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Detection of nano-mechanical displacement by transport techniques has reached high level of sen-
sitivity and versatility. In order to detect the amplitude of oscillation of nano-mechanical oscillator
a widely used technique consists to couple this motion capacitively to a single-electron transistor
and to detect the high-frequency modulation of the current through the non-linear mixing with an
electric signal at a slighltly detuned frequency. The method known as current-mixing technique is
employed in particular for the detection of suspended carbon nanotubes. In this paper we study
theoretically the limiting conditions on the sensitivity of this method. The sensitivity is increased
by increasing the response function to the signal, but also by reducing the noise. For these reasons
we study systematically the response function, the effect of current- and displacement-fluctuations,
and finally the case where the tunnelling rate of the electrons are of the same order or larger of the
resonating frequency. We find thus upper bounds to the sensitivity of the detection technique.

PACS numbers: 85.85.+j,73.23.-b,73.23.Hk

I. INTRODUCTION

Nano-electromechanical systems have great potentials
as ultra-sensitive detectors for several physical quanti-
ties. Recent advances allowed to reach record sensitivity
in mass sensing.1–3 This has been possible by the detec-
tion of the frequency shift of ultralight oscillators when
an additional mass is attached to it. Other exemples con-
cern the detection of the tiny magnetic field generated by
nuclear spins. This can be done by the opto-mechanical
detection of the force generated by the magnetic dipoles,4
but also with electro-mechanical means,5 or by coupling
to two-level systes.6–8

The force sensitivity of the device is then the limit-
ing factor for the sensitivity, and again recent advances
showed that it is possible to obtain record force sensing
with carbon-nanotube oscillators.9,10 At the same time
nano-mechanical oscillators can be so small that interac-
tion between electronic and mechanical degrees of free-
dom may lead to new and unexpected phenomena11–15
like the blockade of the current16–19, cooling20–22 or un-
usual mechanical response.23,24

In order to exploit nanomechanical resonators, or to
study their properties, detection of mechanical motion
is crucial. Most detection methods exploiting electronic
transport are based on the high sensitivity of single-
electron transistors (SET) to a variation of the gate
charge. By coupling capacitively the oscillator to the
gate of the SET it is possible to detect the motion of
the oscillator with a high accuracy.25 The method has
been used also to cool the oscillator by the back-action
of the electronic transport.26 The main difficulty of the
method stems from the high frequency character of the
oscillator motion that is typically in the 100 MHz-1 GHz
range. Due to the high impedance of the SET, it is more
convenient to down-convert the signal to lower frequency
before extracting it. This can be achieved by non-linear
mixing the mechanically generated modulation with a

second high-frequency signal injected between source and
drain. The signal at the difference of the two frequen-
cies can be extracted and measured. To our knowledge,
for nanomechanical resonators this method was imple-
mented in metallic SET by the group of A. Cleland back
in 2003.27 It was later adapted to the detection of carbon
nanotube by the group of P.L. McEuen.28 It then became
the method of choice for carbon nanotubes, leading to
several breakthroughs: the observation of the first single-
electron backaction effects in carbon nanotubes,29,30 ul-
trasensitive mass detection,2,3 the detection of the charge
response function in quantum dot,31 the detection of
magnetic molecules32,33 and the observation of decoher-
ence of mechanical motion.34 The same method can also
be implemented by frequency modulation.35 It is clear
that the technique is powerful and that it will continue
to be used both for fundamental research and for appli-
cations. The question we want to address in this paper is
which is the ultimate resolution that can be reached with
this kind of detection. In order to do this we investigated
three main issues. The first one is how to optimize the
response function, that is the quantity ∂Imx/∂xm, where
Imx is the measured signal, the mixing current, and xm
the amplitude of the mechanical oscillation. The second
one is to study the effect of current and mechanical fluc-
tuations. These contribute to the fluctuation of the mea-
sured signal and in the end are at the origin of the signal
to noise ratio. The third is to consider the case of a me-
chanical oscillator with a resonating frequency ωm faster
than the typical tunneling rate of the electrons Γ. We
will develop a theory of transport to obtain the mixing
current for any ratio ωm/Γ. The case of a metallic and
single-electronic level SET will be considered in details
and explicit expressions will be given.

The paper is structured as follows: Section II gives an
introduction to the mixing technique and provides the
expression of the detector gain λ. Section III analyze
current and mechanical fluctuations giving general ex-
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Figure 1. Schematic of the typical experimental set-up used
to measure the displacement of a mechanical oscillator by
detection of the mixing current (adapted from Ref. 28)

pressions. Section IV provides a general theory for the
detector gain when the resonator frequency is comparable
or larger than the typical tunnelling time. Section V and
VI gives the explicit expressions for the response function
and for the noise in the case of a metallic and a single
electron SET. Finally Section VI gives our conclusions.

II. MIXING TECHNIQUE AND RESPONSE
FUNCTION

Let us begin by describing the typical system used to
measure the oscillation amplitude of a mechanical oscil-
lator by detection of the mixing current.27–30 As shown
in Fig. 1 a conducting oscillator is capacitively coupled
to the central island of a single-electron transistor: its
displacement modulates thus the the gate capacitance
Cg(x), where x(t) is the displacement of the oscillator.
We assume the presence of a single mechanical mode
whose displacement is parametrized by x, a generalized
coordinate with the dimensions of a length. We will con-
sider that the SET is operated in the incoherent trans-
port regime valid for ~Γ � kBT , where Γ is the elec-
tron tunnelling rate and T the temperauture (~ and kB
are the reduced Planck constant and the Boltzmann con-
stant, respectively). This is the standard case for nano-
mechanical devices. The current I through the device can
be obtained by using the Master equation and in general
it can be expressed as a function of the source-drain bias
voltage V and on the gate charge ng = Cg(x)Vg/e, where
Vg is the gate voltage (see Appendix A for a short deriva-
tion). The current reads thus:

I = I(V, ng) . (1)

In this section we want to obtain the current response
of the system when both V and Vg are modulated at

two slightly different frequencies ω1 and ω2, both much
smaller than Γ. We write

Vg(t) = Vg0 + Vg1(t) , V (t) = V0 + V1(t) , (2)

where Vg1(t) = Vg1 cos(ω1t) and V1(t) = V1 cos(ω2t).
Choosing ω1 close to the mechanical resonating frequency
ωm allows to drive the resonator, since the modulation
of the gate voltage modulates the charge on the sus-
pended part and thus induces an oscillating force [see also
Eq. (18) in the following]. For small driving amplitude
the oscillator responds linearly to the external drive:

x(t) = xm cos(ω1t+ φ), (3)

where we always measure x from its equilibrium position.
(Note that in general xm and φ depend on the driving
frequency ω1.) The modulation of Vg induces thus the
following modulation of ng at linear order in the driving:

ng(t) = ng0 +
CgVg1
e

cos(ω1t) +
C ′gxmVg0

e
cos(ω1t+ φ),

(4)
where C ′g ≡ dCg/dx. It is convenient to introduce a
length scale by defining L = Cg/C

′
g. From geometric

considerations L has to be of the order of the distance
of the gate from the oscillator, thus typically undreds of
nm. The fluctuting part of ng can then be written as

ng1(t) = ng0

[
Vg1
Vg0

cos(ω1t) +
xm
L

cos(ω1t+ φ)

]
, (5)

where ng0 = CgVg0/e. The mechanical term (xm/L) has
a strong frequency dependence close to the mechanical
resonance, and can thus be distinguished by the back-
ground electrostatic term (Vg1/Vg0). The two contribu-
tions to the modulation of the gate charge can be com-
bined in a single cosine term:

ng1(t) = ng1 cos(ω1t+ ϕ) . (6)

Assuming now that the oscillator frequency ωm, and thus
also ω1 and ω2, are much smaller than the typical tun-
neling rate Γ, one can use Eq. (1) to obtain the time
dependent current in presence of time-dependent V and
ng. For small modulation amplitude we Taylor expand
Eq. (1) to second order in V1 and ng1 obtaining

I(t) = I(V0, Vg0) +
∂I

∂V
V1(t) +

∂I

∂ng
ng1(t)

+
1

2

∂2I

∂V 2
V 2

1 (t) +
∂2I

∂V ∂ng
V1(t)ng1(t) +

1

2

∂2I

∂ng
n2
g1(t) + . . .

(7)

Only the term proportional to ∂2I/∂V ∂ng has a compo-
nent that oscillates at the frequency ω∆ = ω1−ω2. This
signal can be extracted by a standard lock-in technique
that essentially allows to measure the quantity Imx:

Icmx =

∫ Tm

0

dt

Tm
I(t) cos[ω∆t] . (8)
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The other quadrature Ismx with sin(ω∆t) is defined in a
similar way. Averaging over a long measurement time
Tm � 1/ω∆ one obtains:

Icmx =
V1

4

∂2I

∂V ∂ng

[
CgVg1 + C ′gVg0xm cosφ

]
, (9)

Ismx = −V1

4

∂2I

∂V ∂ng
C ′gVg0xm sinφ . (10)

The detector gain with respect to the two quadrature of
xm is thus:

λ =
1

4e

∂2I

∂V ∂ng
C ′gVg0V1 . (11)

It measures the sensitivity of the mixing current signal
with respect to the two quadratures of x. This quantity
depends on the particular bias conditions of the SET, and
will be studied in some details in Section V and VI for two
explicit models. Note also that in order to obtain λ we
need only the static expression for the current. This as-
sumes that the electronic mechanism is much faster than
the time dependence of the driving. In order to describe
the case of a fast oscillator (to be discussed in Section IV
we will need a detailed description of the charge dynam-
ics, and the response function will be no more expressed
only in terms of derivatives of the static non-linear cur-
rent voltage characteristics.

III. EFFECT OF CURRENT AND
DISPLACEMENT FLUCTUATIONS

Expression (11) assumes a deterministic evolution of
both the current and the displacement of the oscillator
x(t). In practice both quantity fluctuate, the first due to
shot or thermal noise, and the second due to stochastic
fluctuations induced either by the bias voltage or by the
thermal fluctuations. In general one can then write the
value of Imx in a specific time region as follows:

(Icmx)n =

∫ (n+1)Tm

nTm

[I(t) + δI(t)] cos(ω∆t)dt , (12)

(we write the expression for Icmx, the one for Ismx is sim-
ilar) where δI(t) and I(t) are the stochastic and deter-
ministic (in phase with the external drive) part, respec-
tively. We can define the time dependent mixing current
as Icmx(t) = (Icmx)[t/Tm], where [α] stands here for the in-
teger part of α. In terms of that the spectral density of
the fluctuation of Icmx reads:

Smx(ω) =

∫ +∞

−∞
dteiωt

[
〈Icmx(t)Icmx(0)〉 − 〈Icmx〉2

]
. (13)

We assume that the measuring time is much longer than
any correlation time of the quantity δI(t). Different sec-
tions of the measurement time are thus uncorrelated and

we can write:

Smx(ω) =

∫ Tm

0

dteiωt
∫ Tm

0

dt1
Tm

∫ Tm

0

dt2
Tm

cos(ω∆t1) cos(ω∆t2)〈δI(t1)δI(t2)〉 . (14)

Defining SI(ω = 0) = 2
∫ +∞
∞

dt〈δI(t)δI(0)〉 (the numer-
ical factor 2 is conventional for the current-noise spec-
trum) we have

Smx(ω) =
1

4
SI(ω = 0)

(eiωTm − 1)

iωTm
≈ 1

4
SI(ω = 0) . (15)

Thus the mixing-current low-frequency noise is given sim-
ply by the low-frequency current noise spectrum SII . The
factor of 4 comes from a different definition of the corre-
lation functions and from the fact that we are collecting
a single quadrature. The current noise can have different
sources, we consider in the following the two main ones.

A. Shot-noise and thermal current fluctuations

The current fluctuates due to the discrete nature of the
the charge. This is characterized by the current-spectral
function (for time-independent bias and gate voltages):

Sshot
I (ω) = 2

∫
dteiωt〈δI(t)δI(0)〉 , (16)

where δI(t) = I(t) − 〈I〉. For the case of a SET the
current spectral function is well known.36 As shown there
it has a frequency dependent part at low frequency on
the scale of the typical tunneling rate Γ. This implies
that the correlation function is short ranged with respect
to the measuring time Tm. Actually it is typically even
short ranged with respect to the time dependence of x
and of the V or Vg potentials. Its value can thus be
obtained adiabatically, by assuming these parameters to
be static. We only need its low frequency part that can,
in general, be expressed in terms of the Fano factor F
and the current I:

Sshot
I (ω = 0) = 2FIe (17)

where F depends on the details of the SET. In the tun-
nelling limit of uncorrelated tunneling F = 1, in most
other cases the Fano factor is typically of the order of 1.

B. Displacement fluctuations

The electrons that cross the structure modify the
charge on the gate that in turn modifies the force act-
ing on the oscillator. This stochastic force, that has
the same origin of the current-shot noise, induces fluc-
tuations of the displacement, that changes in a much
slower way, since the oscillator responds to an external
force on the time scale given by its damping coefficient
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γ.13,18,37,38 In order to keep the assumption that different
averages over the measuring times are uncorrelated one
needs Tmγ � 1. In principle, for very high-Q resonators
the approximation should be reconsidered.

Let’s begin by considering the force acting on the os-
cillator as a consequence of a variation of the charge on
the gate. A recall of the basic expressions for the electro-
static energy is given in the Appendix A and Fig.3 there
shows the electrical scheme. The force acting on the oscil-
lator is given by the derivative of the electrostatic energy
performed at constant charge:

F = −Q2
g

∂

∂x

1

2Cg(x)
=
Q2
gC
′
g

2C2
g

, (18)

where Qg is the charge on the gate voltage (Fig.3). The
fluctuation of the force δF (t) due to fluctuation of Qg
reads thus:

δF (t) =
QgC

′
g

C2
g

δQg(t) . (19)

In general the variation of the charge on the gate is pro-
portional to the variation of the charge on the central
island of the SET. By an elementary electrostatic cal-
culation (see Appendix A) δQg/e = (Cg/CΣ)δn, where
CΣ = Cg +CL+CR is the sum of the capacitances of the
central island to all the electrodes and −ne is the total
charge on the island. In conclusion one finds that

δF (t) = F0δn(t) (20)

with

F0 =
QgeC

′
g

CgCΣ
= 2

Qg
e

EC
L

(21)

the force acting on the oscillator when an electron is
added to the dot and with EC = e2/(2CΣ) the Coulomb
energy of the SET. Note that F0 is a crucial parame-
ter, since it constitutes the electro-mechanical coupling
constant.18,23 One can estimate the typical value of F0:
Qg/e = 10−100, EC = 1 K, L = 100 nm, thus F0 ≈
10−11-10−12 N.

The correlation function of the stochastic force acting
on the resonator [SF (t) = 〈δF (t)δF (0)〉] is thus simply
proportional to the correlation function of the charge on
the island [Sδn(t) = 〈δn(t)δn(0)〉]:

SF (t) = F 2
0 Sn(t) , (22)

that can be calculated by the standard method of the
master equation. For the case of a metallic dot see for
instance Refs. 18 and 39. Its Fourier transform has a
Lorentzian form with a width on the scale of Γ. Thus
this force act as a white noise on the slow oscillator.

Let’s now turn to the displacement correlation func-
tion. In order to evaluate it we use a simple Langevin
approach.11,16 We neglect the driving, since we are in-
terested in the low frequency response. The Langevin
equation reads

mẍ+mγẋ+ kx = δF (t), (23)

where m is the (effective mass) of the oscillator mode
considered, γ the damping coefficient, and k the effective
spring constant. The stochastic force generated by the
electrons is also at the origin of the damping coefficient.
In general other effects participate, but close to the de-
generacy point of the SET, when the current is maximal,
the electronic contribution to the damping can dominate,
as observed experimentally in Ref. 32. We will assume
thus that γ is due only to the electronic damping. In
equilibrium the fluctuation-dissipation theorem gives

SδF (ω = 0) = 2γmkBT. (24)

For finite eV � kBT , the system is out of equilibrium
and one has to evaluate explicitly γ and SδF from a direct
calculation of SF (ω). As shown in Ref. 40 2m~γ =
dSF (ω)/dω|ω=0. One can then always define an effective
temperature by the relation SF (ω = 0) = 2γmkBTeff ,
since the oscillator has a very sharp response in frequency
and the correlation functions are flat on that scale, one
can always interpret the ratio of the fluctuation and the
dissipation as an effective temperature. In the case of the
SET it has been shown that the typical value of kBTeff

is of the order of eV .13
The Langevin equation (23) can then be solved by

Fourier transform giving

Sx(ω) = 〈x(ω)x(−ω)〉 =
F 2

0 Sn(ω)

m2|ω2
m − ω2 − iγω|2

(25)

and in particular in the low-frequency limit:

Sx(ω = 0) =
F 2

0 Sn(ω = 0)

m2ω4
m

. (26)

We can now use the expansion (7) to find the lowest order
contribution of the stochastic fluctuations of x(t) to the
current. We denote these fluctuations δx(t) to distinguish
them from the time-dependent average induced by the
external driving:

δI(t) =
∂I

∂ng

Vg0C
′
g

e
δx(t) + . . . . (27)

The back-action current noise is then

Sba
I (ω) = 2

(
∂I

∂ng

F0ng
kL

)2

Sn(ω = 0) . (28)

As discussed in Refs. 19 and 41 the mechanical back-
action noise can be very strong and induce effective giant
Fano factors.

Finally the measurement added noise can be obtained
as is done for the amplifiers,42 by dividing the fluctuation
of the current signal by the amplifier gain squared. This
gives:

Sadd
x =

Smx

λ2
=
Sshot
I + Sba

I

4λ2
. (29)

This quantity gives the upper bound on the detection
sensibility, since the limitations considered are intrinsic
to the detection method. We will evaluate explicitly these
quantities for two specific models in sections V and VI.
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IV. FAST OSCILLATOR

In this section we relax the condition ωm � Γ for the
calculation of the mixing current. We assume ~Γ, ~ωm �
kBT , the electronic transport is then decribled by sequen-
tial transport and we will find the mixing current to low-
est non-vanishing order in the amplitude of the oscillating
field by making use of a master equation description.

Let’s begin by introducing in some details the electron
tunnelling description. We assume that the only avail-
able charge states on the island are those associated with
two charge states Ne and (N + 1)e. We will call these
two states 0 and 1. The state of the SET is thus fully
described by the probabilities of one of these two state
to be realized: Pn, with n = 0, 1. We define ΓL+(−) as
the rate for adding (subtracting) one electron on (from)
the central island through the left tunnel junction. Sim-
ilarly we define ΓR+(−) for the right junction. We define
also Γα = ΓLα + ΓRα, with α = ±, ΓL = ΓL+ + ΓL−,
ΓR = ΓR+ + ΓR−, and ΓT = Γ+ + Γ−. The master
equation for the the probability reads (Ṗ ≡ dP/dt):

Ṗ0 = −Γ+P0 + Γ−P1 (30)
Ṗ1 = Γ+P0 − Γ−P1. (31)

Using the conservation of probability (P0 + P1 = 1) we
are left with

Ṗ0 = −ΓTP0 + Γ− . (32)

We consider now that the rate equations are modulated
by two oscillating parameters, in our specific case V and
ng. We expand in power series of the amplitude of oscil-
lation the rates keeping only the lowest orders:

Γα(t) = Γα(0)(t) + Γα(1)(t) + Γα(2)(t) + . . . (33)

where α stands for any of the previously introduced la-
bels, and the term into parenthesis indicates the order in
the expansion. As far as the driving frequency is smaller
than the temperature, ~ωi � kBT , the explicit expres-
sion of the time-dependent rates can be obtained by that
for the static case by substituting the time-dependent
fields:43 for instance Γα(t) = Γα(a(t), b(t)), where a =
a0 + a1(t), b = b0 + b1(t), and a1(t) = a1 cos(ω1t),
b1(t) = b1 cos(ω2t). One can then expand to second or-
der in the time dependent part of the two parameters to
obtain:

Γα(t) = Γα +
∂Γα

∂a
a1(t) +

∂Γα

∂b
b1(t) +

1

2

∂2Γα

∂a2
a2

1(t)

+
∂2Γα

∂a∂b
a1(t)b1(t) +

1

2

∂2Γα

∂b2
b21(t) + . . . .

The expansion up to second order can then be rearranged
in a Fourier series:

Γα(t) = Γα00 +
∑

n=−1,1

[
Γ
α(1)
n,0 e

inω1t + Γ
α(1)
0,n einω2t

]
+
[
Γ
α(2)
1,−1e

i(ω1−ω2)t + cc
]

+ . . . (34)

where the static part Γα00 has contributions of zero and
second order in the driving fields. The notation Γ

α(p)
n,m

indicates a contribution of order p in the driving inten-
sity. Concerning the time dependent second order terms,
we keep only the interesting part at the mixing-current
frequency ω∆.

We look for a solution of the master equation in terms
of the stationary Fourier components

P0(t) =
∑
n,m

Anme
i(nω1+mω2)t . (35)

This gives for each Fourier component the equation:

(inω1 + imω2)Anm +
∑
n′,m′

ΓTn′m′An−n′,m−m′ − Γ−nm = 0 .

(36)
We further expand the A coefficients writing:

Anm =

∞∑
p=0

A(p)
nm, (37)

where again p indicates the order in the driving fields.
This leads to a set of equations that can be solved recur-
sively. The zeroth-order one reads:

(inω1 + imω2)A(0)
nm + Γ

T (0)
00 A(0)

n,m − Γ
−(0)
00 δn,0δm,0 = 0 .

(38)
It gives immediately the static solution:

A(0)
nm = δn,0δm,0

Γ
−(0)
00

Γ
T (0)
00

. (39)

For the next two orders we obtain:

A(1)
nm =

ΓT00Γ
−(1)
nm − Γ

T (1)
nm Γ

−(0)
00

Γ
T (0)
00 (inω1 + imω2 + Γ

T (0)
00 )

, (40)

and

A(2)
nm =

Γ
−(2)
nm − Γ

T (2)
00 A

(0)
n,m −

∑
n′m′ Γ

T (1)
n′m′A

(1)
n−n′,m−m′

inω1 + imω2 + Γ
T (0)
00

.

(41)
The non-vanishing terms up to order two are A(0)

0,0, A
(1)
±1,0,

A
(1)
0,±1, A

(2)
0,0, A

(2)
±2,0, A

(2)
±1,±1, and A

(2)
0,±2. As usual for the

Fourier transform of real functions the following relation
holds: A∗n,m = A−n,−m.

Let us now consider the particle current. It can be
expressed in terms of P and Γ, for instance, on the left
junction (note that this expression does not include the
displacement current):

I(t)/e = ΓL+P0 − ΓL−P1 = ΓLP0 − ΓL− . (42)

Substituting the expansion (35) into Eq. (42) we obtain
for I a similar expansion to Eq. (35). The first three
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orders read:

I(0)
nm/e =

[
Γ
L(0)
00 A

(0)
00 − Γ

L−(0)
00

]
δnmδn0 (43)

I(1)
nm/e = ΓL(1)

nm A
(0)
00 + Γ

L(0)
00 A(1)

nm − ΓL−(1)
nm (44)

I(2)
nm/e = Γ

L(0)
00 A(2)

nm +
∑
n′m′

Γ
L(1)
n−n′,m−m′A

(1)
n′m′

+ΓL(2)
nm A

(0)
00 − ΓL−(2)

nm . (45)

The mixing current is given by

Icmx = ReI1,−1/2 , Ismx = −ImI1,−1/2 . (46)

In order to simplify the expressions obtained above we
use the fact that in general ω1 ≈ ω2 ≡ ωD so that even
in the fast oscillator limit |ω1 − ω2| � Γ

T (0)
00 . This gives

the approximate expressions:

A
(1)
10 =

ΓT00Γ
−(1)
10 − Γ

T (1)
10 Γ

−(0)
00

Γ
T (0)
00 (iωD + Γ

T (0)
00 )

(47)

A
(2)
1,−1 =

Γ
−(2)
1,−1 − Γ

T (1)
1,0 A

(1)
0,−1 − Γ

T (1)
0,−1A

(1)
1,0

Γ
T (0)
00

(48)

One can see that the residual ωD-dependence is due to
the relaxation time of the charge in the island. As ex-
pected it disappears for ωD � Γ

T (0)
00 . The contribution

from I
(1)
1,−1 vanishes since Γ

α(1)
1,−1 = 0. The interesting part

is the contribution of second order which reads:

I
(2)
1−1 = Γ

L(0)
00 A

(2)
1,−1 + Γ

L(1)
1,0 A

(1)
0,−1 + Γ

L(1)
0,−1A

(1)
1,0

+Γ
L(2)
1,−1A

(0)
00 − Γ

L−(2)
1,−1 . (49)

One can verify that for ω � Γ
T (0)
00 expression Eq. (49)

reduces to ∂I2/∂a∂b recovering the standard results for
the mixing-current [cf. expressions (10) and (9)].

In the opposite limit of ω � Γ
T (0)
00 the first order cor-

rection to the charge variation vanishes (A(1)
1,0 → 0): the

charge has not the time to follow the driving. Only a
second order correction survives A(2)

1,−1 = Γ
−(2)
1,−1/Γ

T (0)
00 .

The residual time dependence at the mixing frequency is
only due to the direct modulation of the tunneling rates
(Γα(2)

1,−1). The final expression for I1,−1 in the limit ω →∞
reads:

I
(2)
1−1fast

= Γ
L(0)
00

Γ
−(2)
1,−1

Γ
T (0)
00

+ Γ
L(2)
1,−1A

(0)
00 − Γ

L−(2)
1,−1 (50)

In the following two sections we consider explicitly the
case of a metallic dot and of a single electronic level dot
and we derive explicit expressions for the mixing current,
its fluctuation and the response function in the high-
frequency regime.

V. THE METALLIC DOT SINGLE-ELECTRON
TRANSISTOR

The expression for the tunnelling rate are well known
for a metallic dot in the Coulomb blockade regime.44 For

convenience of the reader, we report in the appendix a
very short derivation of the electrostatic relations. We
consider only the two states with N and N + 1 electrons.

A. Low temperature case

We begin by discussing the low temperature case
kBT � eV � EC where EC = e2/2CΣ is the Coulomb
energy. In this case there are only two non-vanishing
rates (for V > 0)

Γ+
L(N) = Γo(v + ñg)θ(v + ñg) (51)

Γ−R(N + 1) = Γo(v − ñg)θ(v − ñg) (52)

where Γo = 1/RCΣ, v = (C + Cg/2)V/e and ñg =
Cg(x)Vg/e − N − 1/2, we assume a symmetric device
with tunneling resistance R. The stationary solution to
the master equation (32) and the stationary current (42)
read

P st
1 =

ñg + v

2v
, I = eΓo

v2 − ñ2
g

2v
, (53)

both equations valid for |ñg| < v. The current vanishes
continuosly for |ñg| ≥ v while the probability is 1 for
ñg > v and 0 for ñg < −v.

The driving amplitudes in terms of the dimensionless
variables introduced read v1 and ng1. Note that the de-
pendence of the rates on v and ñg is non-analytic for
ñg = ±v, this gives a constraint on the amplitude of
the oscillations since the Taylor expansions are not valid
if the parameters cross this values. This gives the con-
straints |ñg ± ng1| < v and v − v1 > ñg, that can be
written ng1, v1 < v− ñg. Using Eq. (51) and Eq. (52) we
can readily obtain the non-vanishing coefficients of the
expansion (34): ΓL+

00 = Γo(v + ñg), ΓL+
10 = Γoe

iϕng1/2,
ΓL+

01 = Γov1/2, ΓR−00 = Γo(v − ñg), ΓR−10 = −Γoe
iϕng1/2,

ΓR−01 = Γov1/2. For ω1 ≈ ω2 = ωD we obtain a very
simple expression for the component I1,−1:

I1−1 = eΓo
ñgv1ng1e

−iϕ

ω̃2
D + 4v2

(54)

here we defined ω̃D = ωD/Γo. One finds thus a
Lorentzian behaviour, the amplification factor decreases
quite rapidly for large frequency driving ωD. The main
reason for the reduction of sensitivity is the incapacity of
the charge in the dot to follow the driving signal. The
crossover value for the frequency is ωD ≈ V/Re, above
this value one cannot use anymore the adiabatic approx-
imation for the relaxation of the charge on the dot. It
simply coincides with the frequency for which one elec-
tron per driving period crosses the device. For instance
for ωm = 100 MHz, R = 105 Ohm, for voltage below a
mV the corrections due to the retardation of the charge
on the dot becomes relevant This regime has been ob-
served in the experiment presented in Ref. 45, where the
crossover from slow to fast oscillator has been investi-
gated by a fine tuning of the tunnelling resistances.
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The amplification factor for the mechanical quadra-
tures is thus:

λ =
eΓo
L

ngñgv1

(ω̃2
D + 4v2)

. (55)

It is maximum for ñg = ±v, but one should also take
into account the constraint on the amplitude of v1 <
v − |ñg|. One way to take that into account is to set
v1 = v − |ñg|, this is the maximum allowed value for the
driving amplitude, and since the signal increases linearly
with v1, it gives the maximum value for λ. This gives:

λ =
eΓo
L

ngñg(v − |ñg|)
(ω̃2
D + 4v2)

. (56)

The maximum of λ as a function of the gate voltage is
obtained for ñg = ±v/2 and its value (for ω̃D � v) is

λ =
eΓong
16L

(57)

independently of v. For a typical device one has ng ≈ 100
L ≈ 1µm, Γ0 = 1011 Hz leading to λ ∼ 0.1 A/m.9,10

The gain is only a part of the detection, one has also
to evaluate the noise. For that we need the two contribu-
tions considered in the section III. The Fano factor has
been obtained in Ref. 36 (cf. Eq. 41 there):

F =
Γ+
L

2
+ Γ−R

2

(Γ+
L + Γ−R)2

=
v2 + ñ2

g

2v2
(58)

it varies between 1/2 and 1. The shot noise becomes
thus:

Sshot
II = e2Γo

v4 − ñ4
g

2v3
. (59)

To obtain the contribution of the displacement fluctu-
ation we need to calculate the charge noise correlation
function: Sn(t) = 〈δn(t)δn(0)〉. This symmetric cor-
relator can be obtained by the conditional probability
P (1t|10) that the dot it occupied at time t > 0 with
the condition that it was occupied at time 0: Sn(t) =
[P (1t|10) − P st

1 ]P st
1 . Solving the master equation with

the initial condition P1 = 1 one finds

P (1t|10) = 1 + (P st
1 − 1)(1− e−ΓT t), (60)

with P st
1 = Γ+/ΓT . By Fourier transforming we obtain:

Sn(ω) = P st
1 (1− P st

1 )
2ΓT

ω2 + ΓT
2 (61)

As expected the correlation function is flat for ω � ΓT ,
the required low frequency correlator reads then:

Sn(ω = 0) = 2Γ+Γ−/(ΓT )
3
. (62)

In the specific case of low temperature one obtains thus
Sn = (v2 − ñ2

g)/(4Γov
3).

In the typical working regime of a SET V � Vg, and
ng ≈ N . Using the Eq. (A1) one finds that Qg/e ≈ ng ≈
N . We thus have F0 = 2NEC/L. Collecting all the
terms we can substitute into Eq. (28) to obtain:

Sba
I = 2e2ΓoN

4

(
Ec
kL2

)2 (v2 − ñ2
g)ñ

2
g

v5
. (63)

The ratio of the mechanical to the shot noise is thus:

Sba
I

Sshot
I

=

(
Ec
kL2

)2 4N4ñ2
g

v2(v2 + ñ2
g)
. (64)

For large mechanical coupling (L small and N large) the
mechanical noise dominate even if for small ñg it is always
suppressed, due to the vanishing of ∂I/∂ng.

From Eqs (57), (59), and (63), we obtain the seeked
added noise as defined by Eq. (65). In order to study
its dependence on the different parameters it is con-
venient to introduce the two dimensionless variables
ν ≡ ñg/v and the dimensionless coupling constant δ ≡
(EC/kL

2)(N2/v) = εP /eV , where εP = F 2
0 /k is the en-

ergy scale of the electromechanical coupling.13,14,18 The
added noise then reads:

Sadd
x =

Ec
kΓ0

f(ν, δ) , (65)

with

f(ν, δ) =
2(1 + ν)[4(δ2 + 1)ν2 + 1]

ν2(1− ν)δ
, (66)

and 0 < ν < 1. The function diverges for ν → 1 due to
the fact that we have to limit the amplitude of the voltage
modulation and diverges for ν → 0 due to the vanishing
of the amplification factor. The minimum added noise is
thus always for values of ν between 0 and 1. In the weak
coupling limit, for δ � 1, one finds that the minimum is
at ν ≈ 0.54 and reads

Sadd
x ≈ 14.8

Ec/k

Γ0

eV

εP
. (67)

For strong coupling, δ � 1, instead the minimum is close
to ν = 0 with a value for

Sadd
x ≈ 8

Ec
kΓ0

( εP
eV

)2

. (68)

In both cases the noise diverges when δ becomes very
small or very large. In the weak coupling limit the
added noise is dominated by the current noise (impre-
cision noise), in the strong coupling it is instead given
essentially by the back-action noise. As usual42 the op-
timal situation is in the middle for δ ≈ 1.

In Fig. 2 we plot Sadd
x [δ, νm(δ)], where νm(δ) is the

value of ν that minimizes Sadd
xx for given δ. We thus

find that the absolute minimum for the added noise is
obtained for ν = 0.32 and δ = 1.857 and reads

Sadd
xx = 57.61

Ec
kΓ0

(69)
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Figure 2. Sadd
xx as a function of δ = εP /eV for ν(δ) minimizing

the function . In a inset the value of ν that minimizes the
function for given δ [νm(δ)].

This is the ultimate sensitivity that can be obtained with
this device in ideal conditions, when all other sources of
imprecisions have been eliminated. Inserting typical val-
ues of Ec ≈ 10K, Γ0 ≈ 1011Hz, k = 10−5N/m one
obtains the value of Sadd

xx ≈ 10−26m2/Hz. One should
regard this value with some caution. Let’s consider the
value of the coupling that is required to obtain this sen-
sitivity. The optimal value of δ is for eV ≈ εP . As
discussed in the litterature (see for instance Ref. 18,
where this energy is called EE) this scale determines the
value at which the system undergoes a current blockade.
It is difficult to reach this limit (since one needs also
kBT � εP ) in metallic SETs. On the other side εP of
the order of 0.3 K has been observed in suspended car-
bon nanotubes.45 The dramatic effects expected at low
tempereture on the mechanical resonators have been dis-
cussed recently.23,24 This extreme limit need to be recon-
sidered, since the resonating frequency of the resonator
is renormalized by the coupling, and the added noise in-
duced by the oscillator is expected to be more effective.
In particular the oscillator becomes strongly non-linear
close to the transition.

We can estimate in a simple way the effect of the soft-
ening of the mechanical resonator following Ref. 18. The
correction to the variation of the energy reads11

∆E± → ∆E± ± F0x (70)

this changes the form of P st
1 given by Eq. (53) as follows:

P st
1 =

ñg + xF0/(2EC) + v

2v
. (71)

Substiting into the equation for the average force F0P
1
st

and taking the derivative with respect to x one obtains
the renormalized spring constant:

k′ = k(1− δ) . (72)

The instability appears for δ = 1, where two new sta-
ble solutions bifurcate. The only change in our previous
calculations is the value of k entering Eq. (65):

Sadd
xx =

Ec
kΓ0

1

1− δ
f [ν, δ/(1− δ)] . (73)

Repeting the minimization procedure we find that the
minimum is now for δ = 0.48 holding the value of
132.7(Ec/kΓ0). Thus the renormalization of the resonat-
ing frequency reduces the precision of a factor of 2, leav-
ing space for high sensitivity detection.

The actual limitation in current experiments will be
the value of the coupling, since in practice the typical
temperature reached in experiments on metallic quan-
tum dot is much larger than εP . In the following section
we considerthe detection at finite temperature and low
voltage.

B. Finite temperature case

Let us now consider the finite temperature case eV �
kBT � EC . In this case we have to take into account the
four possible tunnelling processes that change the charge
on the dot from the N to the N+1 state (cfr. Appendix).
The respective rates read:

Γ+
L(R)(N) = ΓThh[(∓eV − 2ñgEC)/kBT ], (74)

Γ+
L(R)(N + 1) = ΓThh[(±eV + 2ñgEC)/kBT ], (75)

with h(y) = −y[1−ey] and ΓTh = kBT/e
2R. We consider

the low bias voltage limit eV/kBT � 1. In this limit the
expression for the current Eq. (42) becomes:

I = eΓTh
eV

2kBT
g(2ñgEC/kBT ), (76)

where

g(y) =
h+h

′
− + h′+h−

h+ + h−
=

eyy

e2y − 1
(77)

and h± = h(±y). From the expression of the current we
obtain

∂2I

∂V ∂ñg
= − EC

RkBT
g′(2ñgEC/kBT ), (78)

(for brevity, we omit in the following the arguments of g
and of the other functions of y = 2ñgEC/kBT ) with the
amplification factor:

λ =
ng0Γ0eV1

4LkBT
g′ ≈ F0V1

8RkBT
g′. (79)

The factor g′(x) has a maximum for y = 1.16 for which
it holds the approximate value 0.154. Thus tuning ñg =
0.58kBT/EC allows to obtain the maximum value of the
amplification factor. Comparing this value to Eq. (57),
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valid for kBT � eV , we see that the amplification factor
is reduced by the term eV1/kBT � 1.

The shot noise at low frequency reads:36

Sshot
I = e2

[
Γ+
LΓ−R + Γ−LΓ+

R

ΓT
− 2

(Γ+
LΓ−R − Γ−LΓ+

R)2

Γ3
T

]
.

(80)
For small V the first term (thermal noise) dominates and
gives:

Sshot
I = e2ΓTh

h+h−
h+ + h−

. (81)

The charge noise in the same limit reads

Sn =
1

ΓTh

h+h−
(h+ + h−)3

. (82)

From the expression of the back-action noise (28) we
see that for V → 0 there is (apparently) no back action
of the measurement. It is possible to set V = 0 and
exploit its modulation around 0 to detect the motion of
the oscillator. But in this case we need to consider the
next order in the expansion (7). For V = 0 we have:

δI =
∂I

∂ng∂V
δngV1 + . . . . (83)

From this we have for the current-current correlator:

〈δI(t1)δI(t2)〉 =

(
∂G

∂ng

)2

V1(t1)V1(t2)〈δng(t1)δng(t2)〉 ,

(84)
where G = dI/dV for V = 0 is the conductance. The
product of the two V1 terms gives an oscillating term
depending on t1 + t2 that averages to zero and a second
term proportional to cos[ω2(t1 − t2)]. Using δng(t) =
(C ′gVg/e)δx(t) we have

Sba
I =

1

2

(
∂G

∂ng

)2

(Vg0C
′
gV1/e)

2Sx(ω2) . (85)

Typically ω2 ≈ ωm, we thus assume that it is resonant in
order to evaluate the case of maximal back-action:

Sba
I =

g′
2
h+h−

16(h+ + h−)3
e2Γ0

ε2PQ
2(eV1)2

(kBT )3EC
, (86)

with hba = (g′)
2
h+h−/(h+ + h−)3 and Q = ωm/γ the

oscillator quality factor.
Adding the two sources of current noise Eq. (86) and

Eq. (81) we obtain for the added noise:

Sadd
x =

EC
kΓ0

[
αba εPQ

2

kBT
+ αshot (kBT )3

εP (eV1)2

]
, (87)

with the numerical factors αba = 4h+h−/(h+ +h−)3 and
αshot = 32h+h−/[(g

′)2(h+ + h−)]. Choosing the value
ñg = 1.60 that maximizes λ their values are αba = 0.23
and αshot = 449.

The minimum of the added noise is obtained for

εP =

(
αshot

αba

)1/2
(kBT )2

QeV1
, (88)

with a minimum noise of

Saddx = 2
EC
kΓ0

(
αbaαshot

)1/2
Q
kBT

eV1
. (89)

Since eV1/kBT � 1, at best we can set this ratio to 0.1.
This gives for the optimal value of the coupling

εP
kBT

≈ 441

Q
(90)

and the minimum of the added noise

Sadd
x = 203

QEC
kΓ0

. (91)

Some comments are at order. First we assumed that
the frequency driving the voltage bias is resonant with
the oscillator. This is un upper limit to the back ac-
tion, in particular if Q � 1 this condition is not ful-
filled and the back action will be reduced. For the non-
resonant case it is sufficient to use the above results with
Q ≈ ωm/ω∆, reducing enormously the minimum added
noise, to the expenses of finding a much larger coupling
constant. The second comment concern the value of the
coupling constant εP necessary to reach the minimum.
One can see that even with the assumption of resonant
back action it is relatively large. For a typical Q ≈ 104

one finds εP /kBT ≈ 0.04. To our knowledge the largest
value of the ratio kBT/εP is ≈ 0.017 has been reported
in Ref. 45. Since as soon as Q� 1 it is possible to avoid
resonant back-action, in most cases the main limitation
is to reach large values of εP .

It is interesting to compare the shot-noise contribution
of the added noise with the resonant brownian motion
fluctuations:

SB
x (ωm) = 2

kBT

kγ
. (92)

The ratio reads:

Sadd
x

SB
x

=
αshot

2

ECγ

εPΓ0

(
kBT

eV1

)2

. (93)

Detection of brownian motion can then be done for
εP /EC > 2 × 104γ/Γ0 (where we assumed as before
eV1/kBT = 0.1). For instance in Ref. 10 γ/Γ0 ≈ 10−8 al-
lowing the detection of the brownian motion fluctuations
even for very weak coupling. For a rough estimate of the
coupling in that experiment one can use the expression
given in Ref. 23 εP /kBT ≈ 2δωm/ωm, where δωm is the
modulation of the resonating frequency near the degen-
eracy point (see Fig. 3 in Ref. 10). For Ref. 10 one finds
εP ≈ 16m K to be compared to EC of the order of 10K.
Notwithstanding the low value of the coupling constant,
the resolution is largely sufficient to detect the Brownian
motion of the carbon nanotube.
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VI. THE SINGLE-ELECTRONIC LEVEL SET

When the temperature and the voltage bias is much
smaller than the electronic level separation the rates for
electron transfer reads:46

Γ+
L(R) = ΓL(R)0fF [(ε− µL(R))/kBT ], (94)

Γ−L(R) = ΓL(R)0

[
1− fF [(ε− µL(R))/kBT ]

]
, (95)

where fF (y) = 1/(1 + ey) if the Fermi function, ε is the
level position, µL(R) is the left (right) chemical potential,
and ΓL(R)0 are the transfer rates. For simplicity in the
following we choose ΓL0 = ΓR0 = Γ0. The modulation
of the gate voltage leads to the time-dependence ε(t) =
ε0 + ε1(t) of the electronic level energy ε with

ε0 = εd0 + eCgVg0/CΣ , (96)
ε1(t) = e[C ′gVg0x(t) + CgVg1(t)]/CΣ , (97)

and εd0 the position of the electronic level for vanish-
ing Vg. We assume symmetric bias so that the chemical
potential read:

µL(R)(t) = µL(R)0 + (−)e(V + V1 cosω2t)/2 . (98)

Following the steps of the previous section we can calcu-
late the current

I =
eΓ0

2
[fF [(ε− µL)/kBT ]− fF [(ε− µR)/kBT ]] (99)

from which we obtain for vanishing V the amplification
factor:

λ =
eng0Γ0

4L

eV1EC
(kBT )2

f ′′F (y), (100)

where the argument of the Fermi function is y = (ε0 −
µ)/kBT , and will be omitted in the following. The maxi-
mum of f ′′F is obtained for y = 1.31 with a value of 0.096.
The thermal part of the shot noise and the charge noise
read:

Sshot
I = e2Γ0fF (1− fF ), (101)

Sn =
fF (1− fF )

Γ0
. (102)

Using Eq. (85) for the back-action noise we obtain

Sba
I =

fF (1− fF )f ′′F
2

8
e2Γ0

(
eV1QεP
(kBT )2

)2

. (103)

The added noise has thus the form:

Sadd
x =

kBT

kΓ0

[
αbaQ2 εP

kBT
+ αshot

(
kBT

eV1

)2
kBT

εP

]
(104)

with αba = 2fF (1− fF ) and αshot = 16fF (1− fF )/f ′′F
2.

Their values for y = 1.31 are αba = 0.34 and αshot =
289.2. We find the same value of εP for the minimum of

the added noise in the metallic case [cf. Eq. (88)], but
the minimum of the noise has a different expression:

Sadd
x = 2

(
αbaαshot

)1/2 (kBT )2

kΓ0eV1
. (105)

Essentially the energy scale of the Coulomb blockade is
substituted by the temperature, in principle reducing the
added noise. The conclusion is that the single-level SET
should allow a better resolution of the metallic SET by
a factor EC/kBT .

VII. CONCLUSIONS

In this work we have studyed theoretically the sensi-
tivity of the mixing-current technique. We first found
general expressions valid when the oscillator resonating
frequency is comparable or larger of the transfer rate of
electrons. We find that a reduction of the amplification
factor of the order of (Γ0/ωD)2 is expected. This effect
should be relatively small in most practical experimental
realizations. We then analysed the fundamental limita-
tions due to the intrinsic noise present in the (current)
signal and the effect of the back-action fluctuations. On
general grounds one finds that an optimal value of the
electromechanical coupling (εP ) exists that minimizes the
added noise. This value is larger than what is realized
in the present experiments, showing that increasing the
coupling allows to reach higher sensitivity. At finite tem-
perature the relevant parameter is the ratio εP /kBT and
values of the order of 1 are needed to reach the optimal
minimum added noise. At vanishing temperature the rel-
evant parameter is instead εP /eV . In all cases the scale
of the sensitivity is given by EC/Γ0k. Optical means can
detect CNTs displacement with good accuracy, even if
the small size of the object does not allows to reach the
spectacular sensitivity obtained with macroscopic mir-
rors. A sensitivity of 5 · 10−22 m2/Hz as been reported47
by cavity-enhanced optical detection of CNTs.

We considered only classical fluctuations. It seems dif-
ficult to use the mixing technique to reach the quan-
tum limit of detection, since the effective temperature
of the oscillator, even at vanishing temperature, is of
the order of eV that typically needs to be larger than
~ωm. On the other side it may be instructive to compare
the sensitivity found at vanishing temperature with the
zero point fluctuations spectrum at resonance: SSQL

x =
2~ωm/kγ. One sees that the ratio to the typical mixing-
current technique added noise at zero temperature is
10−2(~ωm/EC)(Γ/γ)(εP /EC), since Γ/γ � 1, for suffi-
ciently large εP the added noise can be of the same order
of the zero-point fluctuations.

We conclude that the sensitivity of the mixing tech-
nique can still be improved by increasing the electrome-
chanical coupling till reaching εP of the order of the tem-
perature or the Coulomb blockade energy where the back-
action will be of the same order of the intrinsic current
noise of the device.
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Figure 3. Electric scheme of a single electron transistor
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Appendix A

In this appendix we present, mainly for clarifying the
notation, a brief derivation of the electrostatic energy
variation for the tunnelling of an electron in a single
electron transistor.44 The electric scheme is presented in
Fig.3 where the potentials of the left, right, and gate
leads are defined as VL, VR, and Vg, respectively. In the
same way the charge on each capacitance (on the leads
side) is indicated with Qi with i = L, R, and g. Defining
VI the potential of the island one has

Qi = (Vi − VI)Ci . (A1)

Summing the three equations one obtains immediately
the expression for the potential on the island:

VI =

(∑
i

CiVi +Q

)
/CΣ, (A2)

where CΣ =
∑
i Ci and Q = −

∑
iQi is the total charge

on the island. The total electrostatic energy Ee(Q) =∑
iQ

2
i /2Ci = Q2/2CΣ + constant, where the constant

term does not depend on Q. From Eq. (A1) and Eq. (A2)
one then finds that adding a charge q on the island will
change the charge on each capacitor plate of

δQi = −qCi
CΣ

. (A3)

The total electrostatic energy variation (final energy mi-
nus initial energy) for the transfer of an electron from the
left electrode on the island is then given by the variation
of the total electrostatic energy plus the the work done
by the voltage sources (−

∑
i ViδQi, with δQi = eCi/CΣ

for i 6= L and δQL = eCL/CΣ − e):

∆E+
L = Ee(Q− e)− Ee(Q)− e

∑
i

Vi
Ci
CΣ

+ eVL . (A4)

The general expression reads then:

∆E±L,R = −e (−e± 2Q)

2CΣ
∓ e

CΣ
(
∑
i

ViCi − CΣVL,R) .

(A5)
The variation of the energy depends only on the differ-
ence of the three potentials, we can thus choose to express
it in terms of V = VR − VL and V ′g = Vg − (VL + VR)/2.
For simplicity we write the expressions in the symmetric
case of CL = CR = C:

∆E±L =
e

2CΣ
(e∓2Q)∓ e

CΣ
(C ′V + CgV

′
g) (A6)

∆E±R =
e

2CΣ
(e∓2Q)∓ e

CΣ
(−C ′V + CgV

′
g) (A7)

with C ′ = C +Cg/2. Typically V is very small, while V ′g
can be very large, in particular V ′gCg/e = ng is normally
regarded as finite, while Cg → 0 and V ′g → ∞. For
this reasons we can normally neglect the displacement
dependence induced by Cg(x) in C ′ or CΣ, while it is
necessary to keep the x dependence in Cg(x) that appears
in the expression CgV ′g .

Let now focus on the four energy variations associ-
ated with the change of the number of electrons in the
dot between the two states N and N + 1. We need
∆E+

L,R(N) = −∆E−L,R(N+1) that can be explicitly writ-
ten as:

∆E+(N)L,R = − e2

CΣ
(ng ± v −N − 1/2), (A8)

with ng = CgV
′
g/e and v = C ′V/e. The expression of the

tunneling rate is obtained then by the Fermi golden rule:

Γα± =
kBT

e2Rα
h(∆±α /kBT ) (A9)

with h(x) = −x/(1 − ex). In particular for T → 0
the expression for the rate becomes simply Γα± =
−∆±α /e

2Rαθ(−∆±α ). These expressions allow to obtain
the tunneling rates necessary for the calculations pre-
sented in the main text of the paper.
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