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Abstract. In this Letter we consider long capillary–gravity waves described by a fully

nonlinear weakly dispersive model. First, using the phase space analysis methods we de-

scribe all possible types of localized travelling waves. Then, we especially focus on the

critical regime, where the surface tension is exactly balanced by the gravity force. We

show that our long wave model with a critical Bond number admits stable travelling wave

solutions with a singular crest. These solutions are usually referred to in the literature as

peakons or peaked solitary waves. They satisfy the usual speed-amplitude relation, which

coincides with Scott-Russel’s empirical formula for solitary waves, while their decay rate

is the same regardless their amplitude. Moreover, they can be of depression or elevation

type independent of their speed. The dynamics of these solutions are studied as well.
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1. Introduction

In this Letter we investigate further the problem of hydrodynamic wave propagation over
a horizontal impermeable bottom. The main difficulty comes from the unknown free surface
motion. Namely, we focus on a very particular regime of long capillary–gravity waves. The
fluid is assumed to be perfect. Consider a two-dimensional Cartesian coordinate system
Oxy with axis Oy pointing vertically upwards and the horizontal axis coincides with the
still water level y = 0. A layer of a perfect incompressible fluid is bounded from below
by a flat impermeable bottom y = −d and from above by the free surface y = η (x, t).
The fluid density is assumed to be constant ρ > 0. The total water depth is denoted by

h (x, t)
def
:= d + η (x, t). Since the bottom is flat (i.e. d = const), we can equivalently

replace the derivatives of the free surface elevation by the same derivatives of the total
water depth, i.e. η t ≡ h t, ηx ≡ hx. We shall use this property below.

2. Mathematical model

In this derivation we follow the main lines of our previous work [7]. According to the
Young–Laplace law, the pressure p jump across the interface is given by the following
relation:

J p K = −σ

[

ηx
√

1 + η 2
x

]

x

= −σ
ηxx

(

1 + η 2
x

) 3/2
,

where σ represents the surface tension. In this study we apply the small (free surface’s)
slope approximation to obtain J p K ≈ −σ ηx x. This pressure jump appears in the water
wave problem through the Cauchy–Lagrange integral which serves as the dynamic
boundary condition. Below we shall return to the surface tension effects by considering
their potential energy since it allows to achieve easier our goals.

In order to derive model equations for gravity-capillary surface water waves we have to
choose an ansatz to flow’s structure and compute the system energy. Usually these model
equations can be obtained if the horizontal velocity u(x, y, t) is approximated by the depth-
averaged fluid velocity ū(x, t), and the vertical velocity is chosen to satisfy identically the
incompressibility and bottom impermeability:

u(x, y, t) ≈ ū(x, t) , v(x, y, t) ≈ −(y + d) ū x(x, t).

Below we shall omit over bars in the notation since we work only with the depth-averaged
velocity.

The various forms of energies for the specific fluid flow are estimated bellow: The kinetic
energy K consists of the hydrostatic and non-hydrostatic corrections:

K =

ˆ t2

t1

ˆ x2

x1

ρ

[

h u 2

2
+

h 3 u 2
x

6

]

dx dt .
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The potential energy consists of the gravity

V g =

ˆ t2

t1

ˆ x2

x1

ρ g h 2

2
dx dt ,

and capillary contributions:

V c =

ˆ t2

t1

ˆ x2

x1

ρ τ
[

√

1 + h 2
x − 1

]

dx dt ≈
1

2

ˆ t2

t1

ˆ x2

x1

ρ τ h 2
x dx dt ,

to which we applied the small slope approximation (and we introduced another physical

constant τ
def
:= σ

ρ
). For more details on the derivation of energies K and V g we refer to [7].

Now we can assemble the action integral:

S
def
:= K− V g − V c +

ˆ t2

t1

ˆ x2

x1

ρ
[

h t + [h u] x
]

φ dx dt ,

where we enforced the mass conservation by introducing a Lagrange multiplier φ(x, t) .
By applying the Hamilton–Ostrogradsky variational principle and eliminating the
Lagrange multiplier φ(x, t) from the equations, we arrive at the following system of
equations:

h t + [h u] x = 0 , (2.1)

u t + u u x + g hx =
1

3 h

[

h3(u x t + u u xx − u 2
x)
]

x
+ τ hxx x. (2.2)

These are the celebrated Serre–Green–Naghdi (SGN) equations with weak∗ surface
tension effects, [9, 13]. The full list of (physical) conservation laws is given below. The
mass conservation was already given in equation (2.1). The remaining identities are given
below:

[

u−
(h 3 u x) x

3 h

]

t

+

[

u 2

2
+ g h−

h 2 u 2
x

2
−

u (h 3 u x) x
3 h

− τ hxx

]

x

= 0 , (2.3)

[h u] t +
[

h u 2 + 1
2
g h 2 + 1

3
h 2 γ − τ R

]

x
= 0 , (2.4)

where we introduced for the sake of notation compactness two quantities:

γ
def
:= h

[

u 2
x − u x t − u u xx

]

,

R
def
:= h hxx − 1

2
h 2

x .

The quantity γ has a physical sense of the vertical acceleration of fluid particles computed
at the free surface. Some of the conservation laws shall be used below to study travelling
waves to the SGN system (2.1)-(2.2).

The conservation of energy can be written in the form:

Ht + Qx = 0 , (2.5)

∗The word ‘weak’ comes from the fact that we applied small slope approximation.
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where

H
def
:=

hu2

2
+

h3u2
x

6
+

gh2

2
+

τ

2
h2
x ,

Q
def
:=

(u2

2
+

h2u2
x

6
+ gh +

hγ

3
− τhxx

)

hu + τhx(hu)x ,

with H the approximation of the total energy and Q the energy flux.

3. Travelling wave solutions

In this Section we focus on a special class of solutions — the so-called travelling waves.
The main simplifying trick is that the flow becomes steady in a judiciously chosen frame
of reference. Thus, it allows to analyze Ordinary Differential Equations (ODEs) instead
of working with Partial Differential Equations (PDEs), which are much more complex to
analyze. Namely, we substitute the following travelling wave ansatz into all equations:

u (x, t) = u(ξ) , h (x, t) = h(ξ) , ξ
def
:= x− c t ,

where c > 0 is the wave speed (in other words we consider waves travelling to the
right). Moreover, we focus on localized solutions of this type — the so-called solitary
waves. Consequently, we assume additionally that the derivatives of the functions u(ξ)
and h(ξ) vanish at infinity, i.e.

h(n) (ξ) → 0 , u(n) (ξ) → 0 , as ξ → ∞ ,

n = 1, 2, . . . . For the total depth and horizontal velocity profiles (i.e. n = 0) we have
the following boundary conditions:

h (ξ) → d , u (ξ) → −c , as ξ → ∞ .

In other words, we work in the frame of reference moving with the wave. Thanks to
the Galilean invariance of SGN equations, we can choose the appropriate frame to our
convenience.

The mass conservation equation (2.1) readily yields a relation between u and h :

u (ξ) = −
c d

h (ξ)
. (3.1)

By substituting these relations into the conservation laws (2.3), (2.4) and taking a linear
combination of these two equations leads to the following implicit ODE E(h ′, h) = 0 for
the total water depth:

E(h ′, h)
def
:=

Fr (h ′) 2

3
− Bo (h ′) 2

h

d
− Fr

+
(2 Fr + 1) h

d
−

(Fr + 2) h 2

d 2
+

h 3

d 3
= 0 , (3.2)

where we introduced two dimensionless numbers:
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Fr
def
:= c 2

g d
: the Froude (also known as Eötvös) number

Bo
def
:= τ

g d 2 ≡ σ
ρ g d 2 : the Bond number.

The details on the derivation of the master equation (3.2) with the full surface tension
term can be found in [6]. Let us compute the partial derivatives of the function E(h ′, h):

∂E

∂h
= −

Bo (h ′) 2

d
+

2 Fr + 1

d
−

2 (Fr + 2) h

d 2
+

3 h 3

d 3
,

∂E

∂h ′ =
2 Fr h ′

3
− 2Boh ′ h

d
.

In particular, one can see that the derivative ∂E
∂h ′

may vanish. It implies that singularities
may exist [2]. Equation (3.2) can be seen as an algebraic relation between two variables h
and h ′ which defines implicitly an algebraic curve in the phase plane (h, h ′) . A solitary
wave necessarily ‘lives’ on this algebraic variety. Namely, it has to be a homoclinic orbit
departing and returning to the point (d, 0) by respecting the orientation of branches (i.e.
h is obviously increasing where h ′ > 0 and vice versa). For the case of full surface tension
all possible topologies of these curves were analyzed in [6]. Here we repeat some parts
of this analysis for the weak case. Just by looking at equation (3.2) we can infer several
properties of solitary waves to the SGN equations:

• Solitary waves are symmetric with respect to the crest
• For solitary waves with a smooth crest the following speed-amplitude relation holds:

Fr = 1 +
a

d
, (3.3)

where a is the wave amplitude, i.e. h (0) = a + d
• By performing McCowan’s analysis [15] we obtain the following ‘dispersion rela-

tion’ for solitary waves:

Fr =
3
(

1 − Bo (κ d) 2
)

3 − (κ d) 2
, (3.4)

where κ is the solitary wave decay rate, i.e. h (ξ) ∼ d + a e−κ ξ .

We would like to comment on the last point. If Bo ≡ 1/3 (the critical case) then we
have necessarily that Fr = 1 or κ d =

√
3 . Moreover, the critical case is necessarily

non-dispersive.

3.1. Phase plane analysis

For fixed (meaningful) values of parameters Fr and Bo we can construct (and plot) the
corresponding phase plane diagram using, for example, algcurves package from Maple,
which offers tools for studying one-dimensional algebraic curves defined by multi-variate
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(a) (b)

Figure 1. Subcritical case: the algebraic variety (a) and a zoom on the solitary
wave (b) for parameters Fr = 1.5 > 1 and Bo = 0.2 < 1

3 . On this and all other

phase plane diagrams k ≡ h ′ .

polynomials. This package detects all the branches and, thus, the results are certified. Trav-
elling wave solutions (both solitary and periodic) to several two-component systems (in-
cluding two-component Camassa–Holm and modified Green–Naghdi equations) were
completely classified in [11] using similar phase plane considerations.

Consider various characteristic values of parameters sampled from the configuration
plane (Fr, Bo) . The case when Bo < 1

3
and Fr > 1 is depicted in Figure 1. It corresponds

to classical solitary waves of elevation and we call it a subcritical case (since Bo is below
the critical value). If Bo > 1

3
and Fr < 1 we have solitary waves of depression whose

phase plane diagram is shown in Figure 2. This case is referred to as the supercritical case.
On the other hand, if Bo < 1

3
and Fr < 1 or Bo > 1

3
and Fr > 1 no solitary waves exist as

it can be clearly seen on corresponding phase plane diagrams shown in Figure 3. However,
the most intriguing situation is the critical case Bo = 1

3
. The corresponding phase plane

diagrams are depicted in Figure 4. These curves represent a new type of weakly singular
solutions — the so-called peakons [3, 14]. The loop has to be discontinuous since there is
a jump in the derivative at the wave crest. These jumps are indicated in Figure 4 with
dashed arrows. The jump is possible since the derivative ∂E

∂h ′
= 0 vanishes at the crest for

Bo = 1
3

and since there Fr = 1+a/d . The phase plane of a peakon of depression is depicted
in the left panel 4(a) and a peakon of elevation in 4(b). The peakons to SGN equations
will be studied below using the means of the direct numerical simulation.
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(a) (b)

Figure 2. Supercritical case: the algebraic variety (a) and a zoom on the
solitary wave (b) for parameters Fr = 0.6 < 1 and Bo = 0.5 > 1

3 .

(a) (b)

Figure 3. Non-existence of solitary waves: (a) Fr = 0.5 < 1 and Bo = 0.25 < 1
3 ;

(b) Fr = 1.3 > 1 and Bo = 0.5 > 1
3 .
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(a) (b)

Figure 4. Peakons in the critical case Bo =
1
3 : (a) Fr = 0.86 < 1 ; (b)

Fr = 1.16 > 1 . Arrows show the direction of motion along the branches and the

dashed arrow represents a jump.

-3 3
x

0

1.5

η

Figure 5. Peakons’ profiles for Froude numbers Fr = 1.3, 1.5, 2.0 and 2.5.

Figure 5 shows the profiles of various peakons of elevation (since the analogous peakons
of depression are the same but reflected about η = 0) for different phase speeds. It can be
observed that the decay rate of the pulses is the same.

4. Numerical study

It is possible to derive analytically the free surface elevation corresponding to peakons
discovered above using phase plane methods:

η (x, t) = a e−
√
3 | ξ |/d , ξ = x− c t , (4.1)
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0 200
-0.1

0.5

η

(a) Critical case, B = 1/3t = 0

t = 140

178 188
x

-0.1

0.5

η

(b) Magnification of (a)t = 140

exact peakon

Figure 6. Emergence of a peakon from a smooth initial condition.

where c =
√

1 + a/d is defined in (3.3) and in this derivation we used the results of the
dispersion relation analysis for solitary waves (3.4). The corresponding horizontal velocity
field can be recovered from the mass conservation equation (3.1). We notice that the
wave amplitude a > − d is a real free parameter and it is not necessarily positive. In
agreement with the phase plane analysis, the peakons of depression are described by the
same analytical expression with −d < a < 0 and the corresponding Froude number will
be subcritical, i.e. Fr < 1. We would like to underline that peakons are known to appear
in various dispersionless limits [8].

In order to solve numerically the SGN equations (2.1), (2.2) we use the standard Galerkin

/ Finite Element method with smooth cubic splines for the spatial discretization (of fourth
order of accuracy) combined with the classical four stage, fourth order, explicit Runge–
Kutta method for the time stepping [1, 16]. The boundary conditions are periodic in the
simulations below. However, we took the domains sufficiently large in order to avoid inter-
actions with the boundaries when possible. We mention also that the method degenerates
to the first order of accuracy at the singular crest.

The first numerical experiment will consist in starting with a smooth initial condition
in the critical case Bo = 1/3

h(x, 0) = 1 +
1

2
e−

1
2
x2

, u(x, 0) = 0 , x ∈ [−200, 200] .

The evolution of this initial condition is shown in Figure 6. One can see that a peakon
emerges under the SGN dynamics in the critical regime. In order to support this claim,
the lower panel of Figure 6 shows a magnification of the free surface with a peakon given
by the analytical formula (4.1) superimposed on the numerical peakon. The amplitude
of the emerged peakon is a/d ≈ 0.3058 . The spatial mesh used in this computation
is ∆x = 0.02 and the time step was taken to be ∆t = 0.002 . It is noted that these
numerically generated waves from the evolution of a smooth initial condition belong into
the finite element space and they propagate without shedding any spurious oscillations
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0.55
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(a) t = 0

-80 80
-0.3

0

0.55

η

(b) t = 16

-80 80

x

-0.3

0

0.55

η

(c) t = 19.2

-80 80
-0.3

0

0.55
(d) t = 20

-80 80
-0.3

0

0.55
(e) t = 24

-80 80

x

-0.3

0

0.55
(f) t = 72

Figure 7. A head-on collision of two peakons of elevation (a/d = 0.4) and
depression (a/d = −0.2).

and they remain smooth approximation of the exact peakons. If we start with a different
initial condition, the generated peakon will have a different amplitude. For instance, if the
initial displaced mass is negative (i.e. we start with a trough rather than a bump), we shall
have a peakon of depression. Moreover, if the computations are continued for sufficiently
long time and the initial displaced mass is sufficiently large, we can see the emergence of a
finite number of peakons. Thus, in some sense the dynamics of SGN equations are similar
to the Korteweg–de Vries (KdV) equation where smooth solitary waves (of elevation)
emerge [12] and also similar to the Camassa–Holm (CH) equation where peakons emerge,
[4]. However, there are important differences in the behaviour of the SGN, KdV and
CH equations. The former in the critical case supports travelling waves of elevation and

depression at the same time. The latter models are integrable. It is not the case of the
SGN equations. For this reason we performed additional numerical experiments of head-on
(see Figure 7) and overtaking (see Figure 8) collisions. We considered peakons of different
polarities and very fine meshes (∆x = 0.004 , ∆t = 0.0004) to simulate this process
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-30 30
-0.3

0

0.55

η

(a) t = 0
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0
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(b) t = 80
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-0.3

0
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η

(c) t = 120

-80 -20
-0.3
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0.55
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-60 0
-0.3

0

0.55
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40 100

x

-0.3

0

0.55
(f) t = 260

Figure 8. An overtaking collision of two peakons of elevation (a/d = 0.4) and
depression (a/d = −0.2).

very accurately. In particular, one can see that these collisions are inelastic, which certifies
the non-integrability of SGN equations. It is noted that the head-on collision results to a
new peakon of depression propagating with larger phase speed than the initial one and a
new peakon of elevation propagating with smaller phase speed. The small amplitude tails
generated by the peakon of depression propagate faster than the peakon itself contrary to
the small amplitude tails generated by the peakon of elevation. The overtaking collision
is more effective to the small amplitude peakon, which is actually resolved into several
waves including peakons of elevation and depression. The large amplitude peakon that
emerges after the interaction is very similar to the initial one and remained stable. It is
worth to mention that the trailing tails resulting from the interactions of peakons have
the shape of a N−shaped wavelets rather than the usual form of a trailing dispersive
tail. Similar results were observed when we considered the interactions between peakons of
elevation. The overtaking collision though resulted in peakons of elevation of very similar
amplitude with the initial pulses in addition to small amplitude trailing tails. It is noted
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that we considered the L2 projection of the exact peakons onto the finite element space
as numerical initial conditions. Numerically approximated initial peakon shed a negligible
artefact which is analogous to the accuracy of the numerical method and does not affect
the numerical results. Since these artefacts do not propagate they can be easily cleaned
from the rest of the solution using the cleaning technique described in [10].

5. Discussion

The physical pertinence of the proposed solutions has to be further investigated by
studying the full Euler equations in the critical regime as well. The last problem is more
complicated, since the variety of known travelling capillary–gravity waves is huge [5, 17].
Moreover, even if the employed model can be derived in a physical manner using ele-
gant variational techniques, its pertinence is restricted due to the small-slope assumption.
However, we presented enough evidence that the mathematical model under considera-
tion admits a continuous family of peaked solitary waves both of elevation and depression.
It is shown analytically that the decay rate of these peakons is universal and does not
depend on the solution amplitude. Additionally, these solutions follow the traditional
speed–amplitude relation (3.3), which coincides with the empirical relation of Scott Rus-

sel for smooth solitary waves. The dynamics of these waves were studied. These results
apply also to line solitary waves in 3D. Finally, we showed that these solutions are stable
in the sense of dynamical systems, i.e. peakons emerge inevitably from ‘arbitrary’ smooth
initial conditions after a short transient period of time. The amplitude of the emerged
peakon seems to depend on the mass of the initial condition with respect to the still water
level. As the main conclusion of this Letter we state that peakons are emerging coherent
structures in the critical regime of the SGN equations (2.1) – (2.2).
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