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Abstract

In multiobjective state space graph problems, each
solution-path is evaluated by a cost vector. These cost
vectors can be partially or completely ordered using
a preference relation compatible with Pareto domi-
nance. In this context, multiobjective preference-based
search (MOPBS) aims at computing the preferred fea-
sible solutions according to a predefined preference
model, these preferred solutions being a subset (pos-
sibly the entire set) of Pareto optima. Standard algo-
rithms for MOPBS perform a unidirectional search de-
veloping the search tree forward from the initial state
to a goal state. Instead, in this paper, we focus on
bidirectional search algorithms developing simultane-
ously one forward and one backward search tree. Al-
though bi-directional search has been tested in vari-
ous single objective problems, its efficiency in a mul-
tiobjective setting has never been studied. In this pa-
per, we present several implementations of bidirectional
preference-based search convenient for the multiobjec-
tive case and investigate their efficiency.

Introduction
Decision making in complex environments often requires
taking into account different point of views in the analy-
sis of preferences, thus leading to the definition of several
objectives that must be optimized simultaneously. This is
the case for instance in path-planning problems where we
want to minimize distance, travel time and cost, and find the
best tradeoffs between these objectives. This is also the case
when the costs of paths depend on different possible scenar-
ios, or different discordant sources of information. Such ex-
amples and many others are a permanent incentive to study
multiobjective extensions of general problem solving meth-
ods used in AI, either for automated decision making or for
human decision support.

Heuristic search in state space graphs is one of those do-
mains where considering multiple objectives is natural. Al-
though the standard problem involves a single objective and
consists in finding one path with minimum cost among all
solution paths from a given source node to a goal node,
the multiobjective version consists in determining the set
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of Pareto-optimal tradeoffs corresponding to those solution
paths. Recall that a solution is Pareto-optimal whenever one
cannot diminish one component of its cost vector without
increasing another one. Although standard heuristic search
algorithms such as A∗ (Hart, Nilsson, and Raphael 1968)
were initially introduced in the framework of single objec-
tive optimization, various extensions to deal with vector-
valued state space graphs have been proposed to determine
the Pareto set (see the MOA∗ algorithm and its variants in
(Stewart and White III 1991; White, Stewart, and Carraway
1992; Mandow and Pérez de la Cruz 2005)).

As Pareto dominance leaves many pairs of solutions in-
comparable, the Pareto set is often very large. For example,
one can find in (Hansen 1980) families of instances of biob-
jective shortest path problems for which the set of Pareto-
optimal feasible tradeoffs is exponential in the number of
vertices of the graph. Fortunately, there is generally no need
to consider explicitly all possible tradeoffs within the Pareto
set, because many of them do not fit to the type of compro-
mise sought. When richer information about preferences is
available, one can use a preference model to guide the search
and determine the preferred tradeoffs without a prior gener-
ation of the Pareto set. A typical example of such a multiob-
jective preference-based search (MOPBS) is given in (Car-
raway, Morin, and Moskowitz 1990; Dasgupta, Chakrabarti,
and DeSarkar 1995) where the search is directed by a mul-
tiattribute utility function. Other examples can be found
in (Perny and Spanjaard 2002; Galand and Perny 2006;
Galand and Spanjaard 2007) with various preference models
leading to various algorithmic contributions. Following this
line, in addition to Pareto dominance, we consider here finer
models such as Lorenz dominance and ordered weighted av-
erages to focus the search on those Pareto-optimal tradeoffs
achieving a fair balance between the objectives.

Beside the choice of the preference model used to direct
the search, other issues are worth investigating in MOPBS,
in particular the strategy used to develop the search. In-
deed, until now, MOA∗ and all its variants proposed for
MOPBS perform a uni-directional search developing the
search tree forward from the initial state to the goal state.
However, in the case of single-objective optimization, an
interesting alternative strategy named bi-directional search
has been proposed and investigated by several authors,
see e.g., (Pohl 1971; Kwa 1989; Kaindl and Kainz 1997;
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Felner et al. 2010). It is essentially a variant of A∗ devel-
oping simultaneously one forward and one backward search
tree, thus leading to two search trees of approximately half
height, potentially expanding exponentially less labels. Sev-
eral implementations of the bi-directional search scheme
have been proposed and tested and it is empirically estab-
lished that the bi-directional search is more efficient than
uni-directional search in a number of cases (see (Kaindl and
Kainz 1997) for a detailed analysis of the respective advan-
tages of the two approaches).

However, quite surprisingly, the potential of bi-directional
search in a multiobjective setting has never been studied.
This is precisely the aim of this paper. The paper is orga-
nized as follows: in the next section we introduce preference
models used in the paper to compare cost vectors associ-
ated to paths. Then we introduce the necessary background
on uni-directional multiobjective search and the main prob-
lems to overcome to design an admissible multiobjective bi-
directional search algorithm. Then we propose different im-
plementations of bi-directional search and provide numeri-
cal tests to assess the efficiency of this approach for various
preference models.

Preference models for MO problems
In multiobjective state space search, any admissible transi-
tion from a state to another induces a cost vector in Zp+.
Since any path in the state space graph represents a sequence
of such admissible transitions, a cost vector can be associ-
ated to each path by componentwise summation of transition
costs. Hence, any preference model defined on cost vectors
in Zp+ induces a preference over paths. Let us introduce now
the preference models used in the paper.

Pareto Dominance
We recall first some classical dominance notions used in
multiobjective optimization. The Weak-Pareto dominance
relation (WP-dominance for short) on cost vectors of Zp+ is
defined, for all x, y ∈ Zp+ by:

x %P y ⇐⇒ [∀i ∈ {1, . . . , p}, xi ≤ yi)]

The Pareto dominance relation (P-dominance for short) is
defined on Zp+ as the asymmetric part of %P :

x �P y ⇐⇒ [x %P y and not(y %P x)]

Within a setX any x is said to be P-dominated when y �P x
for some y inX , and P-optimal when there is no y inX such
that y �P x. The set of P-optimal elements in X is denoted
M(X,%P ). As Pareto dominance is a partial relation, many
Pareto-optimal solution paths may exist. In fact, the number
of Pareto-optimal vectors corresponding to solution paths
can grow exponentially with the number of states as shown
in (Hansen 1980). Its complete determination may induce
prohibitive computation times. Moreover, such a complete
enumeration is generally not necessary because some pref-
erence information may be available concerning the type of
tradeoff sought in the Pareto-set. We introduce now models
favoring the selection of well-balanced solutions.

Lorenz Dominance
To obtain well balanced solutions, one may be interested
in finding a path that “distributes” costs over components.
This idea is expressed by the transfer principle, widely used
in Mathematical Economics and Social Choice theory for
the measurement of inequalities (Marshall and Olkin 1979;
Shorrocks 1983): Let x ∈ Zp+ such that xi < xj for some
i, j. Then for all ε > 0 such that ε ≤ (xj−xi), then any vec-
tor of the form x+εei−εej is preferred to x, where ek is the
vector whose kth component equals 1, all others being null.
When combined with P-monotonicity (i.e., compatibility of
preferences with P-dominance), it becomes more powerful.
In order to characterize the preferences that are compatible
with P-dominance and transfers, we recall the definition of
generalized Lorenz vectors and generalized Lorenz domi-
nance (for more details see e.g. (Shorrocks 1983)).

The generalized Lorenz Vector associated to x ∈ Zp+ is:

L(x) = (x(1), x(1) + x(2), . . . , x(1) + x(2) + . . .+ x(p))

where x(1) ≥ x(2) ≥ . . . ≥ x(p) are the components of
x sorted by decreasing order. The generalized Lorenz domi-
nance relation (L-dominance for short) on Zp+ is defined by:

∀x, y ∈ Zp+, x %L y ⇐⇒ L(x) %P L(y)

Its asymmetric part x �L y is: L(x) �P L(y). Within
a set X , any element x is said to be L-dominated when
y �L x for some y in X , and L-optimal when there is no
y in X such that y �L x. The preferences characterized
by P-monotonocity and the transfer principle are linked to
L-dominance by a result of Chong (1976):
Theorem 1 Lorenz dominance is the minimal transitive re-
lation (with respect to inclusion) satisfying compatibility
with P-dominance and the transfer principle.
As a consequence, the set of L-optimal vectors is included
in the set of P-optimal vectors. The subset of L-optimal cost
vectors appears as a very natural solution concept in well-
balanced multi-objective optimization problems.

Ordered Weighted Averages
Ordered Weighted Averages (OWA for short) are defined,
for any cost vector x = (x1, . . . , xp) and any weighting
vector w = (w1, . . . , wp) such that Σpi=1wi = 1, by:
ψ(x) =

∑p
i=1 wix(i). Quantity ψ(x) represents an overall

cost that must be minimized. The associate preference is:

x %ψ y ⇐⇒ ψ(x) ≤ ψ(y)

It can be used for the measurement of inequalities pro-
vided weights satisfy the following inequalities: w1 > w2 >
. . . > wp > 0. By choosing a decreasing sequence of
weights, one puts indeed more weight on the least satisfied
objective, then on the second least satisfied objective and so
on... This is an extension of minmax operator, which allows
for more compensation among the objectives. More for-
mally, the idea of choosing decreasing weights to preserve
equity directly derives from the following relation linking
OWA operators and Lorenz vectors:

ψ(x) =
∑p
j=1(wj − wj+1)Lj(x)
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where wp+1 = 0. Hence, if x �L y then ψ(x) > ψ(y). As a
consequence, any cost vector xminimizing ψ over the feasi-
ble set X belongs to the set of L-optimal vectors. Moreover,
any such x is Pareto-optimal.

We will see later in the paper how preference relations
%P ,%L and %ψ introduced in this section can be used to
focus the search on the preferred solutions in multiobjective
state space search problems.

Preference-based Search for MO problems
In this section, we write a generalized framework for ex-
isting monodirectional preference-based search algorithms.
These algorithms will be generalized to bidirectional search
in a further section.

Let G = (N,A) denote a state space graph where N is
a finite set of nodes (possible states), and A is a set of arcs
representing transitions. Set A is defined by A = {(n, n′) :
n ∈ N,n′ ∈ S(n)}where S(n) ⊆ N is the set of all succes-
sors of node n. A cost vector c(n, n′) is attached to each arc
(transition) (n, n′) ∈ A. A path P is a sequence of x nodes
〈n1, n2, . . . , nx〉 such that for all i < x, (ni, ni+1) is in A.
Note that we can indifferently define path P as a sequence
of arcs 〈(n1, n2), (n2, n3), . . . , (nx−1, nx)〉. In the follow-
ing, we denote by s ∈ N the initial node in G and t ∈ N the
goal node in G, and a solution path is a path from s to t (i.e.
n1 = s and nx = t). The cost vector of a path P is defined
by c(P ) =

∑
(n,n′)∈P c(n, n

′). Let P(n, n′) be the set of
all paths from node n ∈ N to node n′ ∈ N . We say that a
path P is %-optimal if there is no path P ′ such that P ′ � P .
We denote by M(P(n, n′),%) the set of %-optimal paths
from n to n′. The Multiobjective Preference-Based Search
(MOPBS) problem can be stated as follows.
MOPBS PROBLEM. Given a preference relation %, a state
space graph G(N,A), and two nodes s ∈ N and t ∈ N ,
one wants to determine one path per equivalence class in the
quotient setM(P(s, t),%)/∼.
This latter set is called a complete set of optimal paths
in the following. Furthermore, we assume that the set
M(P(s, t),%) is not empty. Note that even if the number
of states is polynomially bounded, the MOPBS problem is
NP-hard in the general case, for %∈ {%P ,%L,%ψ} (e.g.
(Perny and Spanjaard 2003)).

Example. In Figure 1, the %-optimal solutions for %∈
{%P ,%L,%ψ} (w = (3, 1) in %ψ) are indicated by stars.

solution P-vector L-vector ψ
〈s, 1, 3, t〉 (40, 28) (40, 68) 37.00
〈s, 1, 4, t〉 (35, 22)∗ (35, 57)∗ 31.75
〈s, 2, 3, t〉 (22, 36)∗ (36, 58) 32.50
〈s, 2, 4, t〉 (31, 28)∗ (31, 59)∗ 30.25∗

Figure 1: An MOPBS instance.

Algorithm PBMOA∗. We now present algorithm
PBMOA∗ (“PB” stands for “Preference-based”) which
determines a complete set of optimal paths for any
P-monotonic preference relation %. This algorithm
summarizes several contributions on multiobjec-
tive heuristic search (Stewart and White III 1991;
Mandow and Pérez de la Cruz 2005; Galand and Perny 2006;
Machuca et al. 2010) and on preference-based
search (White, Stewart, and Carraway 1992;
Perny and Spanjaard 2002). In algorithm PBMOA∗, to
any path P from s is associated a label ` = [n`, g`, P ]
where n` is the terminal node of P and g` is the cost vector
c(P ). Note that we denote by P ` the path associated to label
`, and we denote by 〈P, n〉 the path obtained from path P
(from s to n′) by adding arc (n′, n) to P . In a multiobjective
setting, several paths from s to a node n can be Pareto
optimal (which is a necessary condition for a path to lead to
an optimal solution path with respect to any P-monotonic
preference relation). Thus at any node n is attached a set
of labels L(n) that corresponds to a set of current best
known paths from s to n.The set of labels L(n) is divided
into two disjoint subsets: the set T (n) of temporary labels
(not yet expanded) and the set P(n) of permanent labels
(already expanded). The temporary labels corresponds to
temporarily-optimal paths. These labels have then to be ex-
panded. The set O (resp. C) is the set of open (resp. closed)
labels over all the nodes during the search, it is defined by
O =

⋃
n∈N T (n) (resp. C =

⋃
n∈N P(n)). Finally, the

set M contains the currently %-optimal solution-paths that
have been found and may be improved.

In order to limit the expansion of paths leading to non-
optimal solution paths, two discarding rules are used in
PBMOA∗: a global discarding rule and a local discarding
rule. The global discarding rule checks whether all solution
paths one can obtain from a detected path P are not better
than an already detected solution path. As in the scalar case,
this test can be strenghtened by using a heuristic evaluation
of the costs of optimal solution paths one can obtain from a
path. The heuristic evaluation is given by a set of cost vec-
tors H(n) on a node n which estimate the cost of any op-
timal path from n to t with respect to %. A multiobjective
heuristic H(n) on a node n is said to be optimistic with re-
spect to % if for all paths P inM(P(n, t),%), there exists
a cost vector h ∈ H(n) such that h % c(P ). The algorithm
PBMOA∗ is admissible when heuristic H is optimistic with
respect to %P . For any label `, the global discarding rule is:
GLOBAL-DIS%(M, `): returns true if for all h ∈ H(n`),
there exists `′ ∈M such that g`

′
% g` + h; otherwise false.

The local discarding rule checks whether a path P from s
to n is dominated by another already detected path from
s to n. As in the scalar case, in the Pareto dominance
case a label ` can be discarded if there exists another la-
bel `′ ∈ L(n`) for which P `

′
%P P ` (by principle

of optimality). The validity of this principle (“Bellman’s
principle”) indeed follows from the monotonicity assump-
tion (Mitten 1964), that is, for any paths P, P ′ at node
n, P % P ′ ⇒ 〈P, n′〉 % 〈P ′, n′〉 for all successors n′
of n. However, depending on the preference model used,
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this assumption does not necessarily hold. In particular, it
does not hold for %L and %ψ (Perny and Spanjaard 2003;
Galand and Spanjaard 2007). Nevertheless, one can resort to
a local preference relation %′ such that 1) the monotonicity
assumption holds for %′, and 2) P %′ P ′ ⇒ P % P ′ (weak
principle of optimality (Carraway, Morin, and Moskowitz
1990)). For example, for any P-monotonic preference rela-
tion (this is the case of %L and %ψ), one can set %′=%P .
Note that more refined local preference relation can be used
for %ψ (Galand, Lesca, and Perny 2013). For any label ` the
local discarding rule is then defined by:
LOCAL-DIS%′(L(n`), `): returns true if there exists `′ ∈
L(n`) such that g`

′
%′ g`; and false otherwise.

Pseudo-code. The pseudo-code of algorithm PBMOA∗ is
given in Algorithm 1. Furthermore, in all what follows, we
setH(n) = {(hI1(n, t), . . . , hIp(n, t))}, where hIi (n, t) is the
value of an optimal single objective shortest path from n to t
according to objective i. This so-called ideal-point heuristic
is obviously optimistic, and easy to compute (in most cases).
We assume that the data structures for the sets {L(n) =
T (n) ∪ P(n)}n∈N , O =

⋃
n∈N T (n), C =

⋃
n∈N P(n)

and M are created when needed. A major distinction with
the scalar version is that one cannot detect the termination
of the algorithm by closing the goal node. Finally, the oper-
ation update consists in inserting the new label `′ in T (n′)
(and O) while discarding any label ` in T (n′) (and O) such
that g` is dominated by g`

′
w.r.t. the local preference relation

%′. In the same way, it inserts `′ in M but with respect to %.
Implementation. In this work, we apply PBMOA∗for %∈
{%P ,%L,%ψ} as witness experiments. Whatever the def-
inition of %, we set %′=%P as the local preference rela-
tion. A way to trigger the termination of the algorithm is to
empty set O. However, due to the potentially high cardinal-
ity of O, this condition is not satisfactory from the compu-
tational viewpoint. Another –more efficient– way to trigger
the termination of the algorithm is to compare a lower bound
(describing optimistically what could be developped further
from O) to an upper bound (describing what is already %-
dominated by the solution paths found). For %=%P , this
termination condition amounts to comparing bounding sets,
which is highly computation times consuming as soon as we
have more than two objectives (Sourd and Spanjaard 2008;
Przybylski, Gandibleux, and Ehrgott 2010). However for
%=%ψ and %=%L, one can resort to easily computable
scalar linear bounds.

Given a label ` and its solution-path P `, the up-
per bound UB%(`) is defined for %L and %ψ as follows:
UB%ψ (`) = p · ψ(g`) and UB%L(`) = p ·maxi g

`
i ,

where p is the number of objectives. Given a set of already
detected solution paths M , we define UB%(M) as
min`∈M{UB%(`)}. It upper bounds

∑
i ci(P ) for any

further solution path P . For %L and labels `, `′, one can
prove that UB%L(`) ≤

∑
i ci(P

`′) implies ` %L `′.
For any label `, a scalar linear lower bound on Σici(P )

for any extension P of P ` to the goal node is: LBΣf (`) =∑
i g
`
i +hIi (n

`) (where xi denotes the ith component of vec-
tor x). We define min{LBΣf (`) : ` ∈ O} as LBΣf (O).

By the use of an appropriate heap structure, a label `top
such that LBΣf (`top) = LBΣf (O) can be accessed in con-
stant time through topΣf (O). By monotonicity of

∑
i h

I
i (in

the single objective heuristic standard sense), LBΣf (O) is
a lower bound over Σici(P ) for any solution path P that
could be discovered later. For %ψ , one can prove that when
w1 > w2 > . . . > wp > 0 and

∑
i wi = 1, we have∑

i xi ≤ pψw(x).
Consequently, for % in {%ψ,%L}, the algorithm can be

safely terminated when UB%(M) < LBΣf (O).

Algorithm 1: MOPBS: unidirectional PBMOA∗

Input: State Space Graph G, starting node s, terminal
node t, global preference relation %, local
preference relation %′

1. INITIALIZATION
insert label [s,~0, 〈s〉] into T (s) and O
2. CHECK TERMINATION
if O = ∅ or LBΣf (O) > UB%(M) then

return M
3. LABEL EXPANSION
`← topΣf (O)

for each node n′ ∈ S(n`) do
create `′ = [n′, g` + c(n`, n′), 〈P `, n′〉]
if LOCAL-DIS%′(L(n`

′
), `′) then discard `′else

if GLOBAL-DIS%(M, `′) then discard `′else
update T (n′) (thus O) with `′
if n = t then update M with `′

move ` from T (n`) (thus O) to P(n`) (thus C)
Go to 2

This algorithm performs a unidirectional search. We now
study how to adapt this algorithm to bidirectional search.

Towards a bidirectional multiobjective search
We now recall the main features of single-objective bidirec-
tional heuristic search, and we identify the difficulties raised
by its extension to a multiobjective setting. An informed uni-
directional search expands like a cone, and the number of
examined nodes exponentially increases with the height of
that cone. Bidirectional heuristic search performs simulta-
neously two unidirectional searches, in opposite directions,
one from s to t (forward search), and the other from t to s
(backward search). A new solution-path is found, each time
the searches meet on a node. It might be less demanding to
expand two cones of height H/2 than one single cone of
heightH, shedding interest to bidirectional search.

In the single-objective setting, there are no labels but only
nodes. As far as bidirectional search is concerned, let us
denote by d ∈ {., /} the direction (forward or backward)
and gd the associate cost function defined on N (such that
g.(n) = g(s, n) and g/(n) = g(n, t)), and O. (resp.
O/) the set of open nodes in the forward (resp. backward)
search. Assuming that c(n,m) = c(m,n), the algorithm
typically alternates between steps of the forward and back-
ward searches, by expanding a node in Od. To this end, it
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employs two heuristic evaluation functions h.(n) = h(n, t)
(forward evaluation) and h/(n) = h(s, n) (backward evalu-
ation) that are optimistic estimates of the cost of an optimal
path from n to t and from s to n respectively. We then define
fd(n) = gd(n)+hd(n). When both searches meet at a node
n, a solution-path is detected, with cost g.(n)+g/(n). How-
ever such a solution-path is not necessarily an optimal one,
and the search is therefore not terminated. Let us denote by
µ the single value of the best single-objective solution-path
found so far. The phase before a meeting point appears is
called the main phase, and the phase after a meeting point is
encountered is called the post-phase.

If h ≡ 0, the A∗ algorithm is nothing but Dijkstra’s algo-
rithm, bidirectional A∗ is the bidirectional variant of Dijk-
stra’s algorithm, and LBgd(Od) = min{gd(n) : n ∈ Od} is
a lower bound for all further labels from Od, for d ∈ {., /}.
Hence, further meetings can only have a cost higher than
LBg.(O.) + LBg/(O/). A termination condition is then
for the two searches to have a common closed node, and
the shortest path is the best path found so far (that does not
necessarily pass through the common closed node). This ter-
mination condition clearly enables a short post-phase, and
the bidirectional variant of Dijkstra’s algorithm proved to
outperform the unidirectional variant for a point-to-point re-
quest (searching for a path from s to t). However, if a heuris-
tic function is known, the A∗ algorithm uses the priority
fd = gd + hd to decide which node to expand next, and
the addition of LBg.+h.(O.) and LBg/+h/(O/) loses its
meaning, because of the two incompatible heuristics.

The key issues in implementing a bidirectional heuristic
search is (1) to design an efficient termination condition, and
(2) to avoid that the two searches overlap by avoiding nodes
to be examined twice (once for each direction).

Stopping criteria (single-objective case). The first pro-
posed algorithm for single-objective bidirectional heuristic
search was BHPA (Pohl 1971), but the termination condi-
tion used (fronts-to-ends) did not enable a short post-phase.
On the opposite, the more precise front-to-front evaluations
are very time-consuming. Consequently, it was believed for
a while that bidirectional search was not compatible with
an informed search because one was not able to conciliate
the use of an efficient termination condition and a heuristic
guidance of which node to expand next. However, Ikeda et
al. (1994) were able to reconcile both aspects. Let us recall
that when heuristics are monotonic, A∗ is equivalent to run-
ning Dijkstra’s algorithm over the modified costs c(n,m) =
c(n,m)+h(m)−h(n). By resorting to a balanced heuristic
function, that is, h.(n) + h/(n) equals a constant value c
for any node n, the modified costs c.(n,m) = c(n,m) +
h.(m)− h.(n) and c/(m,n) = c(m,n) + h/(n)− h/(m)
in the forward and backward searches become consistent.
Therefore, we can retrieve the meaning of the addition of
LBg.+h.(O.) and LBg/+h/(O/) by seeing it through the
modified costs, and the termination condition of the bidi-
rectional variant of Dijkstra’s algorithm can therefore be re-
covered. It has been shown that this termination condition is
equivalent to µ ≤ LBg.+h.(O.) + LBg/+h/(O/)− c.

Disabling intersections (single-objective case). The
post-phase can also be shortened by using techniques such

as nipping. In a forward (resp. backward) expansion, if a new
node n is closed in the backward (resp. forward) search, then
µ is updated, but n should neither be extended, nor put inO.
(resp. O/). Indeed, the optimal path from n to t (resp. s to
n) is already known, since n is closed in the reverse search.

A first bidirectional multiobjective search algorithm.
We now extend Algorithm 1 to bidirectional multiobjective
preference-based search. Algorithm 2 performs simultane-
ously a forward PBMOA∗and a backward one. Given a di-
rection d, we denote by d̄ the opposite direction. The opera-
tor 〈P, ·〉 is extended to append nodes in the two directions
and also to append opposite paths. When the two searches
meet, new solution-paths are found and the setM is updated.
We assume that the data structures for {L(n)d = T (n)d ∪
P(n)d}n∈N , Od =

⋃
n∈N T d(n) and Cd =

⋃
n∈N Pd(n)

for d ∈ {., /}, and M are created when needed.

Algorithm 2: MOPBS: bidirectional PBMOA∗

Input: State Space Graph G, starting node s, terminal
node t, global preference relation %, local
preference relation %′

1. INITIALIZATION
insert label [s,~0, 〈s〉] into T .(s) and O.
insert label [t,~0, 〈t〉] into T /(t) and O/

2. CHECK TERMINATION
if O. = ∅ or LBΣf.(O.) > UB%(M)

or O/ = ∅ or LBΣf/(O/) > UB%(M)
or “stopping criterion” then

return M
3. DIRECTION AND LABEL SELECTIONS
d← argmind∈{.,/}{|Od|}
`← topΣfd(Od)
4. COUPLING
C ←

⋃
`′∈Ld̄(n`){[t, gd,` + gd̄,`

′
, 〈P `, P `′〉]}

update M with C
5. LABEL EXPANSION
for each node n′ ∈ Sd(n`) do

create `′ = [n′, gd,` + c(n`, n′), 〈P `, n′〉]
if LOCAL-DIS%′(Ld(n`′), `′) then discard `′else
if GLOBAL-DIS%(M, `′) then discard `′else

update T d(n′) (thus Od) with `′

move ` from T d(n`) (thus Od) to Pd(n`) (thus Cd)
Go to 2

Algorithm 2 written this way implements a fronts-to-ends
stopping criterion. As in BHPA, it induces a so long post-
phase that this algorithm unefficient compared to unidirec-
tional search. The cartesian front-to-front stopping criterion
that builds O. × O/, is also time-prohibitive. For this rea-
son, it is worth investigating how to implement the “stop-
ping criterion” at step 2.

In the next sections, we show how to adapt the balanced
heuristic functions, to the preference-based multiobjective
case; then we propose a variant of PBMOA∗allowing to im-
plement nipping in a %=%P setting.
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Stopping criteria in bidirectional PBMOA∗

In this section we design efficient stopping criteria for bidi-
rectional PBMOA∗. They rely on comparisons of a scalar
upper bound and a scalar lower bound. According to the
definition of %∈ {%L,%ψ}, the upper bound UB%(M) is
defined as in previous section.

The main difficulty is to conciliate the use of a heuristic,
and an efficient meaningful lower bound. If H. ≡ H/ ≡
{(0, . . . , 0)}, then Algorithm 2 is a bidirectional multiobjec-
tive Dijkstra. Recall that LBΣgd(Od) is such that: for all la-
bels ` in Od, for all solution-paths P obtained by extending
P ` to the proper goal in the proper direction, LBΣgd(Od) ≤∑
i ci(P ) (where ci(P ) denotes the ith component of c(P )).

By the use of appropriate heaps, we can then access the
scalar linear lower bounds LBΣg.(O.) and LBΣg/(O/)
in constant time. Further label-couplings are linearly lower
bounded by the scalar LBΣg.(O.) + LBΣg/(O/). We can
then use LBΣg.(O.)+LBΣg/(O/) > UB%(M) as a stop-
ping criterion for this Dijkstra version of Algorithm 2.

We now focus on using the ideal point heuristics:
h.,I(n) = (hI1(n, t), . . . , hIp(n, t)) and h/,I(n) =

(hI1(s, n), . . . , hIp(s, n)), where hIi (n, n
′) is the value of

an optimal single objective shortest path from n to n′

according to objective i. We recall that the addition of
LBΣg.+h.,I (O.) and LBΣg/+h/,I (O/) loses its meaning,
because of the two incompatible heuristics.

Similarly to the single objective case, for h ≡ hI ,
PBMOA∗is equivalent to multiobjective Dijkstra over the
modified cost-vectors c(n,m) = c(n,m) +hI(m)−hI(n).
Then for a direction d ∈ {., /} and a d-label `, the mod-
ified cost-vector cd(P `) is gd,` + hd,I(nl) − −→I , where
−→
I = hI(s, t). By resorting to a balanced heuristic vector,
here h.(n) +h/(n) =

−→
I for any node n, the modified cost-

vectors in both searches become consistent. Let us define,
for d ∈ {., /}, such multiobjective vector-valued balanced
heuristics hd,J (recall that d̄ is the opposite direction):

hd,J(n) =
1

2
(hd,I(n)− hd̄,I(n)) +

1

2

−→
I

Moreover, those hd,J heuristics are optimistic (thus admis-
sible) and monotonic (with respect to summation). As usual,
we will denote by fd,J = gd + hd,J the corresponding
evaluations. From consistency, by denoting LBΣf.,J (O.)
and LBΣf/,J (O/) the scalar linear minima of O. and O/,
with respect to fd,J , we can write a scalar linear lower
bound for the modified costs of all further label-couplings:
(LBΣf.,J (O.)−Σi

−→
Ii )+(LBΣf/,J (O/)−Σi

−→
Ii ). It can be

written to lower bound the non-modified costs of all further
solutions P : LBΣf.,J +LBΣf/,J (O/)−Σi

−→
Ii ≤

∑
i ci(P ).

We can therefore recover this stopping criterion:

UB%(M) < LBΣf.,J (O.) + LBΣf/,J (O/)− Σi
−→
Ii

Its efficiency for %∈ {%ψ,%L} compared to unidirectional
PBMOA∗, is attested in section “Numerical experiments”.

Enabling Nipping in bidirectional PBMOA∗

In single objective bidirectional search, if a node n is se-
lected for expansion and is already closed in the opposite

search direction, nipping consists in closing it without ex-
pansion. It disables significantly the overlaping of the two
searches. W.lo.g., assume that node n is selected for expan-
sion in the forward search while it is already closed in the
backward search. Nipping is made possible because we al-
ready know the value of the optimal path from n to t. In or-
der to extend this technique to the multiobjective case, and
to dispense with the forward expansion of a label at node n,
we need to know all Pareto optimal paths (more precisely,
all images in the objective space) from n to t. Consequently,
we propose here a variant of (unidirectional) multiobjective
search where each iteration selects a nodes and aims at com-
puting all pareto-optimal paths to this node being “devel-
oped”. In PBMOA∗, the presence of closed labels at node
n in the backward search means that we know some Pareto-
optimal paths from n to t, but we are not certain to know
all Pareto optimal path from n to t. Our definition of node
developments is the following: developing a node n in our
variant can be seen as setting n as a temporary goal node.

For simplicity, we present this Algorithm 3 in an uni-
directional and %=%P framework. We assume that the
data structures for {L(n) = T (n) ∪ P(n)}n∈N , O =⋃
n∈N T (n), and C =

⋃
n∈N P(n), are created when

needed. The set L(t) fulfills the role of M . The set K de-
notes the set of closed nodes. The temporary open labels
O(n) are ordered with respect to Σigi(.) + hi(., n). The op-
eration SELECT-LABELS(O, n) selects from O the labels `
such that g` + h(n`, n) is not P-dominated by any label of
L(n). Primitive TEMP-DIS%P (L(n`), `) returns true if there
exists `′ ∈ L(n`) such that g`

′
%P g` + h`; otherwise false.

Algorithm 3: unidirectional node-PBMOA∗

Input: State Space Graph G,
starting node s, terminal node t

1. INITIALIZATION
insert label [s,~0, 〈s〉] into T (s) and O
2. CHECK TERMINATION
if O = ∅ or t ∈ K then return L(t)
3. NODE SELECTION
n← topΣf (O)

O(n) ←SELECT-LABELS(O, n)
4. CHECK NODE TERMINATION
if O(n) = ∅ then K ← K ∪ {n} and Go to 2
5. LABEL EXPANSION
`← topΣg(.)+h(.,n)(O(n))

for each node n′ ∈ S(n`) do
create `′ = [n′, g` + c(n`, n′), 〈P `, n′〉]
if GLOBAL-DIS%P (L(t), `′) then discard `′ else if
LOCAL-DIS%P (L(n`

′
), `′) then discard `′ else

update T (n′) (thus O) with `′

if not TEMP-DIS(L(n),%P , g`
′
+ h(`′, n))

then update O(n) with `′

move ` from T (n`) (thus O) to P(n`) (thus C)
Go to 4
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We generalize Algorithm 3 to bidirectional search by per-
forming at the same time a forward and a backward node-
PBMOA∗. When the two searches meet, new solution-paths
are found and the set M is updated. When a label ` is se-
lected for expansion and his node n` is closed in the opposite
direction, it is no more necessary to expand `.

Numerical experiments
We implemented using C++, and a standard 1.6Ghz PC.

Instances. Experiments were done on random unoriented
graphs G = (V,E, c) generated as follows: First, |V | ver-
tices are drawn uniformly in {1, . . . , 1024}×{1, . . . , 1024},
except for a source vs and a sink vt which are positioned
to (128, 512) and (896, 512). Each vertex is linked by un-
oriented edges to the four closest vertices. For the easy in-
stances, the cost vectors c(e) of edges e ∈ E are drawn uni-
formly in {0, . . . , 255}p. Figure 2 displays such a random
graph with |V | = 400 vertices. In the cost space, the con-
vexity (resp. concavity) of the Pareto-set is a well-known
cause of easyness (resp. hardness) for multiobjective prob-
lems. In problems with summations over randomly drawn
edges costs, this convexity comes from the central limit the-
orem. To obtain the hard instances we disable this theo-
rem both locally and globally as follows. Locally, to create
the concavity of a ||.||2 sphere, the cost vectors c of edges
are first drawn uniformly in [0, 1]

p, and then normalized to
an euclidian norm ||c||2 drawn in {2pM, . . . , 3pM} with
M = 256. Globally, to create bigger concavities, the edges
adjacent to vs and vt are drawn in this same way but for
M = 256× 2

√
|V |.

Problems and State Spaces. We tested two problems on
these random unoriented graphs: MO shortest s-t-paths and
MO minimal spanning trees.

Given a random graph G = (V,E, c), the state space G =
(N,A) for shortest s-t-paths is defined by: N = V , s = vs,
t = vt, A =

⋃
{v,w}∈E{(v, w)} ∪ {(w, v)}. The ideal point

heuristics h(n, n′) are precomputed for all pairs of nodes.
The state space G = (N,A) for minimal spanning trees

are defined by: the nodes N = 2V are the subsets covered
by a tree, s = ∅, t = V and S(n) = {n′ ∈ 2V : n ⊂ n′ ∧
|n|+1 = |n′|∧∃{v, v′} ∈ E [n : (n′ \ n)] , n∪{v′} = n′}.
When two trees cover the exact same subset n ∈ 2V of ver-
tices with cost vectors x, y ∈ Np, each completion (with
cost vector z ∈ Np) to a tree of one is also a completion to a
tree of the other. Hence, if x %P y, then for all completions
x + z %P y + z, and y can be pruned. Therefore, optimi-
sation can be done on these substructures. The ideal point
heuristics are computed inline, using a variant of Prim’s al-
gorithm. This state space holds |N | = 2|V | nodes, and each
state n holds |n||n|−2 possible trees (Cayley’s formula). Al-
though this search approach is not the most convenient for
this problem, it gives us an example of exponential size state
space, with heuristics computed inline.

Preferences and Algorithms. We tested %∈ {%P ,%L
,%ψ} forw = (p, p−1, . . . , 2, 1) normalized to

∑
i wi = 1.

The algorithms used for Tables 1, 2, 3 are the bi (resp.
uni) directional variants of label expanding PBMOA∗with
J-heuristics (resp. I-heuristics) for the linear lower bounds.

Notations are the followings:
- p is the number of objectives in the problem.
- |N | is the number of nodes in the state space graph. Recall
that it is |V | for path problems and 2|V | for tree problems.
- |L| is the number of L-optimal solutions.
- |E| (resp. |E0|) is the median over 25 executions of the
number of expanded labels in the bi (resp. uni ) directional
algorithms.
- |E|
|E0| is the median over 25 instances (thus executions)

of the ratios between the number of expanded labels of
bidirectional over unidirectional algorithms.
- T (resp. T0) is the median over 25 executions of the
cpu time (seconds) used by the bidirectional (resp. uni)
algorithms.
- T
T0

is the median over 25 instances (thus executions) of
the ratios between the cpu time of bi- over unidirectional
algorithms (median of ratios).

About bidirectional PBMOA∗ Tables 1, 2, 3 summa-
rize the numerical results obtained. The execution times are
up to twenty times faster, and it goes even faster as the
size of the state space (i.e., the number of states) increases,
for all studied problems (see columns |T |

|T0| ). This can be
easily explained by observing that considerably less labels
are expanded in the bi-directional variant than in the uni-
directional variant (see columns |E||E0| ). The relative behavior
of both variants (uni- and bi-) is not influenced by the hard-
ness of costs. Indeed, the hardness of costs have two conse-
quences. First, it delays the triggering of the stopping criteria
(which is very dependent on the shape of the Pareto front).
Second, it multiplies the number of Lorenz optima (see col-
umn L). Whatever the variant used, these two factors impact
similarly the number of label expansions, and therefore the
ratios of running times do not change.

About bidirectional node PBMOA∗. Figure 2 represents
the graph of a MO shortest path problem in blue, a forward
search in light-gray (or green) right-oriented triangles, and
a backward search in dark-gray (or red) left-oriented trian-
gles. On each node, areas of the triangles are proportional
to the numbers of labels expanded on this node. As one can
see in bidirectional label expanding, forward and backward
search intersect deeply. Moreover, the number of labels on
a node grows with the distance to the source node. Bidirec-
tional node expanding, by implementing MO nipping, suc-
cessfully disables this deep intersection and enables the sav-
ing of many label expansions. Unfortunately, bidirectional
node-PBMOA∗(despite half less labels to expand) uses two
times more cpu-time than PBMOA∗.

Conclusion
We have proposed in this paper several bidirectional vari-
ants of multiobjective search in state space graphs, for the
OWA, Lorenz and Pareto preference models. For OWA and
Lorenz, the introduction of bidirectional searches very sig-
nificantly improves the running times on the two state spaces
we studied, thanks to the existence of linear lower bounds
that enable the design of good stopping criteria. Concern-
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Table 1: Results for Lorenz path problems: monodirectional
VS bidirectional label expanding.

Lorenz path problems with easy costs
p |N | |L| |E| |E|

|E0|
T T

T0

800 7 1605 0.19 0.12 0.19
3 1600 6 4190 0.15 0.31 0.09

2400 11 9578 0.14 0.86 0.08
400 6 814 0.12 0.13 0.10

5 800 11 3989 0.08 0.7 0.03
1200 14 7254 0.07 1.78 0.01
200 4 397 0.15 0.07 0.17

7 400 6 1489 0.08 0.45 0.03
600 8 3609 0.05 0.79 0.01
Lorenz path problems with hard costs

p |N | |L| |E| |E|
|E0|

T T
T0

80 7 1297 0.27 0.22 0.30
3 160 9 1201 0.14 0.21 0.10

240 18 3095 0.12 0.68 0.07
40 6 475 0.18 0.11 0.16

5 80 13 4794 0.24 2.26 0.08
120 18 13725 0.26 8.77 0.06
20 5 429 0.32 0.1 0.42

7 40 7 1278 0.24 0.62 0.16
60 7 1558 0.11 0.71 0.04

Table 2: Results for Lorenz tree problems: monodirectional
VS bidirectional label expanding.

Lorenz tree problems with easy costs
p |N | |L| |E| |E|

|E0|
T T

T0

26 3 123 0.7 0.11 3
3 29 6 638 0.21 1.93 1.11

212 6 2177 0.09 10.41 0.46
26 4 216 0.45 0.46 2.8

5 29 8 1819 0.12 18.9 0.79
212 8 6621 0.04 180.44 0.21
26 9 333 0.35 0.91 2.37

7 29 14 2434 0.08 33.01 0.18
212 29 16052 0.03 639.51 0.04

Lorenz tree problems with hard costs
p |N | |L| |E| |E|

|E0|
T T

T0

26 7 186 0.62 0.18 3
3 28 13 829 0.35 1.94 1.62

210 12 3293 0.19 12.78 0.84
26 11 300 0.57 0.38 2.83

5 28 21 1744 0.23 5.88 0.91
210 43 7491 0.12 66.66 0.11
26 11 372 0.56 0.66 3.15

7 28 20 2309 0.29 11.23 0.79
210 40 9560 0.13 86.75 0.07

ing the determination of the Pareto set, the results are more
mixed, since we do not know good stopping criteria based
on scalar linear bounds. Nevertheless, by providing a new
“node-oriented” version of multiobjective search, we man-
aged to extend the nipping technique to the multiobjective
case, thus avoiding almost completely that the two searches
overlap and expanding much less labels than MOA∗. Unfor-

Table 3: Results for OWA path and tree problems: monodi-
rectional VS bidirectional label expanding.

OWA path problems
Easy costs Hard costs

p |N | T T
T0

|N | T T
T0

800 0.08 0.17 80 0.04 0.23
3 1600 0.25 0.11 160 0.04 0.05

2400 0.59 0.09 240 0.12 0.06
400 0.03 0.15 40 0.01 0.14

5 800 0.16 0.06 80 0.19 0.09
1200 0.57 0.03 120 0.22 0.04
200 0.01 0.21 20 0.01 0.14

7 400 0.06 0.08 40 0.02 0.11
600 0.15 0.03 60 0.03 0.03

OWA tree problems
Easy costs Hard costs

p |N | T T
T0

|N | T T
T0

26 0.09 2.44 26 0.19 3.14
3 29 1.57 1.07 29 5.32 1.54

212 7.63 0.37 212 70.77 0.74
26 0.41 2.73 26 0.4 3.07

5 29 13.02 1.12 29 14.89 1.12
212 132.1 0.49 212 314.47 0.22
26 0.6 2.74 26 0.54 3.32

7 29 24.28 0.92 29 29.44 0.87
212 444.39 0.29 212 505.42 0.1

Figure 2: Searching the multiobjective Pareto-set: Bidirec-
tional label expanding VS Bidirectional node expanding.

tunately, the running times are not yet satisfactory.
For future works, it is worth investigating further how to

design an efficient bi-directional search algorithm to com-
pute the Pareto set by optimizing the bidirectional “node-
oriented” variant. Other research directions are to general-
ize the use of landmarks (Goldberg and Harrelson 2005)
to the multiobjective case, or to make use of bounding sets
(Ehrgott and Gandibleux 2007; Sourd and Spanjaard 2008),
or to investigate approximation algorithms making use of
relaxed termination criteria (Rice and Tsotras 2012) or ap-
proximate dominance relations (Perny and Spanjaard 2008).
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