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PVTOL Aerial Manipulators with a Rigid or an
Elastic Joint: Analysis, Control, and Comparison

Burak Yüksel1 and Antonio Franchi2

Abstract—In this paper we present the dynamic Lagrangian
modeling, system analysis, and nonlinear control of a robot
constituted by a planar-vtol (PVTOL) underactuated aerial
vehicle equipped with a rigid- or an elastic-joint arm, which
constitutes an aerial manipulator. For the design of the aerial
manipulator, we first consider generic offsets between the center
of mass (CoM) of the PVTOL, and the attachment point of
the joint-arm. Later we consider a model in which these two
points are the coinciding. It turns out to be that the choice of
this attachment point is significantly affecting the capabilities
of the platform. Furthermore, in both cases we consider the
rigid- and elastic-joint arm configurations. For each of the
resulting four cases we formally assess the presence of exact
linearizing and differentially flat outputs and the possibility
of using the dynamic feedback linearization (DFL) controller.
Later we formalize an optimal control problem exploiting the
differential flatness property of the systems, which is applied, as
an illustrative example, to the aerial throwing task. Finally we
provide extensive and realistic simulation results for comparisons
between different robot models in different robotic tasks such
as aerial grasping and aerial throwing, and a discussion on
the applicability of computationally simpler controllers for the
coinciding-point models to generic-point ones. Further exhaustive
simulations on the trajectory tracking and the high-speed arm
swinging capabilities are provided in a technical attachment.

I. INTRODUCTION

Aerial robots are in use for scientific and technological
development purposes that are increasing steadily over the last
two decades. Thanks to the agility and the great workspace
of such robots, they have been used to follow, e.g., complex
trajectories [1], [2]. Such applications allowed researchers to
develop new algorithms using mostly visual sensors for a vast
range of fields [3], such as surveillance and patrolling, search
and rescue, civil monitoring, agriculture and so on, and with
or without the human in the loop [4].

Over the past few years, another application area of flying
robots has been investigated deeply: Aerial Physical Interac-
tion (APhI). In such applications, a flying robot is required
to exert certain forces and/or torques (i.e., wrenches) to the
environment, while maintaining a stable flight [5]. Examples
of APhI are various; manipulation of an object [6], surface
inspection [7], [8], object transportation [9], [10], or tool op-
eration [11], just to mention a few. Moreover, various control
methods for aerial manipulators have been developed, using,
e.g., impedance control [12] or passive decomposition [13].
In [14] a mechanism moving the battery pack is included in
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the control framework for counterweighting the statics of the
manipulator arm. Results of outdoor experiments are reported
in [15], where authors have compared the performances of the
PID and the backstepping controllers.

Although in most of the designs for aerial robots rigid
actuators are considered, very recently some of the authors
of this paper considered the use of a compliant (flexible)
actuator together with a quadrotor aerial robot [16]. Mech-
anisms including compliant actuators, such as elastic-joint
arms, have superiority over the rigid-joint arms when, e.g.,
the task requires the use of the energy stored in the elastic
components to obtain faster dynamic ranges or a safer in-
teraction with the environment. Examples for such tasks are,
e.g., object throwing and hammering, which both require high
velocities that a rigid-joint arm might not be able to provide,
as well as safe human-robot physical interaction [17]. Such
compliant mechanisms are widely used in ground robots like
humanoids [18], in manipulators physically interacting with
humans [17], and to achieve ‘explosive’ motion tasks [19].
Recently, a design of a light-weight compliant arm is presented
in [20], where the authors showed the feasibility of the arm
for payload mass estimation and collision detection. Despite
the fact that the authors eventually plan to use this arm for
aerial manipulation, the usage of such mechanisms in APhI
and aerial manipulators is not yet fully investigated, with
an only exception in [16], where design, identification and
experiments of an elastic-joint arm on a quadrotor has been
shown, with a controller driving the flying robot that however
is unaware of the physical properties of the attached arm.
In [16] it is experimentally shown that also in the aerial robot
domain the use of an elastic-joint arm can amplify the link
velocity compared to the rigid one, thanks to the energy stored
in its elastic components. Moreover, the elastic joint provides
passive compliance that is shown by the authors to be effective
for aerial physical interaction tasks.

This paper is organized as follows. In Section II we present
the motivation of this paper, and summarize our contributions
to the literature. In Section III we first present the base model
of the robot (PVTOL+joint+arm) considered in this paper and
later formalize the objectives of our work. In Sec. IV-A, we
recall the exact output tracking problem and in Section IV-B
we systematically define the methods to achieve our objectives.
In Section V-A the aerial manipulator model with a Rigid-
joint arm attached on a Generic point is considered (Case
RG), and the flat outputs of the system together with the
dynamic state feedback linearization control law are provided.
In Sec. V-B it is shown that for Case RG, the end-effector
and PVTOL CoM positions of the aerial manipulator are not
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part of the flat outputs. In Section V-C we show how the
differential flatness property and the control design greatly
improve when the Rigid-joint arm is attached to the CoM
of the PVTOL (Case RC). In Section VI-A we show that a
PVTOL with an Elastic-joint arm attached to a Generic point
(Case EG), still possesses the differential flatness property
and it is controllable though DFL, even though in a different
and much more complex way. In Section VI-B we show that
also in this case the flatness properties become much more
powerful when the Elastic-joint arm is attached to the CoM
of PVTOL (Case EC). In Section VII we show how to use
differential flatness in the planning phase, and we formalize an
optimal control problem for the considered aerial manipulator.
In Section VIII we provide extensive and realistic simulation
results and comparisons for various cases, such as trajectory
tracking; control of the models of Cases RG and EG with the
controllers of the Cases RC and EC, respectively (Sec. VIII-B);
aerial grasping (Sec. VIII-C); high-speed arm swinging via
link velocity amplification and object throwing using aerial
manipulators (Sec. VIII-D). The results of the simulations are
summarized in Section IX. Finally in Section X we conclude
our work showing the bridge between the current work and
our future plans.

II. MOTIVATIONS AND PAPER CONTRIBUTIONS

In this paper we consider an aerial manipulator with one
DoF joint-arm. Such system can be considered as a more
light-weight design compared to a redundant model. Although
a redundant aerial manipulator can perform more dexterous
tasks, the system we consider can easily achieve agile and
explosive movement tasks as, e.g., aerial grasping or throwing.
Notice that controlling such a system is not trivial, due to the
underactuation, nonlinearity, and inertial coupling between the
two systems.

Although the control of aerial robots [21] and the control of
rigid or elastic joint type manipulators [22] have been studied
in the literature separately, the analysis and control of systems
consisting of these two, the so called aerial manipulators, is
still an open (and rapidly growing) topic. In particular, the
control of aerial manipulators with elastic arms has not been
addressed so far and is not yet throughly understood. In this
paper, we address the design and the control problems of
this binomial, and propose four new nonlinear controllers for
the four most important cases of aerial manipulator given by
the possible combinations of the joint nature (rigid or elastic)
with the kinematics of the platform-arm combination (generic
attachment or CoM attachment), as summarized in Table I.

In this paper we aim at i) studying both the aerial vehicle
and the manipulator together as one system, the aerial manipu-
lator, ii) extending the preliminary insights shown in [16] and
rigorously laying the foundations of the topic addressed there,
and iii) comparing different designs of aerial manipulators
for different tasks. We reach our goals by achieving the
Objectives 1, 2 and 3 in Section III. To do so, we rigorously
analyze the exact output tracking and differential flatness
properties of different aerial manipulator designs, and propose
dynamic feedback linearization control for each of them. A
summary of the theoretical results can be found in Table II.

To the best of our knowledge, such an extensive study
for aerial manipulators using differential flatness and exact
linearizability has not been presented before. Furthermore,
controlling the motion of a robot composed by an elastic-
joint arm attached to a flying vehicle has not been studied
yet. In this paper we fill this gap, by showing how we can
independently and dynamically control the orientation of the
elastic-joint arm together with the position of the PVTOL.
By analyzing and proposing several controllers for robots of
this novel type we aim at paving the way for the use of
flexible-joint manipulators, which are able to benefit of the
compliance advantages, also in the aerial physical interaction
and manipulation field.

We exhaustively study the four different cases of Table I
because each one is interesting for a different reason. First
of all, the cases in which the joint is attached to any point
of the PVTOL (shortly named ‘Case RG’ and ‘Case EG’
later) are interesting for their generality because they cover
any possible real case. We prove that, in this case, the center
of mass of the whole system (VTOL + arm) is a part flat of
a output. On the other hand, we prove that the end-effector
position is not in general part of a flat output, except for
the cases in which the joint is attached to the CoM of the
PVTOL, (shortly named ‘Case RC’ and ‘Case EC’ later). This
fact brings strong advantages for the motion planning and
control of the end-effector position because the whole state
and the input can be computed analytically from a sufficiently
smooth trajectory of the end-effector and the corresponding
controllers are computationally simpler and do not generate a
zero dynamics.

The rigid-joint cases (Case RG and Case RC) are found
to be more suitable for tasks such as aerial grasping (see
Sec. VIII-C) or trajectory tracking1. The reason is that elastic-
joint need effort than rigid ones for these tasks, since the
motors has to fight against the tendency of the spring to
oscillate at its natural frequency. On the other hand the elastic-
joint cases (Case EG and Case EC) are favorable for tasks in
which one has to achieve high-speed link velocities such as
aerial throwing (see Sec. VIII-D). The reason is the ability of
the elastic components to store potential energy and release it
in the form of kinetic energy.

Summarizing, the main contribution of this work is that we
systematically provide i) a set of exact linearizing (i.e., flat)
outputs for the all the four cases, ii) the explicit algebraic map
from the flat outputs to the states and the control inputs, iii) a
nonlinear controller for each case with formal proofs, iv) the
formalization of an optimal control problem for aerial manip-
ulators using differential flatness property, v) an extensive set
of realistic numerical tests that shows its practicability with
real robots, vi) a comparison between the rigid-joint and the
elastic-joint cases that shows the benefits and drawbacks of
each choice, vii) a numerical study on the robustness of the
controller for the coinciding cases (Case RC and case EC)

1Additional simulation results are in the technical attachment. http://
homepages.laas.fr/afranchi/files/J/TR-Yuesksel-Franchi.zip open with pass-
word: T-Ro2016.

http://homepages.laas.fr/afranchi/files/J/TR-Yuesksel-Franchi.zip
http://homepages.laas.fr/afranchi/files/J/TR-Yuesksel-Franchi.zip
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Fig. 1: – Left: a sketch of the mobile aerial manipulator, composed
by a PVTOL equipped with a 1-link arm. Notice the offsets between:
i) the center of mass (CoM) of the PVTOL (PC1 , red point),
ii) the center of actuation of the PVTOL (PG, green point), and
iii) the attachment point of the link (PM, blue point), around which
the motor rotates and an either rigid or elastic joint is placed.
– Right: relative and absolute angles of the rigid bodies. The lengths
of the z axes are made different just for illustration purposes.

when the coinciding assumption is not exactly verified2.
We note that a preliminary version of this paper was

presented in [16], in which we only address the design and
manufacturing problems. Here we present an extension of this
work with a strong theoretical contribution.

III. NOMENCLATURE AND OBJECTIVES

In this section we provide the basic model of the robotic
system and we formalize our objectives.

Similar to previous studies in robotics (see, e.g., [23]–[25])
we consider here the case of a planar vertical takeoff and
landing (PVTOL) aerial platform. This kind of reduced system
captures the main nonlinear features and the underactuation of
a 3D system, and allows to generalize the obtained results in
a later stage. Furthermore, many practical aerial problems are,
fundamentally, 2D problems immersed in a 3D world (as, e.g.,
the aerial grasping problem addressed in [25]).

The considered mobile aerial manipulator is composed by
a generic model of a PVTOL with an attached 1-link arm, as
depicted in Fig. 1 (left). We denote with FW : {PW,xW ,zW}
and F1 : {PC1 ,x1,z1}, the world (inertial) frame and the frame
attached to the PVTOL, respectively, where PC1 is the Center
of Mass (CoM) of the PVTOL (without the arm). Both the
motor and the joint of the arm rotate about an axis parallel
to zW × xW and passing through a point PM. We then define
the motor frame as FM : {PM,xm,zm} that is rigidly attached
to the motor output shaft. The joint can be either rigid (cases
considered in Sec. V) or elastic (cases considered in Sec. VI).
We define also a link frame F2 : {PC2 ,x2,z2}, where PC2 is
the CoM of the link. Finally we denote with the points PE
and PC the end-effector of the arm and the CoM of the whole
system (PVTOL+motor+link), respectively.

Given an angle θ∗ ∈ R between the z-axes of two frames,
defined in Fig. 1 (right) we define:

R∗ =
(

cosθ∗ sinθ∗
−sinθ∗ cosθ∗

)
∈ SO(2).

2Meaning that the attachment point of the arm and the PVTOL CoM are
not coinciding, but the controllers are not aware of that.

Rigid Joint Elastic Joint
PC1 and PM are generic Case RG, Sec.V-A Case EG, Sec.VI-A
PC1 and PM are coinciding Case RC, Sec.V-C Case EC, Sec.VI-B

TABLE I: Summary of the aerial manipulator categories considered
in this paper.

Therefore, the orientations of F1 in FW , FM in F1, F2 in
F1, and F2 in FM are expressed by R1, Rm, R2, and Re,
respectively. The absolute motor angle is θ1m = θ1 +θm and
absolute link angle is θ12 = θ1 + θ2, as depicted with blue
color in Fig. 1 (right). The angle θe = θ2−θm = θ12−θ1m is
constantly zero if the joint is rigid and can be nonzero if the
joint is elastic.

The constant positions of PM and PG in F1 are denoted with
d1 = [d1x d1z ]

T ∈ R2 and dG = [dGx dGz ]
T ∈ R2 respectively.

The constant position of PM in F2 is denoted with −d2 =
[−d2x − d2z ]

T ∈ R2. Finally, the vector de = [dex dez ]
T ∈ R2

denotes the constant end-effector position PC2 in F2.
The (time-varying) positions of PC, PC1 , PM, PC2 and PE in

FW are denoted with pc = [xc xc]
T ∈ R2, pc1 = [x1 z1]

T ∈ R2,
pm = [xm zm]

T ∈R2, pc2 = [x2 z2]
T ∈R2, and pe = [xe ze]

T ∈R2,
respectively.

The mass and moment of inertia of the PVTOL, motor, and
link are denoted with m1 ∈ R>0, J1 ∈ R>0; mm ∈ R>0, Jm ∈
R>0; m2 ∈ R>0, J2 ∈ R>0, respectively. We use the symbol
ḡ ∈ R+ to denote the gravitational constant.

The PVTOL is actuated by means of: i) a total thrust force
−utz1 ∈ R2 applied at PG, where ut is its (signed) intensity
and its direction z1 is constant in F1, and ii) a total torque
(moment) ur(z1×x1) ∈ R2 applied at PG, where ur ∈ R is its
(signed) intensity.3 Furthermore, a motor is attached to the
PVTOL and applies a torque τ(zm× xm) ∈ R2 at PM to the
joint, where τ ∈R is its (signed) intensity. The three inputs of
the system are gathered in the vector u = [ut ur τ]T ∈ R3 and
shortly denoted in the following as thrust, PVTOL torque and
motor torque, respectively.

In this paper we shall consider the following cases: i) PC1
and PM are generic, i.e., there exist an arbitrary offset d1 ∈R2

between each other; or ii) coinciding, i.e., d1 = 0. Moreover,
for each of the previous cases we consider the case in which
the connection between the PVTOL and 1-link arm is either
rigid or elastic. Hence, four Cases are investigated in total,
summarized in Table I.

Clearly, Case RC and Case EC are sub-cases of Case RG
and Case EG, respectively. Nevertheless we shall show that
they deserve a special treatment because new properties appear
in those cases that significantly increase capabilities of the
platform. Notice that in all cases the position of PG can be
any, i.e., dG ∈R2 (while in the literature is typically assumed
PG ≡ PC1 , i.e., dG = 0).

Like for similar mechanical systems, the robot dynamics
can be expressed, using the Lagrange’s equation, as

q̈ = M−1(q)
(
G(q)u− c(q, q̇)−g(q)+ fE(q)+ fext

)
(1)

3For example, in the case of a planar birotor, PG would be the center of
two coplanar propellers, ut the sum of the forces provided by each propellers
and ur their difference times the distance from PG, see, e.g., [26].
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where q∈Rn are the considered generalized coordinates (n= 4
for the rigid-joint cases whereas n = 5 for the elastic-joint
cases), M ∈ Rn×n is the generalized mass and inertia matrix,
G ∈ Rn×3 is the control input matrix, c ∈ Rn stands for the
centrifugal/Coriolis forces, g ∈Rn represents the gravitational
forces, and fE ∈ Rn represents the forces due to the potential
energy stored in the elastic joints (in the rigid-joint cases fE =
0). Finally, the external forces are denoted with fext ∈Rn, and
represent the force and torques applied to the system from the
external environment. We shall specify the elements of (1) for
each Case of Table I in the following sections.

Notice that in all the four cases the system is underactuated,
because only three inputs are available for a system whose
configuration space is either 4- or 5-dimensional.

For the PVTOL aerial manipulator considered in this paper
we want to achieve the following objectives:

Objective 1. (Trajectory generation) formally discover, if it
exists, an exact linearizing (i.e., differentially flat) output and
explicit the algebraic map from the flat output to the state q, q̇
and the input u.

Objective 2. (Control) Find the domain in which the decou-
pling matrix Ḡ is invertible (see Sec. IV) and therefore a
dynamic exact feedback linearization control is applicable.

Objective 3. (Rigid–Elastic Comparison) Compare the differ-
ent cases, especially the elastic versus the rigid case in order
to discover pros and cons of the two architectures.

Note that it is a particularly challenging task to achieve the
aforementioned Objectives for a PVTOL aerial manipulator
due to the nonlinearity and underactuation of the system, and
the presence of dynamical couplings between the floating base
and the rigid- or elastic-joint arm.

IV. CONTROL BACKGROUND

For the reader convenience and the sake of completeness in
this section we recall some concepts on exact output tracking.
The experienced reader can quickly go over the section to
retain only the symbol definitions.

A. Review of Exact Output Tracking

In order to state the goal of this work we briefly and
rather informally recap some well known concepts in nonlinear
control, see, e.g., [27] for a rigorous introduction to the topic.
In the following we refer to a system in the form of (1).

Let be given an output y(q) = [y1 y2 y3]
T that is function

of q and has the same size of u (i.e., three), and let us ask
whether it is possible to make y track a desired trajectory yd(t)
whose derivatives are known and bounded, while maintaining
the state (q, q̇) and the input u bounded and with a known
evolution that depends only on yd(t) and its derivatives.

It is evident that finding an output possessing this strong
property is very useful in practice. In fact, this is known as
the exact tracking control problem and it is solvable if and
only if y is an exact linearizing output via dynamic feedback
for the system (1), which is defined in the following:

Definition 1. An output y is an exactly linearizing output via
dynamic feedback for (1) if it is possible to find s1,s2,s3 ∈
N≥0 such that if one considers ū = [u(s1)

1 u(s2)
2 u(s3)

3 ]T and
x̄ = [qT q̇T u1 · · ·u(s1−1)

1 u2 · · ·u(s2−1)
2 u3 · · ·u(s3−1)

3 ]T as the new
input and the new state of the system, respectively,4 then the
the dynamics of y1, y2, and y3 can be written as

ȳ =
[
y(r1)

1 y(r2)
2 y(r3)

3

]T
= f̄(x̄)︸︷︷︸
∈R3

+ Ḡ(x̄)︸︷︷︸
∈R3×3

ū (2)

where the following conditions are verified

1) the total relative degree r = r1 + r2 + r3 matches with the
dimension n̄ of the augmented state, i.e.,

r = r1 + r2 + r3 = 2n+ s1 + s2 + s3 = n̄ (3)

2) the decoupling matrix G(x̄) is invertible for some x̄.

The name ‘exactly linearizing’ comes from the fact that if
y is an exactly linearizing output, then input transformation

ū = Ḡ−1(ωωω− f̄) (4)

brings the system in the linear controllable form

ȳ =ωωω (5)

which is equivalent to system (1) thanks to the matching
condition on the relative degree (i.e., thanks to the absence
of an internal dynamics).

Furthermore, the transformation (4) can also be used in a
control scheme as inner linearizing control loop on top of
which any linear pole placement or LQR control strategy can
be employed [28] for the transformed system (5). However, the
existence of an exact linearizing output is a general property
of the system that is not necessarily related to the need of
controlling it. In fact a system is said exactly input-output
linearizable via dynamic feedback if it admits (at least) one
exactly linearizing output, i.e., it exists a state and input change
of coordinates (possibly including a state extension) which
brings it to the simpler equivalent form (5).5

A similar concept introduced later in the literature (see, e.g.,
[29], [30]) is the one of differentially flat system.

Definition 2. The system (1) is differentially flat if it exists an
output y =

[
y1 y2 y3

]T (called flat output) such that q, q̇,
and u can be expressed as an algebraic function of y1, y2, y3
and a finite number of their derivatives.

The presence of a flat output allows to know in advance
(algebraically) the nominal state and input trajectories along
which the system will evolve while tracking a desired output
trajectory. Therefore it turns to be very useful in the planning
and trajectory generation phase. Knowing that an output is
flat allow also to use some flatness-based tracking control
techniques, see, e.g., [31].

4Notice that u(0)i = ui and that u(−1)
i means that ui does not belong to x̄.

5Note that here the obtained linear system is the same as the original one,
i.e., the linearization is ‘exact’, and must not be confused with the linear
approximation of a nonlinear system based on Taylor expansion and truncation
at the first order.
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The following important equivalence fact holds (see,
e.g., [31], [32]):

Fact 1. Differential flatness is equivalent to exact input-output
linearizability via dynamic feedback in an open and dense set
of the state space and an output is flat if and only if is exactly
linearizing.

B. Methodology

In this section, we describe the main steps of the method that
we will shall employ in order to achieve the aforementioned
Objectives 1 and 2.

Regarding Objective 1, in order to understand if an output
is flat, one has to find an appropriate algebraic transformation.
However, this is clearly not practical criteria, because it
requires a priori knowledge if the output is flat or not, for
a successful trial. On the other hand, Definition 1 provides
a systematic way to assess whether an output is exactly
linearizing or not. Moreover if it is, then one also finds
a linearizing controller together with the differentially flat
outputs, using Fact 1. Therefore, we will achieve Objective 1
using the following method:

Given an output y:

1) we define the generalized coordinates q starting from y
and adding one coordinate more in the rigid case and two
more in the elastic case;

2) we compute M, c, g, and fE in (1) which makes possible
to write down the exact dependency of each entry of ÿ
from each entry of q, q̇, and u, i.e.,

ÿ1 = f1(q, q̇,u)ÿ2 = f2(q, q̇,u), ÿ3 = f3(q, q̇,u) ; (6)

3) using (6) and (1), we are able to compute the expected de-
pendency of y( j)

i from each entry of q, q̇, u, u̇, . . . ,u( j−2)

for any i = 1 . . .3, j > 2, without exactly computing the
derivatives,

4) taking advantage of that we can easily compute, for each
choice of s1, s2, s3 what are the expected relative degrees
r1, r2, and r3 in (2), by just stopping as soon as one
among u(si), i = 1, . . . ,3 appears for some j in y( j)

i , thus
having ri = j

5) we can then check whether a choice exists for s1,s2,s3
that possibly satisfies (3)

6) if this choice exists then we compute explicitly Ḡ(x̄)
in (2) and we check for its invertibility in a certain domain
of x̄ which implies that the output is exactly linearizing
and, by virtue of Fact 1, also a flat output. by doing so
we achieve Objective 2.

We refer the reader to Table II, for a summary of the result
of this methodology applied to the four cases in exam. The
proofs of the results will be given in the next sections.

Once we know that an output y is exactly linearizing we
try to derive the algebraic relation described in Definition 2
which certainly exists, thus achieving Objective 1.

Objective 3 is achieved through the paper and mainly in
Section VIII with realistic numerical tests.

V. PVTOL WITH A RIGID–JOINT ARM

A. Rigid-joint Attached to a Generic Point (RG case)

In this section we consider the ‘Case RG’ in which PC1 and
PM are generic, i.e., d1 ∈R2, as shown with red and blue points
in Fig. 1, respectively, and that the arm is attached through a
rigid joint (top left case in Table I). Hence, the motor and the
link orientation are the same, i.e., θm = θ2. Notice that PG (in
green) can be anywhere, as in any other case considered in
this paper.

In order to find an exactly linearizing (i.e., flat) output in this
case let us choose some generalized coordinates which show
no inertial couplings between translational and rotational part,
i.e., q = [pT

c θ1 θ12]
T ∈ R4. With respect to these coordinates

the generalized inertia matrix is found, after some algebra, as

M =

(
msI2 ∗
02×2 Mr

)
= MT ∈ R4×4, (7)

where Ii is i× i identity matrix, 0i× j is a zero matrix in Ri× j,

Mr =

(
ma ∗

mab(θ1,θ12) mb

)
∈ R2×2,

ma =
m1(m2 +mm)

ms
‖d1‖2

2 + J1,

mb =
m2(m1 +mm)

ms
‖d2‖2

2 + J2 + Jm,

mab(θ1,θ12) =
m1m2

ms
dT

1 R2d2,

(8)

with ‖d∗‖2
2 = dT

∗ d∗, ∗ = {1,2} and ms = m1 +mm +m2. The
centrifugal/Coriolis and gravitational forces are

c(q, q̇) =


0
0

m1m2
ms

dT
1 R̄2d2θ̇ 2

12
−m1m2

ms
dT

1 R̄2d2θ̇ 2
1

 , g =


0
−msḡ

0
0

 , (9)

where R̄∗ = ∂R∗
∂θ∗

. The input matrix is

G(q) =


−sinθ1 0 0
−cosθ1 0 0

−m2+mm
ms

d1x +dGx 1 −1
−m2

ms
(d2x cosθ2 +d2z sinθ2) 0 1

 , (10)

and, finally, thanks to the rigid connection, fE = 04×1.
Replacing M, c, g, G and fE in (1) we can derive the explicit

dependency of each entry of q̈, here summarized:

ẍc = f1(θ1,ut), z̈c = f2(θ1,ut)

θ̈1 = f3(θ1,θ12, θ̇1, θ̇12,ut ,ur,τ)

θ̈12 = f4(θ1,θ12, θ̇1, θ̇12,ut ,ur,τ).

(11)

We can observe from (11) that ut is the only input appearing
in ẍc and z̈c. This implies that if we choose s1 > 0 and include
both xc and zc in the output, it is possible to let r increase
twice as rapidly as n̄ when we increase s1, until an input other
than ut appears in the higher order derivatives of xc or zc (see
Definition 1). Following this intuition, let us consider then
s1 = 2 and s2 = s3 = 0. We then obtain as new control inputs
ū = [üt ur τ]T ∈ R3, new state x̄ = [qT q̇T ut u̇t ]

T ∈ R10, and
n̄ = 10.
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Now, let us consider as output y = [pT
c θ12]

T = [yT
1 y2]

T .
Following the methodology presented in Section IV-B we then
make clear the expected functional dependences without the
need of explicitly computing the derivatives

ÿ1 = fff 1(θ1,ut),
...y 1 = fff 2(θ1, θ̇1,ut , u̇t)

and, substituting θ̈1 with f3 in (11), we have
....y 1 = fff 3(θ1,θ12, θ̇1, θ̇12,ut , u̇t , üt ,ur,τ),

therefore r1 = r2 = 4. Considering also that, from (11), r3 =
2, we have that r1 + r2 + r3 = 10 = n̄, which means that the
Condition 1 of Definition 1 is satisfied. Therefore it is now
worth investigating about the invertibility of Ḡ(x̄), which is
done in the next proposition.

Proposition 1. The vector [pT
c θ12]

T is an exactly linearizing
output via dynamic feedback for the generic model with rigid-
joint arm (Case RG), as long as ut 6= 0. As a consequence, it
is also a flat output.

Proof. Let us divide first the generalized coordinates into two
parts; q = [pT

c qT
r ]

T ∈ R4, where qr = [θ1 θ12]
T ∈ R2. Then,

msp̈c = vut +
( 0

msḡ
)
, v =

(
−sinθ1
−cosθ1

)
∈ R2. (12)

Differentiating twice with respect to time we obtain

ms
....p c = v̈ut +2v̇u̇t +vüt , v̇ = v̄θ̇1

v̈ = v̄θ̈1−vθ̇
2
1 , v̄ = ∂v

∂θ1
=
(
−cosθ1

sinθ1

) (13)

Now let us write the rotational dynamics of the system

q̈r =
(

θ̈1
θ̈12

)
= W

(
−c3(θ1,θ12,θ̇12)+g31ut+ur+τ

−c4(θ1,θ12,θ̇1)+g41(θ1,θ12)ut+τ

)
, (14)

where c3 and c4 are the 3-rd and 4-th elements of c in (9),
and g31 and g41 are the 3-rd and 4-th elements of the first row
of G in (10). Moreover, W = M−1

r , where Mr is given in (8).
Now, use θ̈1 from the first column of (14) in (13) and θ̈12

from the last column of (14); and stack them together as(....p c
θ̈12

)
= h(qr, q̇r,ut , u̇t)+ Ḡū, (15)

where 
v

ms
v̄

ms
W11ut

v̄
ms
(W12−W11)ut

0 W12 W22−W11


︸ ︷︷ ︸

Ḡ

üt
ur
τ


︸ ︷︷ ︸

ū

. (16)

The matrix Ḡ is the new input matrix, with Wi j being the i j-
th component of W. After some algebra we can express the
determinant of Ḡ as

|Ḡ|=−ut(W11W22−W 2
12)

m2
s

=−ut |W|
m2

s
=− ut

m2
s |Mr|

, (17)

meaning that Ḡ is invertible as long as ut 6= 06. Furthermore
it must hold |Mr| 6= 0 for Ḡ to be well-defined.

6Notice that all masses and inertias are positive.

Let us re-write the components of Mr in the following form

ma = mα dT
α dα + J1

mb = mβ dT
β

dβ + J2 + Jm

mab = mγ dT
α dβ ,

(18)

with dα = R̄1d1 and dβ = R̄2d2, and mα = m1(m2+mm)
ms

, mβ =
m2(m1+mm)

ms
and mγ =

m1m2
ms

. Then we can write

|Mr|= mamb−m2
ab

= mpos +mα mβ (dT
α dα)(dT

β
dβ )−m2

γ(d
T
α dβ )(dT

α dβ ),
(19)

where mpos = mα(J2 + Jm)dT
α dα +mβ J1dT

β
dβ + J1(J2 + Jm) >

07. Notice that it is always mα mβ > m2
γ . Moreover,

(dT
α dα)(dT

β
dβ )−(dT

α dβ )(dT
α dβ ) = (dα1dβ2−dα2 dβ1)

2 > 0 and
it is always (dT

α dα)(dT
β

dβ ) > 0, where dαi and dβ i are the i-
th components of dα and dβ , respectively. Hence it is always
|Mr|> 0. This proofs that [pT

c θ12]
T is exact linearizing output

for Case RG. From Fact 1 it is differentially flat output as
well.

Derivation of the Algebraic Map from the Flat Output

We shall find now how to explicitly write down the algebraic
map that relates p̈c,

...pc,
....p c,θ12, θ̇12, θ̈12 with θ1, θ̇1, and u.

Consider the first two equations of (11)

msẍc =−sinθ1ut

msz̈c =−cosθ1ut +msḡ.
(20)

Define the vector w = p̈c − [0 ḡ]T = [wx wz]
T ∈ R2, which

is a function of p̈c. It is clear that w = − ut
ms
[sinθ1 cosθ1]

T .
Therefore θ1 = atan2(wz,wx) and ut = ms||w||. Furthermore,
differentiating θ1(wx,wz) we obtain θ̇1(wx,wz, ẇx, ẇz) and
θ̈1(wx,wz, ẇx, ẇz, ẅx, ẅz), which are all functions of the deriva-
tives of pc from the second up to the fourth order. Then we
can write

ut = ms||w||, u̇t =
msw1

||w|| , üt =−
msẇ1

||w|| −
msw2

1
||w||3 ,

...u t =
msẅ1

||w|| −
3msẇ1w1

||w||3 +
3msw2

1
||w||5

....u t =
ms

...w1

||w|| −
4msw1ẅ1 +3msẇ2

1
||w||3 +

+
9msẇ1w2

1 +6msw1ẇ1

||w||5 − 15msw3
1

||w||7 ,

(21)

where

||w||=
√

p̈2
cx
+ p̈2

cz
−2p̈cz ḡ+ ḡ2

w1 =
...pcx

p̈cx +
...pcz

(p̈cz − ḡ)

ẇ1 =
....p cx

p̈cx +
...p2

cx
+

...p2
cz
+

....p cz
(p̈cz − ḡ)

ẅ1 = p(5)cx p̈cx +3....p cx

...pcx
+3....p cz

...pcz
+ p(5)cz (p̈cz − ḡ)

...w1 = p(6)cx p̈cx +4p(5)cx

...pcx
+3....p 2

cx
+3....p 2

cz
+4p(5)cz

...pcz
+ p(6)cz (p̈cz − ḡ),

7Recall that dT
α dα = ||d1||22 > 0 and dT

β
dβ = ||d2||22 > 0, as also stated in (8).
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where ...u t and ....u t are provided for the convenience of the
further analyses. Moreover we can write8

θ1 = atan2(wz,wx), wz = p̈cz − ḡ, wx = p̈cx

θ̇1 =
ẇxwz−wxẇz

w2
x +w2

z
=

...pcx
(p̈cz − ḡ)− p̈cx

...pcz

p̈2
cx
+(p̈cz − ḡ)2

θ̈1 =
ẅxwz−wxẅz

(w2
x +w2

z )
− 2
[
(w2

z −w2
x)ẇxẇz +(ẇ2

x − ẇ2
z )wxwz

]
(w2

x +w2
z )

2 ,

(22)

where

ẇx =
...pcx , ẅx =

....p cx , ẇz =
...pcz , ẅz =

....p cz .

Now considering the last equation of the system dynamics, we
can retrieve the motor torque as

τ = τ(θ12, θ̈12,θ1, θ̇1, θ̈1,ut) = mab(θ1,θ12)θ̈1 +mbθ̈12−

− m1m2

ms
dT

1 R̄2(θ1,θ12)d2θ̇
2
1 +

(
m2 +mm

ms
d1x −dGx

)
ut

and using θ1, θ̇1, θ̈1 from (22) and ut from (21), we show that
τ = τ(ÿ1,

...y 1,
....y 1,y2, ÿ2). Now, replacing τ from above into the

third equation of the system dynamics we have

ur = ur(θ12, θ̇12, θ̈12,θ1, θ̇1, θ̈1,ut) = maθ̈1 +mbθ̈12+

+mab(θ1,θ12)(θ̈1 + θ̈12)+
m1m2

ms
dT

1 R̄2(θ1,θ12)d2(θ̇
2
12− θ̇

2
1 )+

+
(m2 +mm

ms
d1x −dGx +

m2

ms
(d2x cosθ2 +d2z sinθ2)

)
ut ,

where by substituting θ1, θ̇1, θ̈1 from (22) and ut from (21),
we have ur = ur(ÿ1,

...y 1,
....y 1,y2, ẏ2, ÿ2).

In summary, we obtained pc = y1, ṗc = ẏ1, p̈c =
ÿ1 and θ12 = y2, θ̇12 = ẏ2, θ̈12 = ÿ2 from the def-
inition; ut = ut(ÿ1), u̇t = u̇t(ÿ1,

...y 1), üt = üt(ÿ1,
...y 1,

....y 1)
from (21); θ1 = θ1(ÿ1), θ̇1 = θ̇1(ÿ1,

...y 1), θ̈1 = θ̈1(ÿ1,
...y 1,

....y 1)
from (22); and finally τ = τ(ÿ1,

...y 1,
....y 1,y2, ÿ2) and ur =

ur(ÿ1,
...y 1,

....y 1,y2, ẏ2, ÿ2) as shown above9. Hence we showed
the states and the control inputs of the system as functions of
the flat outputs and their finite number of derivatives.

Remark 1. Although dependencies of θ̈1 and θ̈12 in (11) are
the same, y = [pT

c θ1]
T is not an exactly linearizing output,

because in this case it is possible to show that det(Ḡ) = 0.

B. Impossibility of Exact Tracking of the End-effector Position

In the most interesting cases for aerial manipulation, one
needs to control the end-effector position pe instead of pc.
In this section we introduce a negative result that shows how
unfortunately this objective is not feasible for the Case RG.

The expression of pe in function of q is:

pe = f (pc,θ1,θ12)

= pc +
m1

ms
R1d1 +R12

(m1 +mm

ms
d2 +de

) (23)

which shows that pe cannot be computed using only the flat
output [pT

c θ12]
T since also θ1 is required in (23). Therefore it

8in the range of θ1, in which the derivatives of atan2(wz,wx) exist.
9Notice that the high order derivatives of the flat outputs can be computed

analytically using (1).

is impossible to let exactly pe track a desired trajectory pd
e (t)

using control methods based on the flat output [pT
c θ12]

T .
On the other hand, since

pe = pm +R12(d2 +de) (24)

one can let pe exactly track pd
e , if [pT

m θ12]
T ∈R3 is a flat output

as well. In order to discover if and under which conditions
[pT

m θ12]
T ∈R3 is a flat output, let us write the dynamics of the

system for the generalized coordinates q = [pT
m θ1 θ12]

T . With
respect to these coordinates, the generalized inertia matrix
becomes

M =

 msI2 ∗ ∗
αααT (θ1) mA ∗
βββ T (θ12) 0 mB

= MT ∈ R4×4, (25)

where

mA = m1 ‖d1‖2
2 + J1 mB = m2 ‖d2‖2

2 + J2 + Jm

ααα(θ1) =−m1R̄1d1 ∈ R2
βββ (θ12) = m2R̄12d2 ∈ R2.

(26)

The centrifugal/Coriolis and gravitational forces are

c(q, q̇) =


ᾱ1(θ1)θ̇

2
1 + β̄1(θ12)θ̇

2
12

ᾱ2(θ1)θ̇
2
1 + β̄2(θ12)θ̇

2
12

0
0

 , g(q) =

 0
−msḡ
g3(θ1)
g4(θ12)

 , (27)

with β̄ββ = ∂βββ

∂θ12
= [β̄1 β̄2]

T ∈ R2, and

ᾱ1 = m1(d1x cos(θ1)+d1z sin(θ1))

ᾱ2 = m1(d1z cos(θ1)−d1x sin(θ1))

β̄1 =−m2(d2x cos(θ12)+d2z sin(θ12))

β̄2 =−m2(d2z cos(θ12)−d2x sin(θ12))

g3 =−m1ḡ(d1x cos(θ1)+d1z sin(θ1))

g4 = m2ḡ(d2x cos(θ12)+d2z sin(θ12)).

(28)

The input matrix is

G(q) =

( −sinθ1 0 0
−cosθ1 0 0
−d1x+dGx 1 −1

0 0 1

)
, (29)

and, as in the previous case, fE = 04×1.
Let us now ask ourselves if y = [pT

m θ12]
T is an exactly

linearizing output via dynamic feedback (i.e., a flat output).
Due to the inertial coupling, ÿ depends from all the control
inputs, therefore the gap between n̄− r = 2 will stay for any
choice of s1, s2, and s3, which shows that ÿ is not exactly
linearizing and therefore is not flat.

Corollary 1. The vectors [pT
m θ12]

T , [pT
c1

θ12]
T and [pT

e θ12]
T

are not an exactly linearizing output via dynamic feedback
for the generic model with rigid-joint arm (Case RG). As a
consequence, they are not flat outputs either.

C. Rigid-joint Attached to the PVTOL CoM (RC case)

The negative result of Corollary 1 is a consequence of the
strong inertial coupling in (25). In this section we show that
if we consider a model in which PC1 coincides with PM, i.e.,
pc1 = pm, then the inertial coupling weakens enough to make
[pT

m θ12]
T an exactly linearizing (i.e., flat) output for the system
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dGḡ : gravity

PC1
= PM

τ

ur
m1,mm

−utz1

d2

de

m2

Fig. 2: A sketch of the PVTOL aerial manipulator for the cases in
which the attachment point of the rigid-joint arm is same with the
CoM of the PVTOL (PC1 = PM), i.e., Case RC and Case EC. Notice
that the point of application of the thrust is still any (i.e., dG ∈ R2).

in exam10. In order to prove that, let us choose as generalized
coordinates q = [pT

m θ1 θ12]
T ∈ R4. The dynamic model for

these coordinates are given in Section V-B. Now assume that
pc1 = pm. Such case is depicted in Fig. 2, where motor and the
joint are placed at the CoM of the PVTOL. This is a special
case of the generic model, that we call the coinciding model
with rigid joint11 (Case RC in Table I).

Consider the dynamic model given in Section V-B with d1 =
02×1 (because of the coinciding assumption). We obtain the
following simplifications in some of previous expressions:

mA = J1 (30)
ααα(θ1) = 02×1 (31)

ᾱ1(θ1) = ᾱ2(θ1) = g3(θ1) = 0. (32)

Moreover, d1x = 0 in (29).
The explicit functional dependency of q̈ then becomes12

ẍm = f1(θ1,θ12, θ̇12,ut ,τ), z̈m = f2(θ1,θ12, θ̇12,ut ,τ)

θ̈1 = f3(ut ,ur,τ), θ̈12 = f4(θ1,θ12, θ̇12,ut ,τ),
(33)

where we see that now ur does not appear anymore in neither
p̈m nor θ̈12, as it was instead happening in Case RG. Therefore
if we choose y = [pT

m θ12]
T as the output, we obtain from (33)

ÿ = fff 1(θ1,θ12, θ̇12,ut ,τ). (34)

The fact that the two inputs ut and τ are the only appearing
in the three input channels implies that if we choose both
s1 > 0 and s3 > 0, it is possible to let r increase more rapidly
than n̄ when we increase s1 and s3, until the input ur appears in
the higher order derivatives of y (see Definition 1). Following
this intuition, let us consider then s1 = 2, s3 = 2 and s2 = 0.
We then obtain as new control inputs ū = [üt ur τ̈]T ∈R3, new
state x̄ = [qT q̇T ut u̇t τ τ̇]T ∈ R12, and n̄ = 12.

Considering that θ̈12 is available from f4 of (33) we write
...y = fff 2(θ1,θ12, θ̇1, θ̇12,ut ,τ, u̇t , τ̇) (35)

10Notice that this inertial coupling disappears as well if the PVTOL mass
is small enough, i.e. m1 → 0 (see (26)). However this is not a reasonable
assumption.

11Notice that a particular case of this one is studied in [25], where the three
points PC1 , PG and PM are assumed to be same. In Sec. V-C we study the
more general case in which PG is not assumed to be coincident. Moreover in
that paper, only the differential flatness was studied, while in this section we
also prove the exact linearizability and provide the linearizing controller.

12If one develops the computations, one realizes that θ̈12 does not depend
on θ̇12 since the terms depending on θ̇12 cancel out each other. However this
particularity is not necessary to prove the presented result.

and, substituting θ̈1 with f3 in (33), we have
....y = fff 3(θ1,θ12, θ̇1, θ̇12,ut , u̇t ,τ, τ̇, üt ,ur, τ̈).

Therefore r1 = r2 = r3 = 4 and thus r = 12 = n̄, which means
that the Condition 1 of Definition 1 is satisfied. Therefore it is
now worth to analytically search for the invertibility domain
of Ḡ(x̄), which is stated in the next result.

Proposition 2. The vectors [pT
c θ12]

T , [pT
m θ12]

T and [pT
e θ12]

T

are all exactly linearizing output via dynamic feedback for the
coinciding model with rigid-joint arm (Case RC), as long as
ut 6= 0. As a consequence, they are also flat outputs.

Proof. For [pT
c θ12]

T this descends from Proposition 1 since
Case RC is a special case of Case RG. Concerning [pT

e θ12]
T ,

this descends from (24) and from the flatness of [pT
m θ12]

T ,
which we shall prove in the following.

First let us write the system dynamics in the following form

q̈ = W


vut − β̄ββ θ̇ 2

12 +

(
0

msḡ

)
(

dGx ut +ur− τ

τ

)
−
(

0

g4(θ12)

)
 , (36)

where β̄ββ = ∂βββ

θ12
= [β̄1 β̄2]

T ∈ R2, βββ as in (26), g4 as in (28)
and v is in (12). In this case we decompose the inverse of the
inertia matrix as

W = M−1 =

(
W11 WT

21
W21 W22

)
,W21 =

(
01×2

W̃21 ∈ R1×2

)
, (37)

where W11 ∈R2×2 and W22 = diag{W221 ,W222}∈R2×2. Then,
we can write

p̈m = W11vut +W̃T
21τ−

−W11β̄ββ θ̇
2
12 +W11

(
0

msḡ

)
−W̃T

21g4(θ12). (38)

Moreover from the third equation of (36) it is

θ̈1 =W221ur +W221(dGx ut − τ) (39)

and

θ̈12 = W̃21vut +W222τ−

−W̃21β̄ββ θ̇
2
12 +W̃21

(
0

msḡ

)
−W222g4(θ12). (40)

Differentiating (38) and (40) twice w.r.t. time, and utilizing θ̈1
from (39), we get( ....p m....

θ 12

)
= h(qr, q̇r,ut ,τ, u̇t , τ̇)+ Ḡū, (41)

where qr is defined as in the proof of Proposition 1 and

Ḡū =

W11v W11v̄W221ut W̃T
21

W̃21v W̃21v̄W221ut W222


︸ ︷︷ ︸

Ḡ

üt
ur
τ̈


︸ ︷︷ ︸

ū

, (42)
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where v̄ is as in (13), and Ḡ is the new input matrix, whose
determinant can easily be computed, after some algebra, as

|Ḡ|=− ut

J1ms

(
(J2 + Jm)ms +m2(m1 +mm)‖d2‖2

2

) . (43)

which is always invertible as long as ut 6= 0. This proofs that
[pT

m θ12]
T is exact linearizing output for Case RC. From Fact 1

it is differentially flat output as well.

Derivation of the Algebraic Map from the Flat Output

We shall show now the procedure to explic-
itly write down the algebraic map that relates
p̈m,

...pm,
....p m,θ12, θ̇12, θ̈12,

...
θ 12,

....
θ 12 with θ1, θ̇1, and u.

The position of the CoM of overall system in FW is given by

pc = pm +
m2

ms
R12d2 = pc(y)[

xc
zc

]
=

 xm + m2
ms

(
d2x c12 +d2zs12

)
zm + m2

ms

(
−d2x s12 +d2zc12

) ,
ṗc = ṗm +

m2

ms
R̄12d2θ̇12 = pc(y, ẏ)[

ẋc
żc

]
=

ẋm + m2θ̇12
ms

(
−d2x s12 +d2zc12

)
żm + m2θ̇12

ms

(
−d2x c12−d2zs12

) ,
p̈c = p̈m +

m2

ms

(
R̄12d2θ̈12−R12d2θ̇

2
12

)
= pc(y, ẏ, ÿ)[

ẍc
z̈c

]
=

 ẍm+
m2
ms

(
d2x (−c12θ̇ 2

12−s12θ̈12)+d2z (−s12θ̇ 2
12+c12θ̈12)

)
z̈m+

m2
ms

(
d2x (s12θ̇ 2

12−c12θ̈12)+d2z (−c12θ̇ 2
12−s12θ̈12)

)
 ,

(44)

where s∗ = sin(θ∗) and c∗ = cos(θ∗). The computation of ut
and θ1 is exactly as in Case RG. Hence substituting (44)
in (21) and in (22), we find ut , u̇t , üt and θ1, θ̇1, θ̈1 as functions
of y, · · · , ....y . Furthermore, the motor torque can be retrieved
from the last equation of the system dynamics as

τ = τ(θ12, p̈m, θ̈12) = βββ
T (θ12)p̈m +mBθ̈12 +g4(θ12). (45)

Now, noticing that (from (28)) g4(θ12) = −βββ (θ12)ḡ · e2 with
e2 = [0 1]T ∈ R2, and · being the dot-product, and recalling
that β̄ββ = ∂βββ

∂θ12
, we can write

τ̇ = βββ
T ...pm +mB

...
θ 12 +(β̄ββ

T p̈m− β̄ββ ḡ · e2)θ̇12

τ̈ = βββ
T ....p m +mB

....
θ 12 +2β̄ββ

T ...pmθ̇12+

+(β̄ββ
T p̈m− β̄ββ ḡ · e2)θ̈12 +(βββ ḡ · e2−βββ

T p̈m)θ̇
2
12,

(46)

which means τ̇ = τ̇(y, ẏ, ÿ, ...y ), and τ̈ = τ̈(y, ẏ, ÿ, ...y , ....y ).
Then, using the third row of the system dynamics, we obtain

ur = ur(θ̈1,ut ,τ) = J1θ̈1 + τ−dGx ut , (47)

where by knowing τ from (45), and utilizing θ̈1 from (22) and
ut from (21), and taking (44) into consideration, we have that
ur = ur(y, ẏ, ÿ,

...y , ....y ).
In summary, we have obtained pm = pm(y), ṗm =

ṗm(ẏ), p̈c = p̈m(ÿ) and θ12 = θ12(y), θ̇12 = θ̇12(ẏ), θ̈12 =
θ̈12(ÿ) from the definition; ut = ut(y, ẏ, ÿ), u̇t =

Case EG Case EC

PC1 = PMPC1 6= PM

θ1

θm
θe

θ2

zW
z1

pvtol

motor

link

zm
z2

Fig. 3: An example of elastic-joint between the motor shaft and the
link attached to PVTOL. The motor is magnified w.r.t. the PVTOL
considering both the EG and the EC cases. The innermost circle is
fixed in F1, thus rigidly attached to the PVTOL. The middle circle
is rigidly attached to the motor output shaft, i.e., fixed in FM . The
outermost circle is connected to the middle circle via some elastic
components, and it is rigidly connected to the link, thus fixed in F2.

u̇t(y, ẏ, ÿ,
...y ), üt = üt(y, ẏ, ÿ,

...y , ....y ) from (21) and
θ1 = θ1(y, ẏ, ÿ), θ̇1 = θ̇1(y, ẏ, ÿ,

...y ), θ̈1 = θ̈1(y, ẏ, ÿ,
...y , ....y )

from (22) where for both pc is computed from (44); and
finally τ = τ(y, ÿ), τ̇ = τ̇(y, ẏ, ÿ, ...y ), τ̈ = τ̈(y, ẏ, ÿ, ...y , ....y )
from (45)-(46), and ur = ur(y, ẏ, ÿ,

...y , ....y ) from (47). Hence
we showed how to compute the states and the control inputs
of the system as functions of the flat outputs and their finite
number of derivatives.

VI. PVTOL WITH AN ELASTIC–JOINT ARM

A. Elastic-Joint Attached to a Generic Point (EG case)

In this section we consider the model of the PVTOL given
in Fig. 1, with an elastic joint between the motor output shaft
and the arm link. A sketch of such connection is shown in
Fig. 3. This case is referred to as Case EG in Table I. The
number of generalized coordinates for this case is increased
by one with respect to the RG case (n = 5) due to the fact
that the output shaft of the motor and the link are not rigidly
connected and therefore two distinct coordinates are needed
to describe the system configuration, namely θ1m and θ12.

In order to keep the translational dynamics decoupled from
the rotational one let us chose as generalized coordinates q =
[pT

c θ1 θ12 θ1m]
T ∈ R5. Notice that, differently from the rigid-

joint cases (Case RG and Case RC), we have θ2 6= θm. In fact
θ2 = θm+θe (see Fig. 1 and Fig. 3). Whenever θe = θ2−θm =
θ12− θ1m is nonzero the elastic link is deflected and stores
elastic potential energy.

After some algebra it is possible to compute the matrices
and vectors in (1) for this case. The inertia matrix is

M =

(msI2 ∗ ∗ ∗
01×2 ma ∗ ∗
01×2 mab(θ1,θ12) mb−Jm ∗
01×2 0 0 Jm

)
= MT ∈ R5×5, (48)

where ma mb and mab are given in (8). The centrifugal/Coriolis
and gravitational forces are

c(q, q̇) =


0
0

m1m2
ms

d1
T R̄2d2θ̇ 2

12
−m1m2

ms
d1

T R̄2d2θ̇ 2
1

0

 , g =


0
−msḡ

0
0
0

 , (49)
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the control input matrix G and the elastic forces fE due to the
elastic potential energy are

G(q) =

 g11 0 0
g21 0 0
g31 1 −1
g41 0 0
0 0 1

 , fE(q) =

 0
0
0

fl(θ1m,θ12)
fm(θ1m,θ12)

 , (50)

where [g11 g21 g31 g41]
T is as the first column of G in (10).

Notice that fl(θ1m,θ12) is the elastic force acting on the link
side, and fm(θ1m,θ12) is the elastic force acting on the motor
side. These forces can be nonlinear functions of θ1m and θ12.
In the linear spring case, fl(θ1m,θ12) = ke(θ1m − θ12) and
fm(θ1m,θ12) = ke(θ12−θ1m), where ke > 0 is the stiffness of
the elastic element.

Writing down the dependences of q̈ for this case we obtain

ẍc = f1(θ1,ut), z̈c = f2(θ1,ut)

θ̈1 = f3(θ1,θ12,θ1m, θ̇1, θ̇12,ut ,ur,τ)

θ̈12 = f4(θ1,θ12,θ1m, θ̇1, θ̇12,ut ,ur,τ)

θ̈1m = f6(θ12,θ1m,τ).

(51)

As we can see, a part from the introduction of θ1m the
dependency on the other coordinates is the same as the one
in (11) for Case RG. However, the fact that n = 5 (instead
of 4) makes the solution adopted for Case RG not immediately
applicable. In fact if we set, as in Section V-A, s1 = 2,
s2 = s3 = 0 and we check whether Condition 1 of Definition 1
is satisfied for the output [pT

c θ12]
T we fail, since we obtain

n̄ = 2n+s1 = 10+2 = 12 (instead of n̄ = 2n+s1 = 8+2 = 10)
and r = 10 (as in Case RG). Therefore it is not straightforward
to find the exactly linearizing (flat) output for this case. The
reason is that this time we do not gain enough relative degree
to reach the new n̄ = 12. A way to gain more relative degree
would be to let θ̈12 depend on less inputs, since right now is
depending on all the inputs. The reason for this dependency
is the strong inertial coupling between θ1 and θ12, see (48).
Therefore in the following we try whether is possible in some
way to loosen this coupling in order to let less inputs appear
in θ̈12.

In order to take a closer look to the rotational coupling let
us consider for a moment only the orientation dynamics:[

θ̈1
θ̈12

]
= B−1

[
g31ut − c3(θ1,θ12, θ̇12)+ur− τ

g41(θ1,θ12)ut + fl(θ1m,θ12)− c4(θ1,θ12, θ̇1)

]
θ̈1m = J−1

m

(
fm(θ1m,θ12)+ τ

)
(52)

with

B =

(
ma mab
mab mb− Jm

)
,

[
c3
c4

]
=

[
m1m2

ms
d1

T R̄2d2θ̇ 2
12

−m1m2
ms

d1
T R̄2d2θ̇ 2

1

]
. (53)

This orientation dynamics shares some similarities with the
model of a grounded planar robot with mixed rigid/elastic
joints. It is as if a ‘virtual ground base’ and the PVTOL are
connected through a rigid joint to which it is applied the torque
ur−τ , and the PVTOL and the link are connected through an
elastic joint that is actuated by the motor torque τ . However
the models are not the same because, e.g., of the the presence
of the terms multiplying ut .

Mixed rigid/elastic-joints arms for grounded manipulators
have been studied in [33] where the author showed that it

is possible to have input-output decoupling and full state
linearization for such system, even if there are inertial cou-
plings as in matrix B given in (53), based on dynamic state
feedback. Shortly, this is done with a linear dynamic feedback
compensator defined for the rigid joint, which let it behave
as a fictitious elastic joint transmission. To be best of our
knowledge this kind of method has never been used for aerial
manipulators, whose base are (differently from [33]) floating
and underactuated.

First, let us extend the systems with two new states, θr and
θ̇r and consider the following dynamic compensator

ur− τ = kr(θr−θ1)

Jrθ̈r + kr(θr−θ1) = un,
(54)

where kr ∈ R>0 and Jr ∈ R>0 are two additional systems
parameters, and un is a new control input that replaces ur.
Now, replacing ur− τ in first equation of (52) with the first
equation of (54), we have[

θ̈1
θ̈12

]
= B−1

[
g31ut + kr(θr−θ1)− c3(θ1,θ12, θ̇12)

g41(θ1,θ12)ut + fl(θ1m,θ12)− c4(θ1,θ12, θ̇1)

]
[

θ̈r
θ̈1m

]
=

(
Jr 0
0 Jm

)−1 [kr(θ1−θr)+un
fm(θ1m,θ12)+ τ

]
. (55)

Putting back in place the translational dynamics and writing
down the dependences of q̈ including the new states of the
compensator (i.e., considering q = [pT

c θ1 θ12 θr θ1m]
T ∈ R6)

we obtain
ẍc = f1(θ1,ut), z̈c = f2(θ1,ut)

θ̈1 = f3(θ1,θ12,θ1m,θr, θ̇1, θ̇12,ut)

θ̈12 = f4(θ1,θ12,θ1m,θr, θ̇1, θ̇12,ut)

θ̈r = f5(θ1,θr,un), θ̈1m = f6(θ12,θ1m,τ).

(56)

Notice that with the introduction of the compensator the
number of states has become 2n = 12. However, thanks to
the compensation applied above, θ̈12 does not directly depend
on ur and τ anymore. Therefore there is hope that if we
choose as new input a high order derivative of ut then the
the relative degree will be enough this time to let the output
y = [pT

c θ12]
T = [yT

1 y2]
T satisfy Condition 1 of Definition 1.

Let us consider then s1 = 4, s2 = s3 = 0. With this choice
we have n̄ = 2n + 4 = 16. We then obtain as new con-
trol inputs13 ū = [

....u t un τ]T ∈ R3 and the new state x̄ =
[qT q̇T ut u̇t üt

...u t ]
T ∈ R16. The functional dependency of the

derivatives of y1 can be written as follows

ÿ1 = ( f1 f2)
T = ξξξ 1(θ1,ut),

...y 1 = ξξξ 2(θ1, θ̇1,ut , u̇t) (57)

considering that both θ̈1 and θ̈12 are available from (56), we
can write

....y = ξξξ 3(θ1,θ12,θ1m,θr, θ̇1, θ̇12,ut , u̇t , üt)

y(5)1 = ξξξ 4(θ1,θ12,θ1m,θr, θ̇1, θ̇12, θ̇1m, θ̇r,ut , u̇t , üt ,
...u t)

(58)

and using θ̈r and θ̈1m from (56), we can write

y(6)1 = ξξξ 5(θ1,θ12,θ1m,θr, θ̇1, θ̇12, θ̇1m, θ̇r,ut , u̇t , üt ,
...u ,

,
....u t ,un,τ),

13Notice that once τ and un are computed, ur can be calculated using (54).
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where we stop because ....u , un, and τ appear now linearly in
y(6)1 . Therefore we have that r1 = r2 = 6.

In the same fashion, we can write the derivatives of y2 as

ÿ2 = f4 = µ1(θ1,θ12,θ1m,θr, θ̇1, θ̇12,ut) (59)

and, considering that θ̈1 and θ̈12 are available from (56)
...y 2 = µ2(θ1,θ12,θ1m,θr, θ̇1, θ̇12, θ̇1m, θ̇r,ut , u̇t) (60)

and using θ̈r and θ̈1m from (56), we can write
....y 2 = µ3(θ1,θ12,θ1m,θr, θ̇1, θ̇12, θ̇1m, θ̇r,ut , u̇t , üt ,un,τ).

Therefore r3 = 4 and r1 + r2 + r3 = 16 = n̄, which means that
the Condition 1 of Definition 1 is satisfied. Therefore it is
now worth to analytically search for the invertibility domain
of Ḡ(x̄), which is done in the next result.

Proposition 3. The vector [pT
c θ12]

T is an exactly linearizing
output via dynamic feedback for the generic model with an
elastic-joint arm (Case EG), as long as ut 6= 0, kr 6= 0 and
ke 6= 0 (if the elasticity is linear). As a consequence, it is also
a flat output.

Proof. Let us re-formalize the system dynamics given in (56)
(assuming linear spring case) as

msp̈c = vut +

(
0

msḡ

)
, v =

(
−sin(θ1)
−cos(θ1)

)
∈ R2 (61a)[

θ̈1
θ̈12

]
= W

[
g31ut + kr(θr−θ1)− c3(θ1,θ12, θ̇12)

g41(θ1,θ12)ut + ke(θ1m−θ12)− c4(θ1,θ12, θ̇1)

]
(61b)[

θ̈r
θ̈1m

]
=

(
Jr 0
0 Jm

)−1 [ kr(θ1−θr)+un
ke(θ12−θ1m)+ τ

]
, (61c)

where this time qr = [θ1 θ12 θr θ1m]
T ∈ R4 and W = B−1. In

the following, by Wi j, we denote the i j-th component of W.
Then differentiating (61a) four times w.r.t. the time, we get

msp
(6)
c = v....u t + v̄ut

....
θ 1 +h1(qr, q̇r,ut , u̇t , üt ,

...u t). (62)

The quantity
....
θ 1 can be analytically expressed by differenti-

ating twice θ̈1, whose analytical expression is available from
the first equation of (61b), substituting: θ̈12 from the second
equation of (61b), θ̈r, and θ̈1m from (61c). In this way we
obtain

....
θ 1 =

W11kr

Jr
un +

W12ke

Jm
τ +h2(qr, q̇r,ut , u̇t , üt) (63)

and utilizing it in (62), we have

p(6)
c =

v
ms

....u t + v̄ut
W11kr

msJr
un + v̄ut

W12ke

msJm
τ+

+hA(qr, q̇r,ut , u̇t , üt ,
...u t), (64)

where hA = h1 + v̄uth2 ∈ R2×1 and v̄ is as in (13).
Similarly, we express analytically

....
θ 12 by differentiating

twice θ̈12 and substituting θ̈r and θ̈1m using (61), thus getting

....
θ 12 =

W12kr

Jr
un +

W22ke

Jm
τ +hb(qr, q̇r,ut , u̇t , üt). (65)

Then, using (64) and (65) we can write(
p(6)

c....
θ 12

)
= h(qr, q̇r,ut , u̇t , üt ,

....u t)+ Ḡū, (66)

where h = [hA hb]
T ∈ R3×1 and

Ḡū =


v

ms
ut v̄W11kr

msJr
ut v̄W12ke

msJm

0 W12kr
Jr

W22ke
Jm


︸ ︷︷ ︸

Ḡ

....u t
un
τ


︸ ︷︷ ︸

ū

, (67)

where Ḡ is sought input matrix (remember that ur = un− τ).
The determinant of Ḡ is

|Ḡ|=−utkrke(W11W22−W 2
12)

JmJrm2
s

=−utkrke|W|
JmJrm2

s

=− utkrke

JmJrm2
s |B|

. (68)

By construction it is always JmJrm2
s > 0, in order to show that

the determinant is well defined we now show that it is also
|B|> 0. In fact we have:

|B|= mamb−m2
ab−maJm

= mpos2 +mα mβ (dT
α dα)(dT

β
dβ )−m2

γ(d
T
α dβ )(dT

α dβ ),

(69)

where mpos2 = mα J2dT
α dα +mβ J1dT

β
dβ + J1J2 > 0. Moreover,

(dT
α dα)(dT

β
dβ )−(dT

α dβ )(dT
α dβ ) = (dα1dβ2−dα2dβ1)

2 > 0 and
it is always (dT

α dα)(dT
β

dβ )> 0, where dαi and dβ i are the i-th
components of dα and dβ , respectively. Hence we have that
|B|> 0.

Since the denominator in (68) is always positive the matrix
Ḡ is invertible as long as ut 6= 0, kr 6= 0, Jr 6= 0 and ke 6= 0
(if the elasticity is linear). This proofs that [pT

c θ12]
T is exact

linearizing output for Case EG. From Fact 1 it is differentially
flat output as well.

Derivation of the Algebraic Map from the Flat Output

We shall now show how to explicitly
write down the algebraic map that relates
p̈c,

...pc,
....p c,p

(5)
c ,p(6)

c ,θ12, θ̇12, θ̈12,
...
θ 12,

....
θ 12 with θ1, θ̇1,

θ1m, θ̇1m, and u.
Similar to the RG case, it is clear from the system dynamics

that we can retrieve ut , u̇t , üt and θ1, θ̇1, θ̈1 from (21) and (22),
respectively. Furthermore, θ1m can be solved from the fourth
equation of the system dynamics as

θ1m = θ1m(θ12, θ̈12,θ1, θ̇1, θ̈1,ut) =
1
ke

(
mab(θ1,θ12)θ̈1+

+(mb− Jm)θ̈12 + c4(θ1,θ12, θ̇1)+ keθ12−g41(θ1,θ12)ut

)
,

(70)

where c4 is the fourth row of c given in (49).
By introducing θ1 = θ1(ÿ1), θ̇1 = θ̇1(ÿ1,

...y 1), θ̈1 =
θ̈1(ÿ1,

...y 1,
....y 1) from (22) and ut from (21) we can

show that θ1m = θ1m(ÿ1,
...y 1,

....y 1,y2, ÿ2), and this
implies: θ̇1m = θ̇1m(ÿ1,

...y 1,
....y 1,y(5),y2, ẏ2, ÿ2,

...y 2) and
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θ̈1m = θ̈1m(ÿ1,
...y 1,

....y 1,y(5),y(6),y2, ẏ2, ÿ2,
...y 2,

....y 2)
14. The

motor torque is obtained from the fifth equation of the system
dynamics, i.e.

τ = Jmθ̈1m + keθ1m− keθ12, (71)

where substituting θ1m and θ̈1m using (70), we can show that
τ = τ(ÿ1,

...y 1,
....y 1,y(5),y(6),y2, ẏ2, ÿ2,

...y 2,
....y 2). Finally solving

ur from the third equation of the system dynamics, one obtains

ur = ur(θ12, θ̇12, θ̈12,θ1, θ̈1,ut ,τ)=maθ̈1+mab(θ1,θ12)θ̈12+

+
m1m2

ms
d1

T R̄2(θ1,θ12)d2θ̇
2
12 + τ−g31ut , (72)

where utilizing θ1, θ̇1, θ̈1 from (22), ut
from (21), and τ from (71) we obtain ur =
ur(ÿ1,

...y 1,
....y 1,y(5),y(6),y2, ẏ2, ÿ2,

...y 2,
....y 2).

In summary, we have pc = y1, ṗc = ẏ1, p̈c = ÿ1
and θ12 = y2, θ̇12 = ẏ2, θ̈12 = ÿ2 from the definition;
ut = ut(ÿ1), u̇t = u̇t(ÿ1,

...y 1), üt = üt(ÿ1,
...y 1,

....y 1)
from (21); θ1 = θ1(ÿ1), θ̇1 = θ̇1(ÿ1,

...y 1), θ̈1 =
θ̈1(ÿ1,

...y 1,
....y 1) from (22); θ1m = θ1m(ÿ1,

...y 1,
....y 1,y2, ÿ2),

θ̇1m = θ̇1m(ÿ1,
...y 1,

....y 1,y(5),y2, ẏ2, ÿ2,
...y 2), and θ̈1m =

θ̈1m(ÿ1,
...y 1,

....y 1,y(5),y(6),y2, ẏ2, ÿ2,
...y 2,

....y 2) using (70);
τ = τ(ÿ1,

...y 1,
....y 1,y(5),y(6),y2, ẏ2, ÿ2,

...y 2,
....y 2) from (71)

and finally ur = ur(ÿ1,
...y 1,

....y 1,y(5),y(6),y2, ẏ2, ÿ2,
...y 2,

....y 2)
from (72). Moreover, one can see that ...u t =
...u t(ÿ1,

...y 1,
....y 1,y

(5)
1 ),

....u t =
....u t(ÿ1,

...y 1,
....y 1,y

(5)
1 ,y(6)1 )

using (21). Hence we showed the states and the control
inputs of the system as functions of the flat outputs and their
finite number of derivatives.

B. Elastic-joint Attached to the PVTOL CoM (EC case)

Like for the RG case, the EG case is subject to the same
negative result presented in Sec. V-B. Therefore, for the same
motivations of the rigid-case (see Secs. V-B and V-C) let us
consider again the model in which PC1 coincides with PM, i.e.,
d1 = 02×1, but this time with elastic-joint instead of a rigid one
(see Fig. 3). This case is referred to as Case EC in Table I. In
particular we are interested in finding whether, similarly to the
RC case, also in this case the output y = [pT

m θ12]
T is exactly

linearizing (i.e., flat).
Let us then consider as generalized coordinates q =

[pT
m θ1 θ12 θ1m]

T ∈ R5, where, we remind that pm = pc1 . In
this case the inertia matrix is

M =

 msI2 ∗ ∗ ∗
01×2 J1 ∗ ∗

βββ T (θ12) 0 mB−Jm ∗
01×2 0 0 Jm

= MT ∈ R5×5, (73)

the centrifugal/Coriolis and gravitational forces are

c(q, q̇) =

 β̄1(θ12)θ̇
2
12

β̄2(θ12)θ̇
2
12

0
0
0

 , g(q) =

 0
−msḡ

0
g4(θ12)

0

 , (74)

14Detailed analytical computations of these values are given in the technical
attachment. http://homepages.laas.fr/afranchi/files/J/TR-Yuesksel-Franchi.zip
open with password: T-Ro2016.

and notice that the elastic forces fE are the same as in (50).
Finally the control input matrix from generalized forces is

G(q) =

−sin(θ1) 0 0
−cos(θ1) 0 0

dGx 1 −1
0 0 0
0 0 1

 . (75)

Replacing M, c, g, G and fE in (1) we can derive the explicit
dependency of each entry of q̈, here summarized:15

ẍm = f1(θ1,θ12, θ̇12,θ1m,ut)

z̈m = f2(θ1,θ12, θ̇12,θ1m,ut)

θ̈1 = f3(ut ,ur,τ)

θ̈12 = f4(θ1,θ12, θ̇12,θ1m,ut)

θ̈1m = f5(θ1m,θ12,τ).

(76)

Let us now consider the output y = [pT
m,θ12]

T ∈R3 and try
to find s1, s2, and s3 that satisfy Condition 1 of Definition 1.

If we compare Case RC with Case EC we have that in the
former case n = 8 while n = 10 in the latter, which implies
that a higher total relative degree has to be reached in Case EC
to fulfill Condition 1. If we then compare (76) to (33) we see
that the only input appearing in Case EC for ÿ is ut while in
Case RC both ut and τ appear. This is a good sign since in
Case RC we had to choose both s1 = 2 and s2 = 2 thus raising
n̄ to 8+ 4 = 12 while in Case EC we probably do not need
to add two integrators on the τ channel because τ it is not
appearing already in ÿ.

Let us consider then s1 = 2, and s2 = s3 = 0. With this
choice the new input is ū = [üt ur τ]T ∈ R3, new state x̄ =
[qT q̇T ut u̇t ]

T ∈ R12, and n̄ = 12.
The functional dependency of the derivatives of y can be

written as follows:

ÿ = ξξξ 1(θ1,θ12, θ̇12,θ1m,ut). (77)

Let us now further derivate the output until the input appears.
Using θ̈12 from (76) we can write

...y = ξξξ 2(θ1,θ12,θ1m, θ̇1, θ̇12, θ̇1m,ut , u̇t). (78)

Using θ̈1 from (76) we can write
....y = ξξξ 3(θ1,θ12,θ1m, θ̇1, θ̇12, θ̇1m,ut , u̇t , üt ,ur,τ)

in which the new inputs appear linearly, therefore r1 = r2 =
r3 = 4 and thus r = 12 = n̄, which means that the Condition 1
of Definition 1 is satisfied. Therefore it is now worth to
analytically search for the invertibility domain of Ḡ(x̄), which
is given in the next result.

Proposition 4. The vectors [pT
c θ12]

T , [pT
m θ12]

T and [pT
e θ12]

T

are all exactly linearizing output via dynamic feedback for the
coinciding model with elastic-joint arm (Case EC), as long as
ut 6= 0 and ke 6= 0 (if the elasticity is linear). As a consequence,
they are also flat outputs.

Proof. For [pT
c θ12]

T this descends from Proposition 3 since
Case EC is a special case of Case EG. Concerning [pT

e θ12]
T ,

15Again, also in this case, if one develops the computations can see that
θ̈12 does not depend on θ̇12 since the terms depending on θ̇12 cancel out each
other.

http://homepages.laas.fr/afranchi/files/J/TR-Yuesksel-Franchi.zip
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it is enough to prove the flatness of [pT
m θ12]

T and apply (24).
In the following we then prove only the flatness of [pT

m θ12]
T .

First, notice that the inertia matrix cannot be decoupled
as nicely as in Case EG. However, we can re-concatenate
the generalized coordinates in the form of; q̃ = Sq =
[pT

m θ12 θ1 θ1m]
T ∈ R5, where S is an orthogonal selection

matrix

S =

(1 0 0 0 0
0 1 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 0 0 1

)
= ST ∈ R5×5. (79)

The new inertia matrix becomes M̃ = ST MS, where

M̃ =

 M̃11 03×2

02×3 M̃22

 ,M̃11 =

(
msI2 βββ

βββ T mB− Jm

)
∈ R3×3

M̃22 =

(
J1 0
0 Jm

)
∈ R2×2;

(80)

the Coriolis/centrifugal forces become c̃ = Sc, where c is
available from (74); the gravitational forces become g̃ = Sg,
where g is available from (74); the elastic forces become
f̃E = SfE , where fE is available from (50); and the input matrix
becomes G̃ = SG, where G is available from (75).

Then, we obtain

¨̃q = W



(
vut

0

)
+

(
02×1

ke(θ1m−θ12)

)
−
(

β̄ββ θ̇ 2
12

0

)
+

 0
msḡ

−g4(θ12)


(

dGx ut +ur− τ

τ

)
+

(
0

ke(θ12−θ1m)

)
 ,

(81)
where v is as in (61a). Notice that W = M̃−1, where

W =

(
W11 ∈ R3×3 03×2

02×3 W22 ∈ R2×2

)

W11 =

(
W111 ∈ R2×2 WT

1121

W1121 ∈ R1×2 W112 ∈ R

)
∈ R3×3,

(82)

and W22 = diag{W221 ,W222} ∈ R2×2. Now notice that p̈m is
available from the first two equations, θ̈12 from the third,
θ̈1 from fourth, and θ̈1m from the last equation of (81). By
differentiating p̈m twice w.r.t. time, and utilizing θ̈1 and θ̈1m
from (81) we obtain

....p m = W111vüt +W111 v̄W221utur−W111 v̄W221 utτ+

+WT
1121W222keτ +h1(q̃r, ˙̃qr,ut , u̇t), (83)

where v̄ is as in (13), and q̃r = Sqr, with qr = [θ1 θ12 θ1m]
T ∈

R3. Furthermore, by differentiating θ̈12 twice w.r.t. time, and
utilizing θ̈1 and θ̈1m from (81) we get

....
θ 12 = W1121 vüt +W1121 v̄W221utur−W1121 v̄W221utτ+

+W112W222keτ +h2(q̃r, ˙̃qr,ut , u̇t). (84)

Then using (83) and (84) we can write( ....p m....
θ 12

)
= h(qr, q̇r,ut , u̇t)+ Ḡū, (85)

where h = [hT
1 h2]

T ∈ R3×1 and

Ḡū =

 W111v W111 v̄W221ut Ḡ13

W1121 v W1121 v̄W221ut Ḡ23


︸ ︷︷ ︸

Ḡ∈R3×3

üt
ur
τ


︸ ︷︷ ︸

ū

(86)

where

Ḡ13 = WT
1121W222ke−W111 v̄W221ut

Ḡ23 =W112W222ke−W1121 v̄W221ut
(87)

and Ḡ is the new input matrix, whose determinant is

|Ḡ|=− utke

J1Jmms

(
J2ms +m2(m1 +mm)‖d2‖2

2

) , (88)

which is always invertible as long as ut 6= 0 and ke 6= 0 (if
the elasticity is linear). This proofs that [pT

m θ12]
T is exact

linearizing output for Case EC. From Fact 1 it is a flat output
as well.

Derivation of the Algebraic Map from the Flat Output

We shall show now the procedure to explicitly derive the
algebraic map that relates p̈m,

...pm,
....p m,θ12, θ̇12, θ̈12,

...
θ 12,

....
θ 12

with θ1, θ̇1, θ1m, θ̇1m, and u.
Consider the position in FW of the CoM of the overall

system, as in (44). By substituting it in (21) and in (22),
we find ut , u̇t , üt and θ1, θ̇1, θ̈1 as functions of y, · · · , ....y .
Furthermore, from the fourth equation of the system dynamics
we get

θ1m =
βββ T p̈m +(mB− Jm)θ̈12 +g4(θ12)+ keθ12

ke
, (89)

which is function of solely the flat outputs, i.e., θ1m =
θ1m(y, ÿ). Now, recalling that g4(θ12) = −βββ (θ12)ḡ · e2 with
e2 = [0 1]T ∈ R2, we can write

θ̇1m =
βββ T ...pm +(mB− Jm)

...
θ 12 +(β̄ββ

T p̈m− β̄ββ ḡ · e2 + ke)θ̇12

ke

θ̈1m =
βββ T ....p m +(mB− Jm)

....
θ 12 +2β̄ββ

T ...pmθ̇12

ke
+

+
(β̄ββ

T p̈m− β̄ββ ḡ · e2 + ke)θ̈12 +(βββ ḡ · e2−βββ T p̈m)θ̇
2
12

ke
, (90)

which means θ̇1m = θ̇1m(y, ẏ, ÿ,
...y ), and θ̈1m =

θ̈1m(y, ẏ, ÿ,
...y , ....y ). Moreover, one can rewrite the motor

torque using the fifth equation of the system dynamics,
namely

τ = τ(θ12,θ1m, θ̈1m) = Jmθ̈1m + keθ1m− keθ12, (91)

where substituting θ1m from (89) and θ̈1m from (90), it is
τ = τ(y, ẏ, ÿ, ...y , ....y ).

Finally the PVTOL torque is computed from the third
equation of the system dynamics using

ur = ur(θ̈1,ut ,τ) = J1θ̈1 + τ−dGx ut , (92)
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Modeling Cases Linearizing (Flat) Outputs Relative Degree New States New Input

Case RG: Rigid-Joint Attached to a Generic Point
• PC1 6≡ PM 6≡ PG ȳ = [

....p T
c θ̈12]

T x̄ = [qT q̇T ut u̇t ]
T ∈ R10

• q = [pT
c θ1 θ12]

T ∈ R4 y = [pT
c θ12]

T ∈ R3 r = 10 n̄ = 10 ū = [üt ur τ]T ∈ R3

Case RC: Rigid-Joint Attached to the PVTOL CoM
• PC1 ≡ PM 6≡ PG =⇒ pc1 = pm also y = [pT

m θ12]
T ∈ R3 ȳ = [

....p T
m

....
θ 12]

T x̄ = [qT q̇T ut u̇t τ τ̇]T ∈ R12

• q = [pT
m θ1 θ12]

T ∈ R4 and y = [pT
e θ12]

T ∈ R3 r = 12 n̄ = 12 ū = [üt ur τ̈]T ∈ R3

Case EG: Elastic-Joint Attached to a Generic Point

• PC1 6≡ PM 6≡ PG ȳ = [p(6)
c

T ....
θ 12]

T x̄ = [qT q̇T ut u̇t üt
...
u t ]

T ∈ R16

• q = [pT
c θ1 θ12 θr θ1m]

T ∈ R6 y = [pT
c θ12]

TR3 r = 16 n̄ = 16 ū = [
....
u t un τ]T ∈ R3

Case EC: Elastic-Joint Attached to the PVTOL CoM
• PC1 ≡ PM 6≡ PG =⇒ pc1 = pm also y = [pT

m θ12]
T ∈ R3 ȳ = [

....p T
m

....
θ 12]

T x̄ = [qT q̇T ut u̇t ]
T ∈ R12

• q = [pT
m θ1 θ12,θ1m]

T ∈ R5 and y = [pT
e θ12]

T ∈ R3 r = 12 n̄ = 12 ū = [üt ur τ]T ∈ R3

TABLE II: A summarizing table of the structural controllability properties for different models of PVTOL aerial manipulators equipped with
a rigid-joint or an elastic-joint arm. The first column summarizes the properties of the four different cases, which are deeply studied in this
paper. The remaining columns present the corresponding facts discovered in this paper. In every case the total number of states matches
with the relative degree, which implies that no destabilizing internal dynamics will arise when an exact feedback linearization controller is
applied to the system. This also implies the flatness of the corresponding output. See also Fig.6 of the technical attachment1 showing how
we used these properties and the controllers presented in this paper.

where utilizing θ̈1 from (22) and ut from (21) by also taking
(44) into consideration, and τ from (91), we can show that
ur = ur(y, ẏ, ÿ,

...y , ....y ).
In summary, we obtained pm = pm(y), ṗm = ṗm(ẏ), p̈c =

p̈m(ÿ) and θ12 = θ12(y), θ̇12 = θ̇12(ẏ), θ̈12 = θ̈12(ÿ) from
the definition; ut = ut(y, ẏ, ÿ), u̇t = u̇t(y, ẏ, ÿ,

...y ), üt =
üt(y, ẏ, ÿ,

...y , ....y ) from (21) and θ1 = θ1(y, ẏ, ÿ), θ̇1 =
θ̇1(y, ẏ, ÿ,

...y ), θ̈1 = θ̈1(y, ẏ, ÿ,
...y , ....y ) from (22) where for

both pc is obtained from (44); θ1m = θ1m(y, ÿ), θ̇1m =
θ̇1m(y, ẏ, ÿ,

...y ), θ̈1m = θ̈1m(y, ẏ, ÿ,
...y , ....y ) from (89)-(90); and

finally τ = τ(y, ẏ, ÿ, ...y , ....y ) from (91) and ur = ur(y, ẏ, ÿ,
...y , ....y )

from (92). Hence we showed how the states and the control
inputs of the system can be written as functions of the flat
outputs and a finite number of their derivatives.

Remark 2. Notice that in Case RC, both ut and τ needed to
be delayed twice with a double integrator, while for Case EC
this holds only for only ut , in order to match the condition on
the relative degree and total number of states (r = n̄) . This
happens because the spring in Case EC introduces a second
order linear system and hence further delaying for τ is not
needed.

VII. USING FLATNESS TO PLAN OPTIMAL TRAJECTORIES

In this section we formalize the optimal control problem
for planning the optimal trajectories of aerial manipulators
which take into account the saturations of the actuators and
the bounds of the system state. In order to generate trajectories
that satisfy the system dynamics, we show here how to use
the differential flatness property of the system in the planning
phase. Another advantage of using differential flatness is that
one can generate an initial guess of the trajectory by smoothly
interpolating the flat output from its initial to final value and
analytically compute the all states and control inputs of the
system accordingly. In this way, a warm start to the optimal
solver can be given, which reduces the computation time of
the optimal trajectory.

Dynamic feasibility of the optimal trajectories is ensured by
the smoothness of the flat output have. To obtain trajectories

that are smooth enough, we use the extension of the system
dynamics given in (1). In this paper we focus on the tasks
performed by the end-effector of the aerial manipulators.
Hence, and because of the reasons explained in Sec. V-B,
we will use the models described as Case RC and Case EC.
After presenting the dynamic extensions for Cases RC and
EC, we then use them in the formalization of the optimal
control problem together with their exact tracking controllers
as presented in Sections V-C and Sec.VI-B, respectively.

A. Using Differential Flatness for Dynamic Extension

In Sec. V-C and in Sec. VI-B we showed the differentially
flat outputs of the systems described as Case RC and Case
EC, respectively. Now, let us use this knowledge to extend the
system dynamics for generating the smooth trajectories.

1) Dynamic Extension for Case RC: Consider the system
model in Section V-C. The system dynamics is summarized
in (33), which can be written in the following form

q̈ = f(q, q̇,u) ∈ R4×1. (93)

The flat outputs are y = [pT
mθ12]

T (see Proposition 2) and the
implicit functional dependencies of their derivatives are shown
in (35) and (V-C). Also considering Table II we know that
x̄ = [qT q̇T ut u̇t τ τ̇]T ∈ R12 and ū = [üt ur τ̈]T ∈ R3. Hence,
we can write

˙̄x =

04 I4 04
04 04 04
04 04 S

 x̄+

 04×1
f(q, q̇,u)
s(üt , τ̈)

= f̄(x̄, ū), (94)

where f is available from (93) and

S =

(0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

)
∈ R4×4, s =

[ 0
üt
0
τ̈

]
∈ R4.

Later, we will use the extended system dynamics given in (94)
for the optimization problem.
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2) Dynamic Extension for Case EC: Consider the system
model in Section VI-B. The system dynamics is summarized
in (76), which can be written in the following form

q̈ = f(q, q̇,u) ∈ R5×1. (95)

The flat outputs are y = [pT
mθ12]

T (see Proposition 4) and the
implicit functional dependencies of their derivatives are shown
in (78) and (VI-B). Also considering Table II we know that
x̄ = [qT q̇T ut u̇t ]

T ∈ R12 and ū = [üt ur τ]T ∈ R3. Hence, we
can write

˙̄x =

 05 I5 05×2
05 05 05×2

02×5 02×5 S

 x̄+

 05×1
f(q, q̇,u)

s(üt)

= f̄(x̄, ū), (96)

where f is available from (95) and

S =
(

0 1
0 0

)
∈ R2×2, s =

[ 0
üt

]
∈ R2.

In the following, we will use the extended system dynamics
given in (96) for the optimization problem.

B. Optimal Control Problem

We consider the following optimization problem

minimize
x̄(t),ū(t)

J(x̄(t), ū(t), tL)

subject to, ∀t ∈ [t0, tL]
˙̄x = f̄(x̄(t), ū(t)), x̄(t0) = x̄0

qm ≤ q≤ qM, um ≤ u≤ uM

ψm ≤ ψ ≤ ψM

(97)

where J : x̄, ū → R is the cost function16; f̄ is the system
dynamics available from (94) for Case RC, and from (96) for
Case EC; q and u are the system coordinates and the inputs17;
and x̄0 are the initial conditions. Notice that ψ is the deflection
of the elastic element, i.e. ψ = θe = θ2−θm, and this condition
is added only for Case EC.

Now we have a formal definition of an optimal control
problem, which can be used to generate a trajectory for aerial
manipulators described as Case RC and RE.

The dimension and hence the complexity of the system at
hand is too high to solve it as an optimal control problem in
an analytical way. A way to approaching the optimal control
problem is to reduce the system complexity, as it is don, e.g.,
in [23], where authors used the angular velocity of the system
as inputs, instead of force/torque inputs. This approach is not
viable for aerial manipulators where the dynamical effects
cannot be neglected. Therefore, in this paper we consider the
full system dynamics and solve the optimization problem using
the direct optimization method, such as the one presented
in [34].

16For example, in Sec. VIII-D we consider the aerial throwing task in
which the cost function is the throwing distance.

17Notice that both q and u are the part of x̄ in both Case RC and EC. Here
by limiting the states and the control inputs of the robots, we also limit x̄.

Quantity Symb. Nom. Value/Range Unit
PVTOL mass m1 1.00 kg
motor mass mm 0.20 kg
link mass m2 0.30 kg
rotating motor mass mr 0.05 kg
object mass mo 0.5 kg
PVTOL inertia J1 0.028 kgm2

motor solid inertia Jms 0.0562e-06 kgm2

motor inertia Jm 0.4101 kgm2

link inertia J2 0.004 kgm2

dis. vec. betw. PC1 & PM d1 −[8 8]T ↔ [8 8]T cm
dis. vec. betw. PC2 & PM d2 [0 0.2]T m
dis. vec. betw. PC2 & PE de [0 0.2]T m
dis. vec. betw. PC1 & PG dG [0.01 0.05]T m
motor shaft radius rr 0.015 m
linear spring stiffness ke 3↔ 30 Nm/rad
motor gear ratio gr 270:1 -
PVTOL thrust range Tt 0.1↔ 28 N
PVTOL torque range Tr −3↔ 3 Nm
Motor torque range Tm −5↔ 5 Nm
grasping time tg 2.67 s
impact duration Ti 0.01 s

TABLE III: Nominal parameters of the simulated systems.

Non-idealities Notation Value Unit
deviation in masses δm 2 %
deviation in inertias δi 10 %
deviation in d2 δ2 [0 0.01]T m
deviation in dG δG [0 0.01]T m
deviation in spring constant ke δs 0,5,10 %
3-sigma Gauss. noise in pos. 3σp 0.01 m
3-sigma Gauss. noise in vel. 3σv 0.02 m/s
3-sigma Gauss. noise in θ1 3σ1 0.01 rad
3-sigma Gauss. noise in θ̇1 3σd1 0.02 rad/s
3-sigma Gauss. noise in θ2,θm,θe 3σ2 0.001 rad
3-sigma Gauss. noise in θ̇2, θ̇m, θ̇e 3σd2 0.002 rad/s

TABLE IV: Deviations from the nominal parameters and standard
deviations of the noise used in the simulations. The controllers are
not aware of the deviations and use instead the nominal values of
Table III.

VIII. REALISTIC NUMERICAL VALIDATION

In this section we show the results of extensive simulative
tests aimed at validating, in non-ideal conditions, the per-
formances of the feedback controllers and optimal trajectory
generators presented in the previous sections. We focus in
particular on the algorithms developed for cases RC (Sec. V-C)
and EC (Sec. VI-B) because they permit to control the end-
effector pose, which is the typical task in practical applica-
tions. We also test the robustness of those algorithms (shortly
denoted as the RC controller and the EC controller in the
following) when applied to the more general RG and EG cases.

The controller actions are computed using noisy mea-
surements and nominal (i.e., wrong) values of the system
parameters. The system dynamics is integrated using the real
parameters values (i.e., nominal + deviations). A summary

Quantities Notation Value Unit
min/max limits of xm qm(1)↔ qM(1) -0.5 ↔ 0.5 m
min/max limits of zm qm(2)↔ qM(2) -0.5 m
min/max limits of θ1 qm(3)↔ qM(3) -45↔ 45 deg
min/max limits of θ12 qm(4)↔ qM(4) -45 ↔ 45 deg
min/max limits of ψ ψm↔ ψM -20↔20 deg
min. limit of ut ,ur,τ um [0.1 −1.75 −1.5]T N
max. limit of ut ,ur,τ uM [28 1.75 1.5]T N
desired zm z∗m -1 m
initial values Case RC x̄0(1)↔ x̄0(12) [0 −1 01×6 −msḡ 01×3]

T -
initial values Case EC x̄0(1)↔ x̄0(12) [0 −1 01×8 −msḡ 0]T -

TABLE V: Physical limits used in the aerial throwing tasks.
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PG

ḡ : gravity

x1

z1

d1

ḡ : gravity

mo

Fig. 4: – Left: the joint is not attached exactly at the PVTOL CoM:
d1 spans the values given in Table III.
– Right: a sketch for grasping with PVTOL+arm system.

of the nominal values and the corresponding deviations, as
well as of the noise characteristics, can be found in Tables III
and IV. Nominal parameters, deviations, and noise are chosen
very close to the values available on a real small-size aerial
system equipped with standard sensors.

The system is simulated using an Ode8-solver at 1 kHz in
Matlab Simulink. The noisy positions and velocity measure-
ments are given to the controller at a rate of 30 Hz, similarly
to what a commercial camera+IMU setup would provide. The
rate of the noisy orientations and the angular velocities is
500 Hz, a realistic value for IMU attitude estimation and motor
encoder readings.

In the dynamic models, the link attached to PVTOL is
considered as a rod, whose inertia is computed using J2 =
m2L2/12, where L= ||d2+de||. The motor inertia is computed
as Jm = g2

r Jms where gr is its gear reduction ratio, and
Jms = mrr2

r /2 is calculated by considering motor as a rotating
solid cylinder. The stiffness range of the elastic actuator is
chosen similar to the one from [35]. The physical limits of all
the actuators are considered as hard thresholds and provided
in Tables III and V.

In the next plots, for nominal values we mean the system
behavior in the ideal case, i.e., as if the controllers were
fully aware of the real parameters (nominal + deviation) of
the system dynamics and there was neiter noise nor under-
samplings in the measurements. The actual values represent
instead the system behavior when the controllers use the nom-
inal parameters, and under-sampled and noisy measurements.

A. Pole Placement Strategy

The feedback controllers used in the simulations have been
explained in Sec. V-C and Sec. VI-B, in which we have
analytically proven that the flat outputs are (in both cases)
y = [pm θ12]

T (or, equivalently, [pe θ12]
T ). Thanks to that

results we can apply a nonlinear control loop to bring the
system in the form (5). Then, given any 3-ple of desired
trajectories of class C3, xd

m(t), zd
m(t), θ d

12(t) for xm, zm, and
θ12, respectively, the following outer control loop is used

vxm = xd
m
(4)+Kx1ex +Kx2e(1)x +Kx3e(2)x +Kx4e(3)x

vzm = zd
m
(4)+Kz1ez +Kz2e(1)z +Kz3e(2)z +Kz4e(3)z

vθ12 = θ
d
12

(4)+Kθ1eθ +Kθ2e(1)
θ

+Kθ3e(2)
θ

+Kθ4e(3)
θ

(98)

where ex = xd
m − xm, ez = zd

m − zm, eθ = θ d
12 − θ12, and

Kxi,Kzi,Kθ i ∈ R>0, with i = 1 . . .4, are properly chosen gains.

We know that this control law will exponentially steer the
three outputs along the desired trajectory, because we have
analytically proven that the decoupling matrix Ḡ is invertible
almost everywhere. To compensate the errors due to uncer-

tainties, an integral term Ki∗
t f∫
t0

e∗dt is added in the outer loop

of each channel, where ∗ := {x,z,θ} and Ki∗ ∈ R>0.

Remark 3. Notice that, as in any dynamic feedback lineariza-
tion control, the obtained control law is a function of only
the measured state. In fact, the derivatives of the output are
algebraic function of the state thanks to the system model.
Furthermore, the derivative of the actual inputs are internal
variables of the state extension. Therefore there is no need to
perform any numerical derivation to implement such controller
but only to measure the state of the original system, i.e., (q, q̇).

B. Test 1: Tracking a given Trajectory

The first set of tests validates the capabilities of the proposed
controller of tracking a composite trajectory for the desired flat
outputs xd

m, zd
m and θ d

12 in the non-ideal conditions. The plots
of the results are shown in Fig. 5 In addition to the non-ideal
conditions mentioned above, we tested the two controllers in
the case that the arm joint is not perfectly attached to the
PVTOL CoM, i.e., ‖d1‖ is not exactly zero (see Fig. 4-Left).
When doing so, an unstable behavior might appear if ‖d1‖ is
too large. However as long as ‖d1‖ is kept in a reasonable
bound the behavior remains stable, as illustrated in [36].

The main considerations are that: 1) the controllers do not
need a perfect knowledge of the model parameters since the
performances degrade smoothly and nicely with the increase
of the parameter uncertainty; 2) the controllers work well with
the typical noise, sampling and quantization that are presents
in real systems; 3) the control effort in the case of the elastic-
joint arm is larger with respect to the rigid-joint case. This
happens because the controller needs suppress the tendency of
the spring to oscillate at its natural frequency when steering
the system along the desired trajectory

C. Test 2: Grasping an Object while Flying

In this section we first describe the scenario of grasping a
stationary object using both the PVTOL+rigid-joint arm and
the PVTOL+elastic-joint arm. A sketch depicting such task is
given in the right side of Fig 4. The grasped object mass is
mo > 0. At time tg (grasping time instant) the dynamic model
of the simulated robot is updated accordingly to the grasping
action and a disturbing impact force is also simulated based on
the difference between the end-effector and the stationary mass
velocities. More detail on the modeling of the aerial grasping
can be found in the technical attachment of this paper18.

1) Grasping with Rigid-joint Arm: Consider the model
and the controller presented in Section V-C, i.e., Case RC.
The composite trajectory used in the previous simulations is
suitable for an aerial grasping task, at which an object with
mo = 0.5kg is to be grasped by the end-effector at time instant

18http://homepages.laas.fr/afranchi/files/J/TR-Yuesksel-Franchi.zip open
with password: T-Ro2016.

http://homepages.laas.fr/afranchi/files/J/TR-Yuesksel-Franchi.zip
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Fig. 5: Tracking of a given trajectory in presence of several non-ideal conditions: noise, parameter uncertainty, under-sampling, and attachement
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tg = 2.67s. At this second, the joint arm is at its maximum
orientation from the initial condition, at a high velocity in +x
direction, and at the beginning of its raising up again along
the −z axis (+z is facing down because of the NED frame).
Results are given in Fig. 6. Two cases are compared: known vs
unknown grasped mass. After tg, deviations from the desired
trajectories are clearly seen for both cases. If the grasped mass
is unknown, such deviation is higher for all the flat outputs.
In the nominal case, the controller is fully aware of the end-
effector velocity and mass, hence it generates high peaks in
torques to counterbalance the impact. For the actual cases,
controller is aware of the model with some deviations, hence it
produces less reaction to the impacts compared to the nominal
case, which results as worse tracking performance. However
for the overall trajectory tracking problem, in the nominal case
the controller tracks perfectly with less effort compared to
the actual case, as also reported in Section VIII-B and in the
technical attachment of this paper18.

2) Grasping with Elastic-joint Arm: Consider the model
presented in Section VI-B, i.e., Case EC. The same desired
trajectory is used as in Section VIII-C1, where an object with
mo = 0.5kg has to be grasped by the end-effector at time
instant tg = 2.67s. Two cases are compared: grasping with
low stiffness spring, ke = 8 Nm and with high stiffness spring,
ke = 30 Nm. The results are given in Fig. 7. For both the low
and the high stiffness cases, the tracking performance of the
flat outputs are very close to each other. Moreover it is very
similar to the results given in Fig. 6, with a clear difference in
the absolute link orientation θ12. However, the control effort is
much more for Case EC than for Case RC. Using high stiffness
joint mitigates this effect and results beneficial for the aerial

grasping task. Finally, one can conclude this simulation set
saying that for aerial grasping task and for tracking a generic
trajectory Case RC is more advantageous than Case EC in
terms of control effort.

D. Test 3: Throwing an Object while Flying
In this section we consider the aerial throwing task, in

which an object is thrown from the end-effector of the aerial
manipulator while the robot is flying. Such task is sketched in
Fig. 8. Notice that aerial throwing problem is quite different
from ground base robots throwing (see [18]), because in this
case, the base of the robot is flying and it needs to compensate
the dynamical effects while performing such task. A real
scenario of aerial throwing task can be imagined as a situation,
where the aerial manipulator is assigned to deliver a package,
e.g. a first aid kit, in an hazardous environment, where the
arrival point of the package is not suitable for the robot.

We define the following cost function

J =−Jd +

tL∫
t0

(Jz + Jτ)dT where

Jd = d2, Jz = (zm− z∗m)
2, Jτ = τ

2

(99)

with upper-script (∗) stands for the desired value and d is the
thrown distance of the object, computed using the ballistic
equation of the flying object, similar to [18]

d(y, ẏ) = xe(y)+ ẋe(y, ẏ)t f (y, ẏ)︸ ︷︷ ︸
d f

t f (y, ẏ) =
1
ḡ

(
że +

√
ż2

e +2ḡ(zg− ze)
) (100)
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Fig. 6: Aerial grasping with a PVTOL+rigid-joint arm. The grasping
instant is shown with a vertical blue dashed line. The nominal values
are given with yellow solid curves. In the case of known grasped
mass the actual values and noisy measurements are presented with
red and purple solid curves, respectively. The pink solid curve shows
the values in the case that the grasped mass is unknown.

where recall that pe = [xe ze]
T is the end-effector position

and ṗe = [ẋe że]
T is its velocity, where both can be computed

using (24)19. The height of the ground is zg, which is the
altitude at which the object hits the ground. The total flight
time of the thrown object is t f , and the distance taken by the
object after leaving the aerial manipulator is depicted with d f .
The cost function also includes the term Jz for keeping the
aerial robot around its hovering height, and Jτ for minimizing
the actuation costs.

By substituting (99) in the optimization problem described
in (97), we compute the desired trajectories for the aerial
manipulators described as Case RC and Case EC, for achieving
aerial throwing task while respecting the system input and state
boundaries. For solving this optimization problem, we used
ACADO numerical optimizer [34]. The parameters for the
simulation and the optimization problem is given in Table V.

The results are given in Fig. 9. The optimal trajectories com-
puted using [34] are clearly enabling the aerial manipulator to
throw the object to a far distance, at exactly tL = 1 second,
while keeping the PVTOL at the desired altitude. The results
for Case RC (left of Fig. 9) and Case EC (right of Fig. 9)
show that in both cases, the aerial robots are accelerating
first backwards and then forwards along the x-axis to reach
high linear velocities (due to the limits on xm, see Table V).
However notice that in Case EC, the aerial manipulator uses
the potential energy stored in the elastic-joint for amplifying
the link velocity. At the end, the aerial manipulator in Case

19Notice that the throwing distance d is a sole function of the flat outputs
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Fig. 8: Sketch of aerial throwing task using a PVTOL aerial manip-
ulator. The ballistic trajectory of the thrown object is shown with
dashed curve, and the distance taken by the object after leaving the
aerial manipulator is shown with d f .

EC achieves a higher throwing distance than the one of Case
RC, by performing an explosive movement. This result is in
the line with the high-speed swinging tests via link velocity
amplification, presented in the technical attachment of this
paper18.

We notice that due to the term Jz in (99), the aerial manipu-
lator tries to keep itself in the hover condition, which ensures
that the system performs a stable flight. However this also
limits the system to achieve a better throwing performance.
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Fig. 9: Throwing object with the aerial manipulators in Case RC (left) and Case EC (right). Throwing is performed at tL = 1 second.
– Left: Results for Case RC. The first plot on the top shows the trajectory of the aerial robot and the ballistic trajectory of the thrown object
using stroboscopic effect. The trajectory of the aerial manipulator is separately emphasized in a zoomed subfigure. The thrown object hits
the ground about 188 cm away from the end-effector. The link angular velocity, PVTOL linear velocities (ẋm, żm) and the control inputs are
plotted below.
– Right: Results of Case EC. This time, the motor and the rigid link angular velocities are plotted together in the first figure of the second
row, where dashed curve depicts the motor velocity and the solid one represents the rigid link velocity. Notice the link velocity amplification
w.r.t. the motor velocity using the potential energy stored in the elastic-joint arm. The thrown object hits the ground at about 209 cm away
from the end-effector.

Exploring different definitions of the cost function for aerial
throwing is in the scope of our future studies.

Trajectory Aerial Link Velocity Aerial
Tracking Grasping Amplification Throwing

Rigid Joint + + - -
Elastic Joint - - + +
Videos v1.mp4, v2.mp4 v5.mp4 v3.mp4 v6.mp4

TABLE VI: Summary of the results showing which type of joint
is more suitable for which simulations. The symbol ‘+’ stands for
‘more suitable’, and ‘-’ for ‘less suitable’. The corresponding videos
are cited as well, which are attached to this paper. Consider that
another attached video named v4.mp4 is showing the case when
the joint has a small elasticity and friction. More details on is given
in Section I-C of the technical attachment18.

IX. SUMMARY OF THE SIMULATIONS

The results presented in Section VIII and in the technical
attachment of this paper18 show that different choices for a
PVTOL+joint arm design can be more or less suitable for
different tasks. This is summarized in Table VI with the names
of related files, provided as attachments to this paper.

X. CONCLUSIONS

In this paper we systematically presented and proved both
the differential flatness property and the exact linearizing
controllers for four different models of a PVTOL+joint arm
mechanism: i) RG Case (Sec. V-A), ii) RC Case (Sec. V-C),
iii) EG Case (Sec. VI-A), iv) EC Case (Sec. VI-B). Each
of these cases outperforms another one for practical reasons
as explained throughout the paper. We also presented formal-
ization of an optimal control problem for aerial manipulators
using their flatness property, and implemented it for the aerial
throwing task. Using extensive and realistic simulation results
we showed different tasks that are suitable for either rigid-
or elastic-joint arm configuration. Namely, rigid-joint arm is
more suitable for trajectory tracking or grasping tasks, while
elastic-joint arm is more for the tasks requiring link velocity
amplification such as aerial throwing. Furthermore we showed
that the more generic models (Case RG and EG) can be
controlled with the simpler controllers (RC Controller and EC
Controller) for a bounded set of d1 6= 0.

In the future we plan to apply presented controllers and
use the differential flatness property of the PVTOL+joint arm
systems on a real setup, developed based on our previous
experiences [16]. Moreover, a clear trade-off between rigid-
and elastic-joint arm setups directs us to use variable stiffness



20

actuators on board of an aerial vehicle, that can change their
stiffness depending on which joint arm setup favors the task.
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