus is slightly in-
ferior to other systems, but it obtains the second best F-
measure on the large bi-text “De la Terre a la Lune”. We
note that Yasa, perhaps the most lightweight tool, is very
robust with respect to the sentence-level measure.

The first decoding step of both MaxEnt and CRF uses a
subset of BMA'’s results as anchors to segment the bi-text



space. Table ] compares in more detail the performance
of these three methods. (Yu et al., 2012; [Lamraoui and
Langlais, 2013)) have reported that BMA usually delivers
very high precision 1:1 links. We observe the 2D CRF
model preserves a high sentence level precision, and greatly
increases the recall. Thus, the 2D CRF model manages to
extract true positive sentence pairs from the gaps defined
by BMA’s links with a very high accuracy. The behav-
ior of MaxEnt varies on different corpus. On the Manual
en-fr corpus, while it slightly decreases the precision, it
obtains the best recall, leading to the best overall perfor-
mance. However, on “De la Terre a la Lune”, its precision
is too low compared to BMA and CREF, thus its F-score is
worse.

Alignment level F-score
BMA | MaxEnt | CRF
De la Terre a la Lune (BAF) 73.6 66.5 73.3

Du Coté de chez Swann 91.5 93.3 90.9

Emma 57.4 51.0 55.4

Jane Eyre 61.1 78.9 63.2

La Faute de I’ Abbé Mouret 88.4 98.0 82.8
Les Confessions 59.6 74.0 58.1

Les Travailleurs de la Mer 834 85.3 83.0
The Last of the Mohicans 82.7 90.1 84.3
Average on manual en-fr | 74.9 81.5 74.0

Table 5: Alignment level F-scores of the 2D CRF model,
compared with BMA and MaxEnt.

The alignment level F-scores of the CRF model are in Ta-
ble The CRF achieves comparable alignment level F-
scores to BMA on both sub-corpus. Although their average
scores on manual en-fr are worse than MaxEnt, they
outperform it considerably on those more difficult bitexts:
“De la Terre a la Lune” and “Emma”. In our opinion, this
calls for further analyses for the deployment of alignment
methods: for sentence alignment, it might be beneficial to
investigate which types of methods tend to perform well for
which types of bitexts, identify indicative characteristics (of
methods and bitexts), and deduce operational guidelinesE]
Table [] and Table [5 together show that, while the
2D CRF model obtains much higher sentence level F-
scores than BMA (approximately 15 points on average on
manual en-fr), their alignment level F-scores are ac-
tually comparable. In other words, the CRF does find
more true positive sentence pairs, but not all of them con-
tribute to form true links. Take for instance the 2:2 link
(14,15;24,25) in Figure To correctly recover this link, it
is necessary to find at least three among the four cells. Even
though the CRF finds one cell (15;25), this only yields
a wrong 1:1 link, which, for the alignment level F-score
metric, is no better than not finding any pair. While this

12We only show BMA, MaxEnt and CRF in this table, since (Xu
et al., 2015) reported MaxEnt obtained the best average alignment
F-score on the manual en-fr corpus.

BThis is in line with the views of [Deng et al. (2007) and
Lamraoui and Langlais (2013), who suggested to model sentence
alignment as part of the target application, so that it can benefit
the optimization conducted toward the task.

imbalance between the alignment level and sentence level
F-scores can seem surprising, it is by no means uncommon.
In fact, this phenomenon was the reason that sentence-level
F-score was proposed as an evaluation metric for sentence
alignment in (Langlais et al., 1998)). Nonetheless, this rein-
forces our belief that the deployment strategy of alignment
methods, as well as evaluation metrics, needs further study.

4.4. Analysis

Error distribution by link type To better understand the
behavior of the 2D CRF model, we perform an error anal-
ysis of its results on the manual en—fr corpus, with re-
spect to link types. The corresponding statistics are in Ta-
ble[7] We compare CRF with the MaxEnt approach, which
gives the best average score on this corpus.

Target sentence index
22 23 24 25 26 27

0.00 0.00 © 000 © 0.00 0.00 0.00

0.00 0.00 : 000 : 0.00 0.00 0.00

0.06 0.01 0.00 : 0.00 0.00 0.00

131 0.00 0.00 © 0.00 . 030 & 000  0.00 0.00 0.00

14+ 0.00 0.00 0.00 0.00 0.03 031 : 0.04 0.00 0.00

Source sentence index

15 0.00 0.00 : 0.00 0.00 0.00

16 1 0.00 0.00 : 0.00 0.00 0.00

Figure 3: An alignment prediction matrix for a passage of
“Les Confessions”.

Compared to the MaxEnt method, CRF has a higher recall
on null and 1:1 links. Its main weakness lies in the predic-
tion of 1:n and n:1 links. After a closer study of the erro-
neous instances, we find a common pattern of error: when
predicting a m:n link with m * n > 1 (that is, a 1-to-many
or many-to-many link), the CRF often correctly labels some
sentence pairs as positive, while leaving others as negative.
Figure [3]displays an alignment prediction matrix for a pas-
sage of Jean-Jacques Rousseau’s “Les Confessions”. The
corresponding text (correctly aligned) is displayed in Ta-
ble[8]in the appendix. The CREF fails to predict the 1:2 link
(13;22,23), only labelling (13;22) as positive; nor does it
find the 2:2 link (14, 15; 24, 25).

The failures of the 2D CRF model on 1-to-many and many-
to-many links makes it necessary to study edge potentials.
One of the reasons of using a CRF model is its ability to
encode the dependencies between neighboring links, with
which we expect to better predict non 1:1 links. An obvious
direction to investigate is to add more edge features. Cur-
rent edge features (families 6, 7 and 8) are quite general.
It might be helpful to add features that encode finer level
clues to edge potentials, e.g. word alignment information.
Besides of features of edge potentials, it might also be pos-
sible to consider other alignment matrix decoding algo-
rithms. Compared to our approach, MaxEnt has the advan-
tage of directly scoring alignment-level links, rather than
doing it obliquely through sentence-level ones. This is



2D CRF MaxEnt
#Null #Null #Correct #Null #Null #Correct

(in Ref.) | (in Hyp.) (in Ref.) | (in Hyp.)
De la Terre a la Lune (BAF) 714 1,311 672 714 150 91
Du Coté de chez Swann 9 27 8 9 5 3
Emma 41 85 28 41 2 2
Jane Eyre 10 77 7 10 0 0
La Faute de I’ Abbé Mouret 2 52 2 2 1 1
Les Confessions 11 96 11 11 4 2
Les Travailleurs de la Mer 5 78 3 5 2 0
The Last of the Mohicans 12 37 3 12 2 2

Table 6: Performance of the 2D CRF model and the MaxEnt model on predicting null sentences. “#Null in Ref.” is the
number of unaligned sentences in the reference alignment; “#Null in Hyp.” is the number of unaligned sentences in the
hypothesis alignment computed by the model;“‘#Correct” is the number of correctly predicted null sentences.

Link type | in Ref. | Error MaxEnt | Error CRF
0:1 20 18 15
1:0 21 18 15
1:1 1,366 105 64
1:2 179 36 98
1:3 32 9 29
211 96 32 54
2:2 24 19 20
others 27 15 26
Total 1,765 252 321

Table 7: Analyses of the errors of the MaxEnt and the CRF
by link type, relative to the number of reference links (in
Ref.), for the manual en-fr corpus. For example, 20
0:1 links are in the reference, and MaxEnt missed 18 of
them. Only the link types occurring more than 5 times are
reported. This filters out 27 links out of 1,792.

also possible in the 2D CRF model, since LBP can readily
compute marginals over edges, or even larger factors. We
might use such marginals to improve our post-processing
routines.

Null sentences Another motivation for the 2D CRF
model is that it provides a mechanism where null and non-
null links are handled coherently. We summarize its per-
formance for null sentences in Table [f] again, comparing it
with the MaxEnt method.

Although the 2D CRF model incorrectly labels many sen-
tences as unaligned, it is indeed able to find the majority of
true null sentences, except for “The Last of the Mohicans”.
This is where our model seems to be improving, especially
when compared to MaxEnt.

5. Conclusion

In this paper, we reviewed state-of-the-art sentence align-
ment methods, identified several recurring problems, and
have accordingly proposed a two-dimensional Conditional
Random Fields model for the full text sentence alignment
task. Our model is theoretically attractive, since it avoids
several risky assumptions, computes posterior probabilities
for all sentence alignment links, thereby explicitly repre-
senting null links, and warrants structured learning of par-

allelism scores.

In the light of our experimental results and analyses, we
conclude that there is clear room of improvement for our
2D CRF model. Currently, while the model is effective at
identifying true 1:1 links with better recall than BMA’s,
its performance as measured by alignment level metric still
needs to be improved. As perspectives, we would like to
study the following improvements:

e enforce edge features: current edge features do not
seem to be strong enough to balance our rich set of
node features. Including features informed with sim-
ple word alignment information, such as fertilities and
linked regions, seems an obvious way to go;

e add node features that encode the decisions of other
systems, e.g. BMA;

e explore ways to simulate a DP process using marginals
of edges or larger factors, which might help improve
our alignment matrix decoding algorithm.

In the long term, we would like to study ways to charac-
terize tasks and alignment methods, such that it is possible
to choose adequate alignment algorithms for specific task
requirements.
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Table [] contains the text of a passage of Jean-Jacques Rousseau’s “Les Confessions”, corresponding to the alignment

Appendix

prediction matrix in Figure

enio

enii

My mother’s circumstances were more affluent; she
was daughter of a Mons.

Bernard, minister, and possessed a considerable share
of modesty and beauty; indeed, my father found some
difficulty in obtaining her hand.

Ma mere, fille du ministre Bernard, était plus riche:
elle avait de la sagesse et de la beauté.
Ce n’était pas sans peine que mon pere 1’avait obtenue.

frig

frao

eni2

The affection they entertained for each other was al-
most as early as their existence; at eight or nine years
old they walked together every evening on the banks of
the Treille, and before they were ten, could not support
the idea of separation.

Leurs amours avaient commencé presque avec leur vie;
des I’age de huit a neuf ans ils se promenaient ensem-
ble tous les soirs sur la Treille; a dix ans ils ne pou-
vaient plus se quitter.

fra1

€ni3

A natural sympathy of soul confined those sentiments
of predilection which habit at first produced; born with
minds susceptible of the most exquisite sensibility and
tenderness, it was only necessary to encounter similar
dispositions; that moment fortunately presented itself,
and each surrendered a willing heart.

La sympathie, 1’accord des ames, affermit en eux le
sentiment qu’avait produit 1’habitude.

Tous deux, nés tendres et sensibles, n’attendaient que
le moment de trouver dans un autre la méme dispo-
sition, ou plutdt ce moment les attendait eux-mémes,
et chacun d’eux jeta son coeur dans le premier qui
s’ouvrit pour le recevoir.

froo

fras3

€Nni14

€nis

The obstacles that opposed served only to give a de-
cree of vivacity to their affection, and the young lover,
not being able to obtain his mistress, was overwhelmed
with sorrow and despair.

She advised him to travel — to forget her.

Le sort, qui semblait contrarier leur passion, ne fit que
I’animer .
Le jeune amant ne pouvant obtenir sa maitresse se con-
sumait de douleur: elle lui conseilla de voyager pour
I’oublier .

froa

fras

€Nie

He consented — he travelled, but returned more pas-
sionate than ever, and had the happiness to find her
equally constant, equally tender.

Il voyagea sans fruit, et revint plus amoureux que ja-
mais.
Il retrouva celle qu’il aimait tendre et fidele.

fr25

fro7

Table 8: The correct alignment of a passage of Jean-Jacques Rousseau’s “Les Confessions”, corresponding to the alignment

prediction matrix in Figure
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