
HAL Id: hal-01388450
https://hal.science/hal-01388450v1

Preprint submitted on 27 Oct 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Dynamic Decentralized Control for Protocentric Aerial
Manipulators

Marco Tognon, Burak Yüksel, Gabriele Buondonno, Antonio Franchi

To cite this version:
Marco Tognon, Burak Yüksel, Gabriele Buondonno, Antonio Franchi. Dynamic Decentralized Control
for Protocentric Aerial Manipulators. 2016. �hal-01388450�

https://hal.science/hal-01388450v1
https://hal.archives-ouvertes.fr


Dynamic Decentralized Control for Protocentric Aerial Manipulators

Marco Tognon1 Burak Yüksel2 Gabriele Buondonno3 Antonio Franchi1

Abstract— We present a control methodology for underac-
tuated aerial manipulators that is both easy to implement on
real systems and able to achieve highly dynamic behaviors. The
method is composed by two parts, a nominal input/state genera-
tor that takes into account the full-body nonlinear and coupled
dynamics of the system, and a decentralized feedback controller
acting on the actuated degrees of freedom that confers the
needed robustness to the closed-loop system. We show how to
apply the method to Protocentric Aerial Manipulators (PAM)
by first using their differential flatness property on the vertical
2D plane in order to generate dynamical input/state trajectories,
then statically extending the 2D structure to the 3D, and finally
closing the loop with a decentralized controller having the dual
task of both ensuring the preservation of the proper static
3D immersion and tracking the dynamic trajectory on the
vertical plane. We demonstrate that the proposed controller is
able to precisely track dynamic trajectories when implemented
on a standard hardware composed by a quadrotor and a
robotic arm with servo-controlled joints (even if no torque
control is available). Comparative experiments clearly show
the benefit of using the nominal input/state generator, and also
the fact that the use of just static gravity compensation might
surprisingly perform worse, in dynamic maneuvers, than the
case of no compensation at all. We complement the experiments
with additional realistic simulations testing the applicability
of the proposed method to slightly non-protocentric aerial
manipulators.

I. INTRODUCTION

Aerial robots are attracting increasing interest from sci-
entists in the robotics society, due to their agility and great
workspace. Especially multi-rotors (quadrotors, hexarotors,
etc.) are nowadays available to a broad public, thanks to their
symmetric design allowing simplified mathematical models
to be used, their light-weight and highly efficient electronics,
and also their affordable prices. The control of such robots
has been a challenge for the researchers since over two
decades, concerning tracking of complex trajectories [1],
human-robot interaction [2], and so on, which paved the way
for surveillance and monitoring-like tasks.

Manipulator robots are well known mechanisms that have
been studied intensively for a very long time [3], especially
on the modeling and control of fixed-base manipulators.

An aerial manipulator is a robotic system, which has the
capacity to fly and at the same time manipulate objects in
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its environment by applying reasonable forces and torques.
Most commonly they consist of a flying robot and at least
one manipulator arm [4]. In such robots, the great workspace
and the agility of aerial robots meet with the dexterity of con-
ventional manipulators. This breaks ground to many different
robotic applications, e.g., pick and place of objects [5], aerial
physical interaction [6], and aerial grasping [7]. In [8] a pas-
sive decomposition method is shown for dynamic modeling
and control of a quadrotor equipped with a redundant rigid
arm. A kinematic control of a rigid manipulator attached on
a quadrotor was recently experimented in [9]. Despite the
fact that rigid manipulators are the most common tools used
so far, other types of aerial manipulators are also studied as,
e.g., compliant actuators [6], [10].

Although aerial manipulators open new doors for various
robotic tasks, their control is not trivial, since they are an
interconnection of multiple nonlinear robotic systems. For
this reason, it is important to analyze their system dynamics,
and develop control algorithms dealing not only with the
tracking problem of the outputs we are interested in, but also
with the internal dynamics of the system and how they are
coupled with each other. Such sophisticated control methods
using deep system knowledge often require the torque control
of the manipulating arms [8], [10]. However small-size
light-weight arms with torque controlled actuators are either
not available at a low price or not reliable enough in the
torque control modality. On the other hand, position/velocity
controlled servo motors are cheap and easy to reach, making
them preferable to be used in the experimental setups. For
this reason, it is relevant to seek for a controller that, while
taking into account the system dynamics, can also be used
together with light-weight manipulators built using off-the-
shelf servo motors.

The differential flatness property could turn handy in such
cases, since it allows to analytically compute in advance
all (nominal) states and control inputs of the system from
the so called flat outputs and their derivatives up to a
finite order [11]. However the end-effector configuration of
an aerial manipulator or the center of the flying base on
which the aerial manipulator is mounted (where many of
the sensors are typically hosted) are not in general part of
a flat output of the system. In [12] we have shown that,
in the 2D vertical plane, Protocentric Aerial Manipulators
(PAMs) with any number of manipulating arms, each having
any number of joints with either rigid or compliant actuators
are differentially flat systems. In [10], the authors showed
that this property can be employed together with an exact
linearizing controller for tracking control of a quadrotor
equipped with an elastic-joint arm - using a Variable Stiffness



Actuator (VSA). Such controller requires however a good
knowledge of the model parameters, and motors with torque-
control modality.

Alternatively, in this paper, we present and experimentally
validate a decentralized flatness-based control for the output
tracking problem of PAMs. Using their flatness property, as
studied in [12], we develop a controller which can steer the
outputs of the system to their desired values. The method is
compared with other two standard techniques as well.

Notice that the controller presented here is different from
the one used in [12], since there the authors presented an ex-
act linearizing controller, while the controller presented here
is decentralized and uses the differential flatness property
(see Sections III and IV). In [7] a decentralized controller
was presented for the simple case of a single-DoF PAM (a
PAM equipped with an arm having one Degree of Freedom).
The controller presented here is instead thought for a more
complex system where i) the Center of Mass (CoM) of the
aerial vehicle can be different from the geometric center of its
actuation, ii) the PAM can have any number of manipulator
arms, each having any number of DoFs.

The controller presented in this paper best performs for
the robot arms equipped with torque-controlled actuators.
However, it is possible to obtain very good results also
with kinematically controlled motors, by employing a simple
variant. This is a great advantage over the torque-based
controllers like the ones in [10], [12], as it makes it imple-
mentable to the readily available hardware with less effort,
while still fully considering the dynamics of the nonlinear
system, unlike the controllers only based on the system
kinematics as, e.g., [9].

The paper is organized as follows. In Sec. II we introduce
a generic dynamic model of an aerial manipulator. In Sec. III
we describe the decentralized controller for such system,
which requires the computation of its nominal states and
inputs. In Sec. IV we show how to compute these nominal
states and inputs for a PAM in 2D vertical plane, using
the differential flatness of the system. Then in Sec. V we
experimentally test our controller using an aerial manipulator
which consists of a quadrotor VTOL and a 2-DoF rigid ma-
nipulating arm for three different trajectories. The proposed
method is also compared with other two standard approaches.
Finally, we conclude our work in Sec. VI with remarks on
the future directions. Supplementary simulation results are
given in a technical report1 for the limited size of the paper.

II. MODEL OF AN AERIAL MANIPULATOR

Consider a generic aerial manipulator, consisting of a
multi-rotor aerial platform (a Vertical Take-off and Landing
vehicle, VTOL for short) equipped with m robotic arms.
We denote with FW : {PW,xW ,yW , zW } and F0 :
{P0,x0,y0, z0} the world (inertial) frame, and the frame
attached to the VTOL, respectively, where P0 is the CoM
of the VTOL. The world frame is chosen according to

1Link to report: https://homepages.laas.fr/afranchi/
files/2016/MBGA16.zip
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Fig. 1: Sketch of a protocentric aerial manipulator (PAM) with two
arms, described with the same notation of [12]. Notice that in the
3D model of the PAM (the one on the left down), the axis of rotation
for each individual joint of each arm is parallel to yW . Hence its
projection on xW − zW plane looks like the one in the grayed
area (right up). Notice the possibility that the geometric center of
base actuation, PG, and the CoM of the flying base, P0 are not
coinciding in the same point.

the common North-East-Down (NED) convention, and the
orientation of F0 in FW is described by the rotation matrix
R0 = [x0 y0 z0] ∈ SO(3), parametrized by the roll-pitch-
yaw angles η = [φ0 θ0 ψ0]T ∈ R3. The µ-th arm possesses
nµ links and its joint configuration is described by the vector
θµ = [θ1µ · · · θnµ ]T ∈ Rnµ . The total number of links of
the generic aerial manipulator is n =

∑m
µ=1 n

µ. A particular
example of the generic aerial manipulator model described
so far is shown on the left of Fig. 1. A possible set of
generalized coordinates of the whole platform is

q =
[
pT0 ηT θT

]T ∈ R6+n, (1)

where p0 = [x0 y0 z0]T ∈ R3 is the position of P0 expressed
in FW and θ = [θT1 · · · θTm]T ∈ Rn.

The ν-th joint of the µ-th manipulator (νµ-th joint of the
overall system) is controlled by the actuation torque τνµ , and
the vector of all actuation torques of the µ-th arm is denoted
as τµ = [τ1µ · · · τnµ ]T ∈ Rnµ . All joint torques are collec-
tively referred to as τ = [τT1 · · · τTm]T ∈ Rn. The flying
base (VTOL) is actuated by the thrust ut, which is a scalar
force value acting perpendicularly to the platform (in the di-
rection of −z0), and by the torque ur ∈ R3. We denote with
PG the center of actuation of the PVTOL, whose constant
position in F0 is denoted with dG = [dGx dGy dGz ]

T ∈ R3.
The thrust vector f0 = −utz0 ∈ R3 and the base torque
ur are applied at and around PG, respectively. The overall
control input of the whole aerial manipulator is

u =
[
ut uTr τT

]T ∈ R4+n. (2)

The system is modeled dynamically using the classical
Lagrangian notation

M(q)q̈ + c(q, q̇) + g = G(η)u, (3)

where M is the inertia matrix, c is the vector of Coriolis
and centrifugal forces, g is the vector of gravity forces, and



G is the input matrix

G(η) =

[
−R0e3 0

0 I3+n

]
∈ R(6+n)×(4+n), (4)

where Ik is the k×k identity matrix, e3 is the third column
of I3, and 0 is the zero matrix, of appropriate dimension.

Since the control input has less elements (4 + n) than the
configuration variables (6 + n), the system is underactuated.
Further, the inertia matrix has the following structure

M(q) =

[
msI3 Mpr

MT
pr Mr

]
∈ R(6+n)×(6+n), (5)

where ms is the total mass of the system.

Remark II.1. Because of the underactuation, commonly in
multi-rotor platforms the position p0 and the yaw ψ0 are
controlled, while the roll φ0 and the pitch θ0 are used as
virtual inputs or they are left uncontrolled. In the case of
aerial manipulation, the position of the end-effectors does
not only depend on p0, ψ0 and θ, but also on φ0 and θ0.
Consequently, it is not possible to plan exclusively for p0, ψ0

and θ if the position of the end-effectors is to be controlled.

Remark II.2. The inertia matrix M exhibits dynamic cou-
plings between all elements of the state. This considerably
complicates the control problem.

III. DECENTRALIZED CONTROL FOR AERIAL
MANIPULATORS

In this section we present a decentralized controller for a
generic aerial manipulator in 3D. By decentralization, we
mean that the controller does not consider the dynamic
coupling of the complex system, explicitly. However, it does
take the system dynamics implicitly into account, by using
some feed-forward terms. Moreover, it uses feed-back terms
for steering the system to a desired behavior while providing
some robustness to the closed-loop system.

Now, say yd(t) stands for the desired output of the system
given in (3), and our objective is to track this output. If the
desired output trajectory is consistent with the undeactuation
it is in theory possible to find some corresponding desired
states and inputs

qd(t) = [pd0
T
ηd

T
θd

T
]T , ud = [udt u

d
r

T
τ d

T
]T ,

q̇d(t) = [ṗd0
T
η̇d

T
θ̇d

T
]T ,

(6)

where we assume that these desired values are given; hence
we will call them feed-forward terms. Notice that these terms
can be computed as the nominal states and the inputs using
the differential flatness property of the system (e.g., as shown
in Sec. IV). In fact, doing so, we will be using the knowledge
of the system dynamics in a decentralized controller.

Now, let us first address the control of the aerial platform,
in this case a VTOL. We develop a hierarchical approach
based on the separation of the translational and rotational
dynamics, which eventually tracks the position pd0. Firstly
let us define the controlled thrust vector as:

f0 = fd0 + f?0 = fd0 + KP
p0

(pd0 − p0) + KD
p0

(ṗd0 − ṗ0), (7)

where KP
p0
,KD

p0
∈ R3×3

≥0 . Notice that f0 is computed as a
combination of the feed-forward terms (·d), and the feedback
term (·?) proportional to the state error of the system with
respect to the nominal one. From the controlled thrust vector
we can retrieve the commanded thrust as

ut = −(R0e3)T f0, (8)

and the commanded attitude as
zc0 = f0/ ‖f0‖ , yc0 = zc0 × e1,

xc0 = yc0 × zc0, Rc
0 = [xc0 yc0 zc0].

(9)

This closes the outer-loop control. The controlled attitude is
then passed to the inner-loop control as the desired attitude,
to compute the controller torque as:

e
[×]
R0

= 1/2(Rc
0
TR0 −RT

0 R
c
0)

eω0 = ωd0 − ω0

ur = udr + u?r = udr + KP
R0

eR0 + KD
R0

eω0 ,

(10)

where, ·[×] represents the skew operation, ω0 ∈ R3 and
ωd0 ∈ R3 are the current and the desired angular ve-
locities of the VTOL body in body-fixed frame2, and
KP

R0
,KD

R0
∈ R3×3

≥0 .
Now, let us give the control of the generic νµ-th joint,

in order to track the relative desired angle. For a torque-
controlled motor, we design the control law based on a PD
strategy as

τνµ =τdνµ+τ?νµ =τdνµ+kPνµ(θdνµ−θνµ)+kDνµ(θ̇dνµ−θ̇νµ), (11)

where kPνµ , k
D
νµ ∈ R≥0. This controller ensures the best

performances. Nonetheless, for kinematically controlled mo-
tors, it is possible to adapt the controller for achieving good
results. For instance, for a velocity-controlled motor, the
commanded velocity can be given as

θ̇νµ = θ̇dνµ + kPνµ(θdνµ − θνµ). (12)

See also Sec. V for its implementation.
In summary, the VTOL thrust, ut, is computed in (8); its

torque is given in (10); and the control input of the individual
motors of the manipulators, τνµ in (11) which collectively
builds the torque input τ . Hence, we have all the control
inputs u of the system in (3). A simple variant, as in (12),
allows the use of this controller for kinematically-controlled
motors. A schematic representation of the controller is shown
in Fig. 2. Now let us show how to use the differential flatness
of a specific type of aerial manipulator for computing the
feed-forward terms of this controller.

IV. FLATNESS AND DECENTRALIZED CONTROL FOR
PAMS

In Sec. III we presented a decentralized controller for
aerial manipulators, whose model in 3D was shown in Sec. II.
As also mentioned in Sec. III, for this controller to track
a desired output properly, an algorithm computing all the
nominal states and inputs (feed-forward terms) is required.

2Notice that ω0 can be easily computed using η and η̇. This also applies
to ωd

0 using ηd and η̇d available from (6).



In our previous work [12] we have introduced the notion
of protocentricity. A protocentric aerial manipulator (PAM)
(with any number of manipulator arms, each having any
number of DoFs, with rigid or compliant transmission) is
characterized by all manipulator arms being attached to the
CoM of the flying base. In [12], we studied the properties
of such systems in the 2D vertical plane, and we found
that they are differentially flat w.r.t. a set of flat outputs
given by the CoM position of the flying base and the
absolute rotations of the manipulator links. The choice of
the absolute joint angles as system coordinates, together
with the protocentric design, overcomes both difficulties
highlighted in Remarks II.1 and II.2. In particular, also the
position of the end-effector and the absolute rotations of
the manipulator links are flat outputs, which makes such
platforms of particular interest.

In this section, we show how to use the flatness property
of PAMs in 2D together with the decentralized controller
(see Sec. II) in order to track a desired output trajectory of a
PAM in 3D. Now, consider a PAM in 3D, where the motion
of all manipulators are constrained to a plane, i.e. y0 = 0 and
yT0 zW = yT0 xW = 0. A sketch of such design is depicted in
Fig. 1, where each joint of all manipulators rotate around an
axis parallel to x0 × z0. Now, notice the similarity between
the projection of the considered PAM on the xW−zW plane,
and the system discussed in [12]; they are the same for the
case when all joints are rigid.

Given the above, the generalized coordinates of a PAM in
2D are chosen as

q2 =
[
pT0xz θ0 qTr

]T ∈ R3+n, (13)

where p0xz = [x0 z0]T ∈ R2 is the position of the CoM
of the flying base in the xW − zW plane, θ0 is the pitch,
and qr = [qTr1 · · · qTrm ]T ∈ Rn is the vector combining
the absolute orientations of each joint of every arm, with
qTrµ = [θ01µ · · · θ0nµ ]T ∈ Rnµ written for the µ-th manipu-
lating arm. Notice that θ0νµ is the absolute orientation of the
ν-th joint of the µ-th arm, and that θ0kµ = θ0 +

∑k
ν=1 θνµ .

For more details on the naming convention we refer the
reader to [12] and Section II of this paper. The set of inputs is

u2 =
[
ut ur τT

]T ∈ R2+n. (14)

where the scalar ur ∈ R is the magnitude of the base torque,
which is applied around the axis passing through PG and
parallel to y0 = z0×x0. Notice that the PAM in 2D is also
underactuated, as the one in 3D. Finally, we define peµxz as
the position of the µ-th end-effector in the considered plane.

Recalling [12] and its technical report in [13], we have
the following fact:

Fact 1. y = [pT0xz q
T
r ]T ∈ R(n+2) is a flat output of a PAM

modeled in 2D. Hence, clearly, ye = [pT
eµxz

qTr ]T ∈ R(n+2)

is a flat output, for any µ.

This means we can control the motion of a PAM as shown
in Fig. 1 in the xW −zW plane, by combining the controller
presented in Sec. III and the flatness property proven in [12].
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Fig. 2: Control of the PAM depicted in Fig. 1, using the decen-
tralized controller explained in Sec. III and its differential flatness
property detailed in Sec. IV.

By setting the desired motions of all the other DoFs to zero,
we can control the overall system in 3D.

Let us then compute the nominal states and the control
inputs of the PAM in the xW − zW plane, as functions of
y, ẏ, ÿ,

...
y,

....
y . Considering Fact 1, the nominal states and the

control inputs to be computed as sole functions of the flat
ouputs are θ0, θ̇0 (flying base pitch and its time derivatives),
and ut, ur, τνµ . In the following, we assume that all the joints
are actuated via a motor and the rotational center of this
motor is the same with the center of the revolute joint that
is attached to it.

A. Computation of the Nominal θ0, θ̇0, and ut
As given in the technical report of [12], the translational

dynamics of the CoM position of the PAM in the xW − zW
plane, pc ∈ R2, can be written as

msp̈c =

[
− sin(θ0)
− cos(θ0)

]
ut +

[
0

msg

]
, (15)

where ms = m0 +
∑m
j=1

(∑nj

i=1mij + mmij

)
is the total

mass of the PAM, with m0 ∈ R>0 the mass of the aerial
platform (base), mνµ ∈ R>0 and mmνµ ∈ R>0 the masses of
the νµ-th link and the motor, respectively. The gravitational
constant is shown with g. We then define the vector

w = w(y, ẏ, ÿ) = p̈c − [0 g]T = [wx wz]
T ∈ R2, (16)

which is direct function of the flat outputs. Notice that
w = − ut

ms
[sin(θ0) cos(θ0)]T . Hence,

θ0 = θ0(p̈c) = atan2(−wx,−wz)

θ̇0 = θ̇0(p̈c,
...
pc) =

wzẇx − wxẇz
w2
x + w2

z

θ̈0 = θ̈0(p̈c,
...
pc,

....
p c) =

ẅxwz − wxẅz
w2
x + w2

z

−

− 2[(w2
z − w2

x)ẇxẇz + (ẇ2
x − ẇ2

z)wxwz]

(w2
x + w2

z)
2

ut = ut(p̈c) = ms||w|| .

(17)

Therefore, we need to compute the time derivatives of
pc from second up to the fourth order, as sole functions
of the flat outputs. To this end, define Pνµ as the CoM
of the νµ-th link. The νµ-th link frame is denoted with
Fνµ : {Pνµ ,xνµ , zνµ}. Also, define PMνµ

as the center



of the νµ-th motor. The νµ-th joint and the motor rotate
around an axis parallel to z0 × x0 while passing through
PMνµ

. The constant position of PMνµ
and of PM(ν+1)µ

in Fνµ are denoted with −dνµ = [−dνµx − dνµz]T ∈ R2

and d̃νµ = [d̃νµx d̃νµz]
T ∈ R2, respectively. The time-

varying positions of Pνµ and PMνµ
in FW are denoted with

pνµ ∈ R2, pmνµ ∈ R2 respectively. Given an angle θ∗ ∈ R
between the z-axes of two frames, we use the usual rotation
matrix definition R∗ ∈ SO(2). Therefore, the orientations of
F0 and Fνµ in FW are expressed by the rotation matrices
R0(θ0), and R0νµ(θ0νµ), respectively. Recall from [12] that
the CoM of the overall system can be written as

pc =
1

ms

(
m0p0xz+

m∑
j=1

( nj∑
i=1

(mijpij+mmij
pmij )

))
. (18)

This expression is easily differentiated from the second up
the fourth time derivative (given in the technical report), as a
function of the corresponding link and motor CoM position
derivatives. Thus, it is clear that we need to compute these
quantities. For the ν-th motor of the µ-th manipulator (νµ-th
motor of the system) it is

pmνµ (y) = p0xz +

νµ−1∑
iµ=1

R0iµ d̄iµ︸ ︷︷ ︸
:=0, if νµ=1

, (19)

pνµ(y) = pmνµ + R0νµdνµ , (20)

where (19) is used in (20), and d̄∗ = d∗ + d̃∗. Equations
(19) and (20) can be easily differentiated to obtain the time
derivatives from the second up to the fourth order, as sole
function of the flat outputs (see the technical report for the
computations). Substituting both (19) and (20) in (18) we do
the same for the time derivatives of the overall system CoM.
Finally applying this to (17), taking (16) into account, we
compute the nominal values of θ0(y, ẏ, ÿ), θ̇0(y, ẏ, ÿ,

...
y),

and ut(y, ẏ, ÿ) as sole functions of the flat outputs and a
finite number of the corresponding derivatives.

B. Computation of Nominal τνµ and ur
In [12], the nominal torque of the νµ-th motor is given as

τνµ = τνµ+1+mT
0νµ(θ0νµ)p̈0xz+crνµ (qrµ , q̇rµ)+Jνµ θ̈0νµ

+ grνµ (θ0νµ) +

nµ∑
l=1,l 6=νµ

mlνµ(θ0lµ , θ0νµ)θ̈0lµ , (21)

where crνµ and grνµ are the νµ-th elements of the Coriolis
and gravitational force vectors, acting on the center of the
νµ-th link, respectively (for νµ = nµ it is τνµ+1 = 0). The
coupling term between the aerial platform and the νµ-th joint
is given with m0νµ , and it is an element of Mpr in (5).
Both terms Jνµ and mlνµ are inertial terms of Mr in (5),
where the former one is the diagonal element and the latter
is the coupling term between the l-th and the ν-th joint of
the µ-th manipulator. The explicit computation of all these
elements are given in [12] and [13], which we omit them

here for the brevity. Using them, it is possible to compute
τνµ = τνµ(y, ẏ, ÿ). Then the flying base torque is computed:

ur = ur(y, ẏ, ÿ,
...
y,

....
y ) = J0θ̈0 +

m∑
j=1

τ1j − dGxut, (22)

where J0 is the inertia of the aerial platform, dGx is the
constant position of PG with respect to P0 in F0, along x0,
τ1µ comes from (21) for ν = 1, and θ̈0 with ut are available
from (17). We refer the meticulous reader to [12] for the
details of the notation and the computations.

Notice that the flatness of ye in Fact. 1 is quite obvious,
thanks to the protocentric design and the absolute joint
coordinates. Let us give the following remark:
Remark IV.1. The flat outputs of a PAM are:
• y = [pT0xz q

T
r ]T ∈ R(n+2) from [12],

• ye = [pT
eµxz

qTr ]T ∈ R2+n for any µ, since
∃fe : p0xz = fe(peµxz qr).

Hence, we have showed how to use the flat outputs
y given in Fact 1 and their derivatives up to the fourth
order, for computing the nominal values of θ0, θ̇0, ut, ur, τ .
It is clear that all the other states are actually the flat
outputs themselves. This implies that we can say that,
∃h : b = h(y, ẏ, ÿ,

...
y,

....
y ), where b = [qT2 q̇T2 uT2 ]T is a

vector combining all the states and inputs of the PAM in 2D.
Finally, the relative joint angles can be easily obtained as
θ1µ = θ01µ − θ0 and θνµ = θ0νµ − θ0(ν−1)µ for ν > 1.

Now, for tracking a desired yd(t), where y is as in Fact 1,
using the differential flatness property in 2D, but together
with the controller developed in 3D (Sec. III), we can say

Rd
0 =

 cθd0 0 sθd0
0 1 0
−sθd0 0 cθd0

 (23)

fd0 = −udtRd
0e3, ωd0 = θ̇d0e2 (24)

udr = udre2, yd0 ≡ 0 (25)

will impose the necessary constraints. Notice that
θd0 , θ̇

d
0 , u

d
t , u

d
r are computed as in (17) and (22) for yd.

Clearly, τdνµ will be computed in the same way using (21).
Then we can use these values as the feed-forward terms
of the controller presented in Sec. III. See Fig. 2 for a
representation of the overall control method.

V. EXPERIMENTAL VALIDATION

In this section we show the results of some preliminary
experiments aimed at validating the controller proposed in
this paper. Furthermore, we analyze its performances by
comparing it with other standard control techniques.

Let us first describe briefly the testbed used for the
experiments (see Fig. 3). The aerial manipulator consists of
a Quadrotor VTOL and a 2 DoF manipulator arm. The arm
structure is based on carbon fiber bars and printed plastic
parts, whose design was inspired by the work in [14]. A
big difference of our design is that the actuators of both
joints are placed at the base of the arm, rigidly attached
to the VTOL. The first joint is connected to its actuator (a



Fig. 3: Experimental setup of the aerial
manipulator. A quadrotor VTOL is equipped
with a 2 DoF manipulating arm.
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Fig. 4: Nine moments from the experiments using method 3 (dynamic compensation).
From the left to the right column the configurations of the trajectories (a), (b) and (c) are
shown, respectively. From the top to the bottom row the configurations at the start (top),
intermediate (middle) and end (bottom) moments of half period of each the trajectory are
shown, respectively.

Phys. param. VTOL 1th-Link 2th-Link
Mass [Kg] 1.3 0.145 0.123
Rot. inertia [Kgm2] 0.03 1.2 · 10−3 0.9 · 10−3

Length [m] 0.4 (diam.) 0.29 0.25

Controller KP
p0

KD
p0

KP
R0

KD
R0

kP1 kP2
Gain 12I3 7I3 3I3 0.3I3 1.8 1.6

Traj. Param. axp0
a1qr a2qr ω

[m] [◦] [◦] [rad/s]
(a) 0 30 60 2π/3
(b) 0.5 -40 -70 2π/3
(c) 0.5 40 70 2π/3

TABLE I: Starting from the top: physical parameters of the real
system; controller gains; and the parameters of the three trajectories.
Length and the inertia are the one on the 2D vertical plane need to
compute nominal state and inputs by the flatness.

dynamixel MX-64 motor) directly, while the second one is
connected to its motor (a dynamixel MX-28) via a metal-
reinforced plastic belt (with very low elasticity). A detailed
description of the setup is given in Fig. 3. Such design allows
us to have a light-weight arm reducing the mass of each joint
and in particular their inertia. This in turn allows to use a
relative small quadrotor (diameter 0.4 [m], maximum thrust
per propeller of about 5.26 [N]) with respect to the ones
normally used in the literature for arms of similar length,
as, e.g., in [15]. Since the motors are rigidly attached to
the aerial vehicle, their mass can be seen as part of the
total VTOL mass. For the physical parameters of the system,
please refer to Tab. I. Since the motors cannot be controlled
in torque but at best in velocity (as almost all the affordable
motors suitable for aerial manipulation) to control the arm
we use (12), except for a slight modification needed to cope
with the fact that the second link is not directly attached to
its motor.

The aerial vehicle hardware is the one of a Mikrokopter
quadrotor endowed with an IMU, and four brushless motor
controllers (BLDC ESC) regulating the propeller speed using
an in-house developed closed-loop speed controller. Like for
the arm, the physical parameters are given in Tab. I.

The control law presented in Sec. III, implemented in
Matlab–Simulink, runs on a desktop PC sending the com-
manded propeller velocities at 500 [Hz] and the commanded
arm motor velocities at 250 [Hz] through a serial communica-
tion. The gains used for the controller are given in Tab. I. The
control loop is then closed based on the measurements of:
i) the position and attitude of the vehicle provided at 1 [kHz]
by a UKF that fuses the Motion Capture (Mo-Cap) System
measurements at 120 [Hz] with the IMU measurements at
1 [kHz]; ii) the acceleration and the angular velocity of
the vehicle provided by the same UKF filter at 1 [KHz];
and finally iii) the position and velocity of the arm motors
provided by their internal absolute encoders at 250 [Hz]. In
order to read the motor values corresponding to zero joint
angles, a calibration procedure is implemented once, using
the Mo-Cap markers on the manipulator arm (see Fig. 3).

We tested the proposed controller with a parametric and
multi-DoF sinusoidal-like trajectory, i.e.:

yd =

[
= p0dxz

qdr

]
=
[
axp0

0 a1qr a2qr
]T

sin(ωt) (26)

for three different sets of parameters corresponding to three
qualitatively different task trajectories:
(a) the arm is oscillating and quadrotor is fixed,
(b) the arm and quadrotor are oscillating with opposite

phases,
(c) the arm and quadrotor are oscillating with the same

phase.
These task trajectories are understandable from Fig. 4, and
the parameters of the trajectories are given in Tab. I.

For each of the three task trajectory, we compared the
performance of the proposed controller using three different
types of feedforward methods:
1) minimal compensation: on the quadrotor side only the

total mass is compensated, i.e., udt = −mse
T
3 R0e3. In

this way the VTOL and the arm virtually are considered
as two independent systems (even if in practice they are
not).



2) static compensation: only the static effects due to the
gravity are compensated, i.e., the nominal state and the
inputs are computed considering all the derivatives of the
desired trajectory are equal to zero, i.e., yd

(l)

= 0 for
l = 1, . . . , 4, (yd 6= 0). This method is often used for the
control of the aerial manipulators, for so called quasi-
static operations in order to partially compensate the
effects of the manipulator on the aerial vehicle.

3) dynamic compensation: this corresponds to our proposed
method where we exploit the flatness of the system. We
compute the nominal states and inputs as functions of the
desired trajectory to be tracked, and provide them to the
controller as explain in Sec. III and Sec. IV.

The performances of these three methods are shown in
Figs. 5, 6 and 7, using red, green and blue curves, re-
spectively. In particular the plots show the evolution of the
position of the VTOL CoM and the end-effector3 in the first
two rows, the remaining configuration variables in 3D (third
and fourth row), and the inputs on the vertical plane, as
well as the nominal relative quantities (with a dashed black
line). We encourage the reader to watch the attached video
in order to appreciate even better the nature and results of
the performed tests.

Looking at the tracking of the desired VTOL CoM and
end-effector position one can see that the minimal compen-
sation (method 1) shows good tracking performances (similar
to the one with our method) only for trajectory (b). On the
other hand, for trajectories (a) and (c) the tracking error is
considerably larger than the one with dynamic compensation.

For the static compensation (method 2), the tracking
performances result to be good (similar to the one with our
proposed method 3)) only for trajectory (a). Indeed, since
trajectory (a) is the less dynamic one (quadrotor not moving),
the static compensation is enough to obtain good perfor-
mances. However, for more dynamical trajectories as (b)
and (c) the performances rapidly get worse.

On the contrary, our proposed method 3) shows good
tracking performances for all the types of trajectories val-
idating the fact the dynamic compensation based on the
flatness is a good control strategy for both static and dynamic
trajectories. Moreover, thanks to the feedback, the controller
is robust enough to the non perfect protocentricity of the real
system. Indeed in the testbed used during the experiments,
along the z-axis of F0 there is a non zero offset of about
6 [cm] between the position of CoM of the VTOL and the
first joint. Nevertheless the controller is able to keep the
tracking error small even for dynamic trajectories. For the
interested reader, the effects of the non-protocentricity are
investigate in the technical report by numerical simulations.

In addition to the good results obtained with our method,
it is also very interesting to notice that for trajectory (b), the
method 1) based on the minimal compensation is better than
the method 2) based on the static compensation in terms of
tracking error. This brings us two interesting results.

3Notice that for the results of Sec. IV, showing the joint angles or the
position of the end-effector is equivalent since they are both flat outputs.
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Fig. 5: Experimental results for trajectory (a) (see Fig. 4.a). In all
plots, the flat outputs and the nominal states/inputs are depicted with
black dashed lines (and stars). Again in all plots, red, green and
blue curves stands for the results of the controller with minimal
compensaton, static compensation, and dynamic compensation,
respectively. While the first controller perform worse for tracking of
the all outputs, third one (proposed controller) is always performing
good especially when tracking the end-effector positions.

The first is due to the the fact that for some dynamic
trajectories it is more suitable to just compensate the effect
of the total mass rather than try to compensate the static
configuration only. Indeed the last compensation term one
could result considerably wrong since it is computed for a
different condition. This error in the compensation leads to
undesired effects and in turn to a large tracking error, as seen
in Fig. 6.

The second fascinating aspect is that for some particular
dynamic trajectories, as for trajectory (b), the arm could
help the aerial vehicle to move toward the desired direction,
implying the need of smaller compensations and in turn of
smaller control efforts. Indeed, looking at Fig. 4.b one could
notice the similarity between: i) the motion of the robotic
arm and the one of the legs of a person sitting on a swing
when trying to enhance the angular motion of the swing;
ii) the thrust force and the tension along the cables attached
to the swing to win the gravity and the centrifugal terms.
This is why for trajectory (b) the minimal compensation
shows similar results to the one obtained with our method.
Based on this consideration we believe that the studies on
optimal trajectory generation become even more fundamental
to achieve aerial manipulation tasks exploiting the dynamic
properties (such as the flatness) of the systems. However this
promising topic is left as future work.

VI. CONCLUSIONS

In this paper we have presented a dynamic decentralized
controller for a specific type of aerial manipulators; VTOLs
equipped with any number of manipulator arms, each having
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Fig. 6: Experimental results for trajectory (b) (see Fig. 4.b). Same
color and line code is used as in Fig. 5. The proposed controller
(blue) achieves always a better tracking performance. An interesting
result is that for such a dynamic tracking task, the controller with
the static compensation (green) performs worse than the one with
minimum compensation (red).

any number of rigid links. The aerial manipulator is assumed
to be protocentric, namely all the manipulator arms are
attached to the CoM of the flying base. Using the differential
flatness property of the PAMs (in 2D), we showed how to
compute the nominal states and the inputs of the system
analytically in advance, and use it for tracking dynamic
maneuvers. The experimental results are in line with the
proposed theory showing the advantage of using differential
flatness of the aerial manipulators.

This work can be extended in many directions. One is
to study the differential property directly in 3D. Another is
finding ways to relax the protocentric assumption. The third
are experiments using more than one manipulator arm. The
fourth is to study control-aware planning algorithms that take
into account the capabilities of the controller.
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