
HAL Id: hal-01388321
https://hal.science/hal-01388321

Submitted on 26 Oct 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution| 4.0 International License

What did I do Wrong in my MOBA Game?: Mining
Patterns Discriminating Deviant Behaviours

Olivier Cavadenti, Victor Codocedo, Jean-François Boulicaut, Mehdi Kaytoue

To cite this version:
Olivier Cavadenti, Victor Codocedo, Jean-François Boulicaut, Mehdi Kaytoue. What did I do Wrong
in my MOBA Game?: Mining Patterns Discriminating Deviant Behaviours. International Conference
on Data Science and Advanced Analytics, Oct 2016, Montréal, Canada. �hal-01388321�

https://hal.science/hal-01388321
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

What did I do Wrong in my MOBA Game?:
Mining Patterns Discriminating Deviant Behaviours

Olivier Cavadenti
Actemium

F-42000, Saint-Étienne
France

Victor Codocedo
Université de Lyon

CNRS, INSA-Lyon, LIRIS
UMR5205, F-69621, France

Jean-François Boulicaut
Université de Lyon

CNRS, INSA-Lyon, LIRIS
UMR5205, F-69621, France

Mehdi Kaytoue
Université de Lyon

CNRS, INSA-Lyon, LIRIS
UMR5205, F-69621, France

Abstract—The success of electronic sports (eSports), where
professional gamers participate in competitive leagues and tour-
naments, brings new challenges for the video game industry.
Other than fun, games must be difficult and challenging for
eSports professionals but still easy and enjoyable for amateurs.
In this article, we consider Multi-player Online Battle Arena
games (MOBA) and particularly, “Defense of the Ancients 2”,
commonly known simply as DOTA2. In this context, a challenge
is to propose data analysis methods and metrics that help players
to improve their skills. We design a data mining-based method
that discovers strategic patterns from historical behavioral traces:
Given a model encoding an expected way of playing (the norm),
we are interested in patterns deviating from the norm that may
explain a game outcome from which player can learn more
efficient ways of playing. The method is formally introduced and
shown to be adaptable to different scenarios. Finally, we provide
an experimental evaluation over a dataset of 10, 000 behavioral
game traces.

Keywords—video game; moba game; contextualized trajectory;
expert model; discriminative pattern mining

I. INTRODUCTION

The video game industry has been dramatically expanding
over the last few years, targeting several populations (new, ca-
sual and extreme players) and electronic devices (PC, consoles,
smartphones, etc.). Indeed, over the last decade, the annual
turnover generated by the electronic entertainment industry
went beyond those of both cinema and music industries, mak-
ing video games production one of the most lucrative business
ever developed. In the meantime, a new scene called electronic
sports (eSports) has emerged, where the most skilled players
(also referred to as gamers) are hired by professional teams
and supported by sponsors to take part in large international
competitions [31] widely followed on live streaming platforms
such as Twitch.tv [23].

The success of eSports has also brought also new chal-
lenges for developers and gamers alike. Although eSport games
represent only a tiny proportion of all video games, they gather
masses around an game title and its sponsors, thus coming with
new and lucrative business models. For example, the League of
legends 2015 World Finals counted 36 million unique viewers
and awarded the winner with a US$ 1M prize [4]. From the
point of view of the game publisher, a video game designed
to be an eSport should not be only interesting to professional
players, but it also requires to attract a fan base of amateur

Contact: mehdi.kaytoue@insa-lyon.fr

players. Fans should know the game, while understanding
and appreciating the style of playing of professional gamers
(mechanics and strategy [13]).

Consequently, video games should be designed to be in-
teresting for a wide variety of skills, a task that have proven
difficult for publishers. In a nutshell, we can use the famous
board game Othello’s slogan to describe the required learning
curve of eSports: “A minute to learn, a lifetime to master”. A
well known example of the difficulties involved in the design
of such learning curve can be found in the game StarCraft 2
(Activision/Blizzard) which has been constantly patched since
its release in 2012. David Kim, the game designer responsible
of balancing the game states this difficulty as: “Obviously
we want both ends of the spectrum. On the one end the pro
players, they want the game harder to show off their skill better.
Other end is casual players, who want an easier game than
Starcraft 2 is currently’’ [1].

In order to support players in overcoming this learning
curve, our goal in this article is to analyze player behav-
iors (movements and strategic choices) and compare them
to expected behaviors under different circumstances. When
a behavior is detected as abnormal (deviating from expected
behaviors), we seek the context of such abnormality.

We consider Multiplayer Online Battle Arena games
(MOBA) and particularly Defense Of The Ancients 2, com-
monly known as DOTA2. This game is a high level eSport
strategy game with rich behavioral data containing both, mo-
bility traces and strategic choices. Given a set of game logs
(historical data), our goal is to discover strategic patterns that
can help the player to understand his game decisions and
improve his skill. For example, considering all the games of
a player in the current season (or patch), we would like to
answer questions such as: What are the particular choices
(e.g. build orders, map trajectories, team composition, etc.)
that discriminate victory? What did I do wrong in my game,
that is, that deviates from the norm (how other similar gamers
play) no matter the outcome?

Simple database queries can hardly answer these questions,
as the number of possible queries/contexts is exponential w.r.t.
such features. Hence, we have designed a data mining-based
method that aims to discover patterns composed of strategic
choices that explain strong deviations w.r.t a Reference Model.

A Reference Model represents a background of matches
with common characteristics, e.g. all of them ending in victory.
Reference Models can also be adapted to handle different

pid Traces Global information
1 (t1, -6973,-6428, buyX),(t2, -6742,-5290, abA1

),(t3, -6440,-750, move) ,(t4, -4801,5725, move) ,(t5, -938,563, move), ... winner=Yes, length=42,...
2 (t1, -6980,-6440, buyX),(t2, -2077,-1550, move),(t3, -6922,-6185, abA1

) ,(t4, -620,-5963, move),(t5, -6650,-6338, buyY), ... winner=No, length=60,...
3 (t1, -6928,-6436, buy X),(t2, -6050,-902, move),(t3, -4825,-6130, move) ,(t4, 10,5962, abA1

),(t5, -4900,-6045, move), ... winner=Yes, length=54,...
4 (t1, -6806,-6334,buyX),(t2, 25,100, move),(t3, 50,-160, abA1

) ,(t4, -702,-5802, move),(t5, -7105,-6593, buyZ), ... winner=No, length=35,...
5 (t1, -6896,-6450, move),(t2, -650,-6004, move),(t3, 4890,-5986, abA1

) ,(t4, -598,-5785, move),(t5, -7445,-6985, abB2
), ... winner=Yes, length=38,...

Table I: Simplified example of rough game traces

scenarios. Finally, we provide an experimental evaluation of
pur approach over a dataset of 10, 000 behavioral game traces.

The paper is organized as follows. We introduce MOBA
games principles and our problem setting in Section II. Basics
from pattern mining are introduced in Section III which are
necessary for understanding the our methodology discussed
in Section IV. An experimental evaluation along with the
description of the dataset used is presented in Section V.
Finally, related work is detailed in Section VI.

II. PROBLEM SETTINGS

A. Multiplayer Online Battle Arenas (MOBAs)

MOBA is a specific video game type that mix aspects of
real-time strategic game and role-play game. Whole in this
article we focus on Defense of the ancient 2 (DOTA2, [2]),
there are several other well-known MOBA games that share
the same principles with slight differences (e.g. Heroes of the
storm, League of Legends, etc.). The choice of game was
made because of data availability and has no impact on the
methodological aspects developed hereafter.

Team
 1

base

To
p
 la

n
e

Bottom lane

M
id

dl
e

Team 1
top jungle

Team 1
bottom jungle

Team
 2

base

Top lane

B
o
tto

m
 la

n
e

la
ne

Team 2
top jungle

Team 2
bottom jungle

Figure 1: MOBA map

A DOTA2 match is played
on a map where two teams of
five players battle each other
in real time. Each team has
to defend their own stronghold
and destroy the opponent’s one
to win. Each player controls a
hero which he moves through
the map by providing instruc-
tions using mouse clicks. Fur-
thermore, the player needs to
improve the hero by collecting
gold, new items, abilities, and by fighting heroes of the oppos-
ing team. Figure 1 displays the map of the game along with the
initial influence zone for both teams. Team red (called Dire)
and team blue (called Radiant) defend their strongholds located
at the top right corner and bottom left corner of the map,
respectively. Three lanes on the map (top, mid, bot) separate
both teams with series of defensive towers. Players have well
defined roles depending on the hero they initially picked from
a current pool of 110 available heroes. For example, one role
consists of defending and extending the influence zone in a
specific lane while another role is to quickly switch lanes to
attack by surprise. Like rugby, certain positions and moves
are really important and can determine the outcome of a
match (strong defense of towers and base, attacking players by
surprise, make a concerted and synchronized attack on certain
targets, etc.). Knowing that a team only sees controlled map
zones, estimating enemy positions and triggering team fights
at well-chosen times and in strategic areas is key to success.

B. MOBA behavioural data

DOTA2 provides a log system based on replay files which
players can recover after each match. In a nutshell, each match
is completely recorded in a single file (called replay) for
all of the 10 players involved. A replay contains all users’
actions and positions as well as other system generated events.
We will refer to the information of a single player’s hero
in a replay as a trace, however this notion will be later
extended and formalized. Replays have been extensively used
by developers,publishers and players alike to analyze behaviors
and strategies that allow better understanding the in-game
interactions of the entities involved (human and non-human
controlled). Concerning DOTA2, replays contain among other
pieces of information:

• Positions: For each hero expressed in x,y coordinates
on the map where (0,0) is the center (Figure 1).

• Builds: Upgrades applied by a player to his hero.
These should be carefully chosen as they are definitive
and interdependent. A wrong build usually leads to
poor performing heroes.

• Items: Items apply temporal boosts (of strength, de-
fence or magic) or abilities to heroes. Items cost gold.

• Gold/Experience time series: Amount of gold or ex-
perience of a hero at a given time. Gold and experience
are obtained through different in-game actions.

• Global information: Winner team, game length, team
composition, players’ ID, heroes picked, etc.

Example. Table I presents some trace examples where each
row of the table is a series of actions made by one player
during one game. The first action in the first row for player
with pid 1 can be read as “At time t1, located at coordinates
−6973,−6428 bought item X .”

C. Mining patterns explaining deviant behaviors

A new player learning how to properly use a given hero
is likely to lose several matches if his team is not able to
compensate for his lack of experience. A useful way for the
new player to learn what he is doing wrong is looking at
skillful players’ replays. He will encounter that some strategies
are different to what he has been doing so far and thus he will
adopt those new strategies while dropping his own incorrect
ones.

We can consider the last scenario in the context of data
mining. Indeed, the new player is looking for frequent patterns
in a reference model and contrasting them to frequent patterns
in his own unsuccessful attempts to play the game. We will
consider that a pattern that is prevalent in the latter set and
not in the former corresponds to what the new player is doing
wrong. An example (extracted from [3]) is given in Figure 2
depicting positions as points in the map in a given stage of

the game for a different MOBA. Zones densely populated can
be considered as normal behavior. In section IV, we describe
and illustrate this more sophisticated approach.

III. BACKGROUND ON PATTERN MINING

In this section, we introduce the some basic notions of
pattern mining through the use of an example. Firstly, we in-
troduce the problem of Frequent itemset mining [5] considered
the simplest form of frequent pattern mining. This choice was
made for the sake of simplicity as it makes the method easier
to follow, although generalizable to other kind of patterns.
Secondly, we explain how to discover Emerging patterns that
is, itemsets that discriminate a class label [17].

A. Mining frequent itemsets

Consider a set of transactions, where each transaction is
composed of a set of items (in the original problem formula-
tion, a set of items bought in a supermarket [5]). An arbitrary
itemset is said to be frequent if the items it contains appear
jointly in several transactions (i.e. more transactions than a
user defined threshold). One can easily draw a parallel with
MOBA: a transaction could be the set of items bought by a
single player during a given game.

Definition 1 (Frequent itemset): Let I be a set of items.
A transaction t is a set of items t ⊆ I. A (transaction)
database is a set of transactions D = {t1, t2, ..., tn} with
ti ⊆ I,∀ i ∈ [1, n]. Given an arbitrary itemset X ⊆ D,
its support is given by the transactions that contain all items
in X:

suppD(X) = |{t | t ∈ D, X ⊆ t}|

The frequency of an itemset is the proportion of transac-
tions in the database that contain the itemset:

freqD(X) = suppD(X)/|D|

The frequent itemset mining problem consists in efficiently
finding all the frequent itemsets in a transaction database D,
that is, with a frequency higher than a minimum frequency
threshold θ: all X ⊆ I such that freqD(X) > σ. Equivalently,
a minimum threshold on the support size is denoted by
min sup.

tid transaction
t1 {a, b, c}
t2 {a, b, c}
t3 {c}
t4 {a, b, e}
t5 {a, e}

Table II: Transac-
tion database

Note that several constraints other
than minimal frequency can be used,
such as minimal size of the itemset,
minimal cost of an itemset (in the case
where each item has a cost assigned),
maximization of a function given by
a mathematical model or several con-
densed representations that reduce the
number of patterns [9]. Indeed, as
there is an exponential number of
itemsets (2|I| in the worst case), a naive exploration of all
itemsets is intractable while the mathematical properties of
constraints can be taken into account for an efficient extraction.
Algorithmic issues will be discussed in the Section IV.

Example. Consider a database where each transaction con-
sists of the set of items bought by a single player in a
single a game. Given five items I = {a, b, c, d, e}, and

the transaction database shown in the Table II we have:
suppD({a, b, c}) = 2, suppD({a, b}) = 3, freqD({a, b}) =
0.6 and freqD({a, b, c}) = 0.2. If we set the minimal
frequency threshold σ = 0.3, we have that {a, c} is frequent
while {a, b, c} is not a frequent itemset.

B. Mining itemsets that distinguish a class label

Consider now that each transaction is provided with a
single label, say positive or negative, for win or lose1 as
depicted in Table III. Patterns for which one of the labels is
more prevalent give interesting and comprehensive hypotheses
for that label. The main idea is to consider two transaction
databases, made of positive and negative examples respectively
and then to compute the support of an itemset in both databases
separately. Intuitively, if their difference is high, the pattern
may be a signature of one specific base. More formally, the
mapping

class : D → {+,−}

associates to any transaction its class label (positive or nega-
tive). Then, we can define the positive and negative bases:

D+ = {t | t ∈ D, class(t) = +} and D− = D\D+

Thanks to this partitioning, we can compute a measure that
expresses how an itemset discriminates a class label in favor of
the other. Such an itemset is denominated an emerging pattern
and the associated measure is called the growth-rate [17].

Definition 2 (Normalized growth-rate): Given databases
D+ and D−, the normalized growth-rate of pattern X ⊆ I is:

φ(X) =
|suppD+(X)| − |suppD−(X)|
|suppD+(X)|+ |suppD−(X)|

where suppD+(X) (resp. suppD−(X)) counts the number
of transactions supporting X in the positive database (resp.
negative). This means that if φ(X) = −1 (resp. 1) then the
itemset X appears only with a negative (resp. positive) label.
On the other hand, if φ(X) = 0 then X appears as much in
the positive than in the negative database.

tid class(tid)
t1 +
t2 +
t3 +
t4 −
t5 −

Table III: Label of
each transaction

Example. We consider the same ex-
ample as before, but we add as class
attribute the outcome of the game, see
Table III. The positive examples (resp.
negative) correspond to a win (resp.
loss). We have: φ({a}) = (2−2)/(2+
2) = 0, φ({a, b}) = (2 − 1)/(2 +
1) = 0.33, φ({a, b, c}) = (2− 0)/(2 +
0) = 1 and φ({e}) = (0 − 2)/(0 +
2) = −1. Consequently, choosing a, b and c can be in-
teresting for a player as it discriminates victory and as it
was played relatively often (freqD+({a, b, c}) = 66.66%,
freqD−({a, b, c}) = 20%). In this scenario, we are interested
in itemsets with high support and growth-rate.

1Multi-labelled data can also be handled directly, however we omit this
model in this article for sake of simplicity.

Figure 2: Early game positions in League of Legends. Such
positions totally differ in other contexts, see [3]

pid Trajectory a Description Description Outlier Score
1 〈1, 4, 7, 5, 7, 5, 7〉 {buyX , buyY } {abA1

, abB2
} 0.33

2 〈1, 2, 3, 5, 3, 5, 3〉 {buyX , buyY } {abA1
, abB2

} 0.33
3 〈1, 5, 7, 5, 7, 5〉 {buyX} {abA1

, abB2
} 0.40

4 〈1, 2, 3, 5, 3, 6, 3〉 {buyX , buyZ} {abA1
, abC2

} 0.66
5 〈1, 2, 3, 5, 6, 3〉 {buyZ} {abA1

, abC2
} 0.80

Table IV: Contextualized trajectories: descriptions involves
items bought (X, Y, Z) and abilities (A, B, C) taken at level 1
or 2.

IV. METHOD

In the following, we describe a methodology for discover-
ing descriptive patterns of deviant behaviors in four steps:

1) Contextualized Trajectory Generation
2) Reference Behavioral Model Construction
3) Trajectory Deviation Evaluation
4) Discriminant Pattern Mining

A. From traces to contextualized trajectories

As described in Section II-B, a trace for a hero is a
sequence of events that describe its states and positions
throughout the game, as well as other actions executed by the
player controlling it. A trace also contains global information
of the match such as its length, winning team, etc. However,
when considering positioning it is rather hard to work with map
coordinates, as those shown in the example of Table I, given
the high number of points created for each hero on each game
(a coordinate each 33 ms). Instead, we will define arbitrary
points in the map which we will refer to as points-of-interest
or POI. Series of coordinates are converted to POI sequences
or trajectories by taking the nearest POI at each coordinate
(ignoring POI repetitions), similarly to [18]. An example is
shown in Figure 3 where the table contains 9 different POI
with their corresponding coordinates and labels (arrows in the
figure will be explained later).

Definition 3 (Player trace): Let A = {A1, ..., An} be a set
attributes, where each attribute is either numerical or categor-
ical (that is, takes either numbers or symbols as values). A

dire
base

1

t1dire

4

top

7

t1radiant

8

radiant
base

9

center

5

t2dire

2

bot

3

t2radiant

6

poi id x,y label
1 -7500,-7000 dire base
2 -600,-6000 t2dire
3 5000,-6000 bot
4 -6100,-850 t1dire
5 0,0 center
6 6200,-1600 t2adiant
7 -4700,6000 top
8 0,6000 t1radiant
9 7500,7000 radiant base

Figure 3: Simple expert model for DOTA2. Only edges with
an important weight are displayed.

record r ∈ R is a n-tuple r = (a1, ..., an) with ai ∈ dom(Ai).
The sequence t = 〈r1, ..., rk〉 with ri ∈ R is a player trace. A
collection of player traces is denoted by T . Global attributes
are functions fi : T → Dom where Dom depends of the
nature of the attribute, e.g., outcome : T → {win, lost}

Player traces are considered in two axes: the way a hero
moves in a set of point-of-interests (called the trajectory) and
particular actions or properties that describe the player (called
the description).

Definition 4 (Contextualized trajectory): Let t ∈ T be
a player trace. The trajectory of t is a sequence of POI
trajectory(t) = 〈v1, ..., vn〉 where vi ∈ V and V is a set of
POI. The description of t is a set of items description(t) ⊆ I,
that are chosen/computed from the player trace. As such, a pair
(trajectory(t), description(t)),∀t ∈ T can be understood as
a contextualized trajectory.

Example. Player traces in Table I have been transformed into
contextualized trajectories in Table IV using the POI intro-
duced in the Figure 3. For the sake of readability, descriptions
are split in two columns: one with the objects purchased by
the player, the other with the abilities acquired by the hero at
specific experience levels.

B. Building a Reference Behavioral Model

The Reference Behavioral Model (or Reference Model)
can be understood as the encoding of an expert opinion or
more formally, as an expert model. Experts models are ideas,
hypotheses or a priori knowledge of a given domain. In the
most general case, an expert model is a function that returns
a score for a given input to quantify an aspect of data (utility,
outlier score, or a domain specific score). For example, the
risk of soil erosion is assessed by a formula built by domain
experts [20].

In the case of DOTA2 where each match is played in a
single map containing well-known point of interests (POI) such
as corners, tower, bases, among others, it is intuitive to express
expert knowledge as a graph of POI transitions. Actually, in
MOBA games it is well established that a hero’s movement
and positioning throughout a match is a very good indicator
of the experience and skill of the player that controls it [3].
We will refer to this as the mobility assumption.

The mobility assumption allows fixing allowed paths in
the POI graph that represent skilled (expert) player usual

transitions in the map. Obviously, the set of all allowed paths
can be encoded as a Directed Graph which is not necessarily
connected nor acyclic. Let us call this graph the Reference
Behavioral Model.

Definition 5 (Reference Behavioral Model): A reference
model is a graph G = (V,E) with V a set of nodes (which
represents POI) and E ⊆ V × V a set of edges (which
represents allowed transitions between POI).

The reference model can be built manually by a game ex-
pert or automatically. In our case, we infer the reference model
from a set of traces Tm that are chosen w.r.t. the data analysis
goals. For example, one may select all traces of a specific
hero during a season, or instead all those from a particular
professional player. Then, we choose a set of POI (9 zones
in our simple example in Figure 3) denoted as V . For each
player trace t ∈ Tm, we compute the trajectory trajectory(t),
i.e., the sequence of transitions between POIs (forbidding self
loops). From the set of trajectories {trajectory(t),∀t ∈ Tm},
we compute the distribution of each direct POI transitions. For
example, consider trajectory 〈5, 7, 5, 7, 5, 3, 5, 3, 5, 3, 2〉, where
transitions are distributed as follow: (5, 7) : 2, (7, 5) : 2,
(3, 5) : 2, (5, 3) : 3 and (3, 2) : 1. Actually, these values
are edge weights of the reference model G. Consequently, we
can choose a cut off threshold to remove edges from the graph
with low weights, e.g. consider a cut-off of 2, then we remove
transition (3, 2). This reference model corresponds to the graph
represented with blue edges in Figure 3.

C. Measuring the deviation of a trajectory to the model

Given a Reference Model graph G = (V,E), each trace t
to be analyzed is confronted to it. This is done using a function
that takes t and G, and outputs a quantification of the outlier-
ness of t, denoted as µ. Outlierness of a trace is measured
by calculating the proportion of transitions in trajectory(t)
that do not correspond to an edge in the Reference Model
graph. We will use a |V | × |V | matrix representation of the
Reference Model graph G denoted as M where M(i, j) = 0
if (vi, vj) ∈ E and M(i, j) = 1 in the opposite case. A outlier
scoring function for trace t, denoted by µ(t,M) → [0, 1],
returns 0 if the trajectory fully sticks to the Reference Model
and 1 if it completely deviates from it.

Definition 6 (Outlier Score): Given a trace t such that
|trajectory(t)| > 1, and a Reference Model matrix repre-
sentation M , the outlier score is defined as:

µ(t,M) =

∑i=|trajectory(t)|−1
i=0 M(ti, ti+1)

|trajectory(t)| − 1
(1)

where |.| counts the number of POI of the trajectory (its size)
and |trajectory(t)| > 1 secure that the trajectory contains at
least one transition.

Example. Consider the model G = (V,E) given in Fig-
ure 3, and trajectories t1 = 〈1, 4, 7, 5, 7, 5, 7〉 and
t2 = 〈1, 2, 3, 5, 6, 3〉. We can calculate their outlier scores
as µ(t1,M) = 1+1+0+0+0+0

7−1 = 2/6 = 0.33 and µ(t2,M) =
1+1+0+1+1

6−1 = 4/5 = 0.80. Thus, the second sequence is
more anomalous than the first sequence. At this step, we can
compute the values for the outlier score for each trajectory in
Table IV.

D. Describing Deviant Behaviors with Discriminant Patterns

The outlier scoring measure allows splitting the original set
of traces T into two transaction databases, containing positive
and negative traces (non deviant and deviant, respectively).
However, when defining these databases we will only consider
the description axis of traces, i.e. global information (such as
winning or losing) and purchased items during the match for
each hero. These elements will allow us building explanations
of non-deviant and deviant behavior as we explain next.

Definition 7 (Positive and Negative Traces): Consider an
outlier scoring measure µ, a set of player traces T and a
threshold θ ∈ [0, 1] called outlier threshold, the positive and
negative transaction databases are given by:

D+ = {description(t) | t ∈ T , µ(t,M) ≤ θ}
D− = {description(t) | t ∈ T , µ(t,M) > θ}

Once the positive and negative transaction databases are
built, we can mine frequent itemsets as defined in Section
III. Notice that we are interested in itemsets that are actually
patterns of trace descriptions (a subset of I) that frequently
occurs in T . Finally, to discriminate if a pattern is a hypothesis
of non-deviant or deviant behaviors we will use the normalized
growth-rate φ introduced in Section III-B.

Example. Let us consider traces in Table I and their trajectory
representations in Table IV. In the following, we use the nota-
tion d(t) = description(t),∀t ∈ T . If we set θ = 0.5 we have
two databases of traces D+ = {d(t1), d(t2), d(t3)} and D− =
{d(t4), d(t5)}. Using min sup = 2, we have the frequent
patterns X1 = {buyX}, X2 = {buyZ}, X3 = {buyX , buyY }
with supp(X1) = 4, supp(X2) = 2, supp(X3) = 2, resp. The
normalized growth-rate for each pattern is:

φ({buyX}) = (3− 1)/(3 + 1) = 0.5

φ({buyZ}) = (0− 2)/(0 + 2) = −1
φ({buyX , buyY }) = (2− 0)/(2 + 0) = 1

As we can see, itemset {buyX , buyY } is a hypothesis of just
positive or non-deviant traces. In other words, it is what we
can consider a totally normal behavior. On the other hand,
itemset {buyZ} describes only negative or deviant traces. We
can consider it as a hypothesis of abnormal behaviors. Other
examples are φ({abA1

, abB2
}) = (2 − 0)/(2 − 0) = 1 and

φ({abA1
, abC2

}) = (0 − 2)/(0 + 2) = −1. We can say that
players who deviate from the model bought object Z, took
ability A at level 1 and ability C at level 2. Other players took
the ability B at level 2 and bought object Y .

Algorithmic details. For mining frequent patterns, we use an
efficient implementation of CHARM [35]. It extracts frequent
closed itemsets. An itemset is closed if it has no superset
with exactly the same support. Closed itemsets form a lossless
condensed representation of frequent itemsets and that they
maximize the growth-rate [28]. For each pattern, we also
compute a X 2 score (also maximized by closed itemsets) that
allows one to measure how the distribution of the support of
the itemset in the positive and negative bases is expected or not
(introduced in [22]). Actually, in our experiments, we generally
only consider the X 2 score as statistically sound (even when
we use the term growth rate).

(i) (ii) (iii) (iv)

Figure 4: Reference models for early game of: i) Mirana (radiant), (ii) Mirana (dire), (iii) Pudge (dire), (iv) Invoker (radiant)

V. EXPERIMENTAL STUDY

This section reports an experimental study of the pro-
posed approach. Firstly, we introduce the dataset used in
our evaluation. Secondly, we show how different Reference
Models can be built and to what extent. Thirdly, a quantitative
study is presented that proves the feasibility and scalability
of our approach. Finally, we provide a discussion on different
scenarios supporting the discovery of interesting patterns and
their application. All the experiments were carried out on an
Intel Core i7 CPU 2.50 Ghz machine with 16 GB RAM. Code
was written in JAVA using the CHARM implementation from
the SPMF framework [21].

A. Dataset

Any action performed during a match is stored afterwards
in a file (replay), allowing to re-watch the game at any time.
We were kindly provided with a collection of 9.193 replays
from the dotabank.com website. Different replay parsing tools
are freely available. In our setting, we used Skadistats Clarity
2 parser2.

Only traces from non-anonymous players were considered
(unknown steam id). For this reason we obtain a bit less
than 10 traces per game in average, for a total of 90, 366
traces. We have a total of 77, 112 different players and thus, a
skewed distribution of heroes played and (playerID, hero)
pairs (given in Figure 5 left and middle in the first row).
These distributions shall influence the choice of scenarios for
defining Reference Models. Heroes played the most (≥ 2, 000
times) are Mirana, Phantom Assassin, Invoker and Pudge. On
the other hand, the most frequent (playerID, hero) pairs are:
135 times (XXXX30, Invoker), 56 times (XXXX45, Lycan), 55
times (XXXX45, Furion), 51 times (XXXX06, Techies)3. The
hero with the highest number of traces is Invoker with 2, 090
in total, and 135 traces for a unique player. : this is why we
choose to focus on these game traces in what follows.

B. Reference models

Because of the mobility assumption discussed in Section IV
we will use positioning to determine our Reference Models.

2https://github.com/skadistats/clarity
3In order to maintain players anonymity we obfuscate real game ID’s

maintaining just the last two digits. In this case, both codes finishing with
45 correspond to the same ID.

The Web site [4] presents a study which aggregates the
positions of 10, 000 matches of League Of Legends into a
single map. Three phases (early, middle and late game) can
be easily recognized in the aggregated game, where players
occupy different regions of the map. This study also discusses
on different roles for heroes occupying different regions of
the map, namely carry and support in the bottom lane, mage
in the center, tank/melee in the middle lane, and jungler on
the whole map. We focus on the early phase of the game as
positioning is crucial at this step.

We constructed several Reference Models that we present
in Figure 4. For each, we consider 33 well known POI in
DOTA2 (bases, shops, center of the map, towers, ...). Models
are built for some of the most played heroes in our replay
collection. For example, Invoker was played 2, 089 times.
After computing the POI trajectories, we obtain the graph with
edges having a minimum (resp. maximum) weight of 1 (resp.
50, 332) and an average of 731 for dire and 867 for radiant.
We use these thresholds to drop non important edges in the
graph and present the model for Invoker (radiant team) in
Figure 4 (iv). Note that the size of each edge is proportional
to the weight. We follow the same process to present models
for Mirana 4 (i) and (ii), and Pudge 4 (iii). It can be observed
that hero Mirana focuses its moves in the top and bottom lanes
(depending of her team). Pudge (in the dire team) mainly plays
in the mid lane. Finally, Invoker (radiant team) is a jungler
thus more present in the top and bottom jungles.

C. Quantitative experiments

Here we provide evidences of the computational feasibility
of our approach. For this matter, we build the largest collec-
tions of traces that we could extract from the initial dataset and
that were coherent with our approach. Firstly, the Reference
Model was built by using the traces of any player using hero
Invoker. We will denominate this set of traces as Tm where
(|Tm| = 2, 090). Secondly, the set of traces to be analyzed
was built from a unique player, namely the most active player
in the collection using hero Invoker. We will denote this set
as T (|T | = 135). Finally, trace descriptions are built from
a collection of 116 possible items to be purchased during a
given match plus 68 different options for upgrade a hero’s
skills (build). Trajectories built from T contain between 16
and 1, 205 POI, with an average size of 476 POI per trajectory.
The distribution of trajectory lengths is shown in Figure 5 (top
right).

200

400

600

800

1000

1200

1400

1600

1800

2000

2200
N

um
be

r
of

 tr
ac

es

0

Mirana
Phantom Assassin
Invoker

Number of heroes
20 40 60 80 100

N
um

be
r

of
 tr

ac
es

Steam ID XXXX30 plays Invoker

Players by steam id and hero

10

20

40

80

160

10

20

40

80

0 50 100 150 200 2500 50 100 150 200 250
0

200

400

600

800

1000

1200

1400

S
iz

e
of

 th
e

tr
aj

ec
to

ry

0

200

400

600

800

1000

1200

1400

Number of the trajectory
0 20 40 60 80 100 1200 20 40 60 80 100 120 140

T
im

e
(m

s)

θ

Time (ms)

0

200

400

600

800

1000

1200

0

200

400

600

800

1000

1200

0 0.
00

3
0.

00
6

0.
00

9
0.

01
2

0.
01

5
0.

01
8

0.
02

1
0.

02
4

0.
02

7
0.

03
0 0.

00
3

0.
00

6
0.

00
9

0.
01

2
0.

01
5

0.
01

8
0.

02
1

0.
02

4
0.

02
7

0.
03

N
um

be
r

of
 p

at
te

rn
s

θ

|X-|
|X+|

0 0.
00

3
0.

00
6

0.
00

9
0.

01
2

0.
01

5
0.

01
8

0.
02

1
0.

02
4

0.
02

7
0.

03
0 0.

00
3

0.
00

6
0.

00
9

0.
01

2
0.

01
5

0.
01

8
0.

02
1

0.
02

4
0.

02
7

0.
03

0

200

400

600

800

1000

1200

1400

1600

0

200

400

600

800

1000

1200

1400

1600

N
um

be
r

of
 tr

an
sa

ct
io

ns

θ

D-
D+

0 0.
00

3
0.

00
6

0.
00

9
0.

01
2

0.
01

5
0.

01
8

0.
02

1
0.

02
4

0.
02

7
0.

03
0 0.

00
3

0.
00

6
0.

00
9

0.
01

2
0.

01
5

0.
01

8
0.

02
1

0.
02

4
0.

02
7

0.
03

0

20

40

60

80

100

120

140

0

20

40

60

80

100

120

140

Figure 5: In the first row, several distributions on the DOTA2 dataset (traces by heroes, then by heroes/players, and sizes of
behavior part). In the second row, we have several measures in terms of θ: time execution in milliseconds, number of patterns,
and number of transactions.

To run the mining algorithm, we need to set several param-
eters: the minimum frequency σ (set to 1%), the graph weight
cut off (set to the average of all weights in the graph) and the
θ parameter that allows to split the transaction database into
positive T + and negative T − examples. We report the number
of transactions in both positive and negative databases, as well
as the run time and number of patterns, for several values
of θ. It follows that run times are very low, but the number
of patterns can be sometimes too high to be analyzed by a
Human. Our goal is to get few but accurate negative patterns:
We choose θ = 0.008. Negative patterns, denoted by X− are
those with a negative normalized discriminant measure. Figure
10 plots the resulting patterns, using a normalized X 2 measure:
Interestingly most of the patterns cover normal behaviours
while a small proportion has a measure below −0.5. Note that
we only reported pattern mining run times. Parsing each replay
and processing them into an appropriate format can take more
than one second per file. This is however done a single time,
and thus we do not take it into account when reporting run
times.

With the replay collection we possess, our methodology has
no computational issues. Publishers that own massive replay
collections can use parallelized versions of pattern mining
algorithms in presence of scalability issues [26], [25].

D. Qualitative experiments

In DOTA2, each hero has a specific kind of game play. To
win, one has to take choices, in a some order, which differs
from one hero to another. Available objects for purchasing
provide heroes with powers: some objects are better for
some strategies than others. The same applies when choosing

abilities. At each level of experience, a player has to choose
between different upgrades for his hero. This choice influences
the strategy of the player and efficiency of his hero. So
called build orders are even shared and discussed on several
community websites such as Dotabuff.com. Our purpose here
is to provide patterns that inform the player about his choices
and their capacity to discriminate the outcome of the game
(first scenario) and his mobility behavior (second scenario).

1) Scenario 1 : Patterns that discriminate the game out-
come: In this scenario, we label player traces with positive
or negative classes depending on the outcome(t) function.
If outcome(t) = {win} then class(t) = {+}, and if
outcome(t) = {lost} then class(t) = {−}. We seek to answer
our first problem: what are the choices (purchased objects and
hero upgrade options), that discriminate a victory or a defeat?

We consider the games traces of player XXXX30 using hero
Invoker (the most prevalent in our replay collection). In 135
player traces, 69 games resulted in defeat and 66 in a victory,
which can be considered as a balanced overall outcome. Each
of the 135 traces is described by the objects purchased (I is
the set of all available objects). This leads to a database of
135 transactions on which we apply the CHARM algorithm
with a minimal frequency threshold of σ = 1%. 390 patterns
are extracted in a negligible time. Figure 6 gives for each
pattern its frequency in the whole database and growth-rate
φ. Recall that the closer is the value of φ(X) to -1, the more
discriminant for defeat is pattern X , and vice versa. We can
observe patterns with extreme growth-rate values (1 and -1),
that is, observed only in victorious or lost games. However,
their frequency is very low, actually almost never observed. In
contrast, the most balanced patterns appear more often (in 60%

of the games). Note that this observation was made in a similar
scenario studying balance issues in StarCraft 2 [8]. Table V
presents five patterns that appear only in lost games which we
compare with a list provided by Dotabuff of the most popular
objects purchased by any given hero during the last year4.
While patterns found through our approach contain objects
staff of wizardry,blade mail,healing salve for hero Invoker,
these are not very popular in the list of Dotabuff. We can infer
fromt his that these five patterns are indeed not very common,
probably because of their associated low winning chances.

We conducted a second experiment by taking into account
the upgrades chosen at each level by player XXXX30. Thus, I
is only composed of pairs (hero level, ability level). Using
the same parametrization than in the last experiment, we
extracted 177 patterns from which we selected the pattern with
the lowest growth-rate. which appears in only 4 traces. Again,
we compare this pattern with the upgrade choices statistics
collected by the Web site Dotabuff and shown in Figure
7. Each row denotes an upgrade of Invoker while columns
denote the level of the hero. A cell thus counts the number
of known matches in which a player chose to improve the
correspondent upgrade a at the given level. Cells highlighted
in green represent discovered patterns. They indicate that
player XXXX30 sticks quite well to common behavior in levels
4,7,8,17 and to a lesser extent, level 10. However, it seems
that considering upgrade choices and purchased items may be
not enough. Indeed, a player may follow well known build
orders, but position his hero wrongly on the map. Moreover,
match outcomes depend not only on the choices of a single
player but also, on the team’s. MOBA games are based on
team cooperation and positions are very important on the map.
In the next scenario, we use a Reference Model that captures
positioning as a way to improve the quality of patterns.

X supp(X) φ(X)
1 {tpscroll, force staff, blade mail} 3 -1.0
2 {tpscroll, staff of wizardry,

blade mail}
3 -1.0

3 {tpscroll, healing salve, gloves,
power treads}

3 -1.0

4 {boots, tpscroll, healing salve,
blade mail}

3 -1.0

5 {tango, tpscroll, force staff,
blade mail}

2 -1.0

Table V: Pattern discriminating defeat (Scenario 1)

-1

-0.5

0

0.5

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

G
ro
w
th
-R
at
e

-1

-0.5

0

0.5

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Frequency

Figure 6: Pattern frequencies and growth-rates (Scenario 1)

4http://www.dotabuff.com/heroes/invoker/items?date=year

2) Scenario 2 : Patterns of traces that deviate/respect a
reference model: In this scenario, we label each player trace
with the help of the Reference Models illustrated in Figures
4. As we are studying games of the hero Invoker, we use its
model for dire (resp. radiant) when labeling a trace played
as dire (resp. radiant). Our goal is to describe sets of player
traces that deviate the most from these models. The positive
and negative transaction databases are build using θ = 0.008
(as explained in Section V.C.). Like in Scenario 1, we build
trace descriptions in terms of (i) purchased objects, (ii) chosen
upgrades. In both cases, we have |D−| = 27 and |D+| = 108
while the model was computed on a set of Tm = 2, 090 traces.

With these settings, and for the case (i) only 39 patterns
have a negative growth rate. Support and growth rate for
all patterns is plotted in Figure 10. Discriminant patterns
for deviant behaviors are shown in Figure 8. Objects robe,
sage mask, healing salve and staff of wizardry are all
rarely purchased items when using hero Invoker.

For case (ii), we extracted 91 patterns describing deviant
behaviours. We illustrate some of them in Figure 9 which also
depicts common upgrade statistics gathered by Dotabuff. In the
figure we can observe that the player makes a mistake at level
9, by choosing the ability 3 instead of 2, again at level 12, by
choosing upgrade 2 instead of 4, and again at level 14 and at
level 16 where his chois is only shared by 4.4% of players.
Thus, our method discriminates better the bad and infrequent
moves.

VI. RELATED WORK

The analysis of behavioral video game data is not new.
However, for a long time it seems to have only provided a
test bed for artificial intelligence techniques. For example, the
real-time strategy game StarCraft has attracted much attention
for the design of intelligent agents and even serves as a test
bed for AI to compete through tournaments [27]. The problem
of building an agent able to beat a Human is so hard that it is
now an objective for both Facebook AI research and Google
Deep Mind.

With the advent of massively multiplayer online-played
games, the game industry got interested in analyzing these
massive sets of historical data by means of visualization,
machine learning and data mining techniques. This is one of
the many facets of video game analytics aiming to enhance
user experience and extending game lifetime [33]. There are
several relevant tasks that demand massive data. Identifying
imbalanced strategies in StarCraft 2 thanks to pattern mining
was recently studied [8]. It is also possible to predict who
is playing thanks to keystrokes used by Starcraft 2 players
[34] and thus to recognize banned players with a new identity
[11]. Without being exhaustive, we can also mention the tasks
of detecting unexpected situations and bugs [33], cheaters
[6], improving match making systems [32], [10], designing
interactive player advice systems [15], understanding when to
surrender in a MOBA [14], among others. Massive datasets
can also be used in eSport analytics, e.g. [29], [24]. Our
methodology is useful mainly for the task of understanding
player behaviors, and addressed either to a player or to the
game publisher. Several works considered the problem of
player advising (recommendation) for MOBA and RTS games.

Figure 7: Comparing an itemset of skill choices with Dotabuff statistics (Scenario 1)

X suppD(X) φ(X)
1 {tpscroll, phase boots, tango, robe} 3 -1.0
2 {tpscroll, phase boots, tango, sage mask} 3 -1.0
3 {tpscroll, boots, sage mask, force staff,

healing salve}
5 -1.0

4 {tpscroll, phase boots, force staff,
point booster, dust, scythe of vyse}

3 -1.0

5 {tpscroll, boots, sage mask, force staff,
healing salve, staff of wizardry}

3 -1.0

Figure 8: Patterns discriminating deviant trajectories.

Silva et al. presented an approach to help novice players of
League of Legends [16]. The system tracks the player actions
and gives tips in real-time, e.g. when the hero’s health is too
low, his positioning is wrong, etc. They use domain knowledge
from expert players to build a decision tree that is used in real-
time. Chunha et al. purposes an advisory system to help players
in a RTS game [15]. They formalized expert guides and also
used them for helping the player to master the game more
rapidly. In both cases, the systems rely on expert knowledge
a priori and manually designed, which can be a tedious task.
Our approach can use either an existing model or derive it
automatically from selected game traces. It is however not
designed to help the player in real time, but afterwards, when
analyzing his games (or those of others).

Anomaly detection is a well-known task in data-mining
(as surveyed in [12]). The task consists in detecting objects
which strongly differ from others w.r.t. an outlier measure.
There are a lot of applications, e.g. fraud detection in many
domains. Contextualized anomaly detection [7] [30] [19] still
considers a set of objects in which outliers are searched for, but
also in which context the objects are outliers: a normal object
may be an outlier in some subspace of the data. Our approach
differs as we are neither looking for outliers or contextualized
outliers, but contextual information (or hypotheses) that mostly
characterize objects that deviate from a norm.

VII. CONCLUSION

With the recent developments of eSports, the video game
industry faces new challenges for developing games attractive
for both professional and amateur players. Gamers are in
need of data analytic tools that highlight their strengths and
weaknesses and help them during a long learning process.
For that matter, discriminant pattern mining techniques pro-
vide intelligible explanations for several kinds of targets. We
developed in this article a global methodology that enable
to output strategic patterns explaining victory and explaining

deviations from a reference behaviour that can be customized
for various scenarios. The choice of a reference model, but
also the different features to be encoded in the itemsets and the
target given for each trace (game outcome, reference model,
...) makes it indeed customizable. Our choices in these article
were mainly motivated by the available of data. It remains
thus to further develop this first attempt, and to achieve a
deeper experimental validation with several heroes, players,
description encodings, but also to involve Human players in
the loop. Another issue concerns the lack of data: it is hard to
find a sufficient number of replays involving the same players
and player/hero pairs.

ACKNOWLEDGMENTS

This research has been partially funded by the French
National Project FUI AAP 14 Tracaverre 2012-2016. The
authors warmly thank Rob Jackson and the Dotabank website
for providing us with a large collection of DOTA2 replays.

REFERENCES

[1] David kim and the impossible balancing act of starcraft 2: Legacy
of the void. http://www.pcgamesn.com/starcraft-ii/david-kim-and-the-
impossible-balancing-act-of-starcraft-2-legacy-of-the-void. Accessed:
2016-07-29.

[2] Dota2, wikipedia. https://en.wikipedia.org/wiki/Dota 2. Accessed:
2016-06-06.

[3] Watch 10,000 league of legends games in 30 seconds.
http://www.nytimes.com/interactive/2014/10/10/technology/
league-of-legends-graphic.html? r=0. Accessed: 2016-06-08.

[4] Worlds 2015 viewership. http://www.lolesports.com/en US/articles/
worlds-2015-viewership. Accessed: 2016-06-06.

[5] Rakesh Agrawal and Ramakrishnan Srikant. Fast algorithms for mining
association rules in large databases. In VLDB’94, Proceedings of 20th
International Conference on Very Large Data Bases, pages 487–499,
1994.

[6] Muhammad Aurangzeb Ahmad, Brian Keegan, Jaideep Srivastava,
Dmitri Williams, and Noshir S. Contractor. Mining for gold farmers:
Automatic detection of deviant players in mmogs. In Proceedings of
the 12th IEEE International Conference on Computational Science and
Engineering, CSE 2009, pages 340–345, 2009.

[7] Fabrizio Angiulli, Fabio Fassetti, and Luigi Palopoli. Detecting out-
lying properties of exceptional objects. ACM Trans. Database Syst.,
34(1):7:1–7:62, April 2009.

[8] G. Bosc, P. Tan, J. F. Boulicaut, C. Raissi, and M. Kaytoue. A
pattern mining approach to study strategy balance in rts games. IEEE
Transactions on Computational Intelligence and AI in Games, 2015.

[9] Jean-François Boulicaut and Baptiste Jeudy. Constraint-based data
mining. In Oded Maimon and Lior Rokach, editors, Data Mining and
Knowledge Discovery Handbook, 2nd ed., pages 339–354. Springer,
2010.

Figure 9: Comparing an itemset of skill choices with Dotabuff statistics (Scenario 2)

-1

-0.5

0

0.5

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

G
ro
w
th
-R
at
e

-1

-0.5

0

0.5

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Frequency

Figure 10: Pattern frequencies
and growth-rates (Scenario 2)

[10] Alexandra Buchan and Jacqui Taylor. A qualitative exploration of
factors affecting group cohesion and team play in multiplayer online
battle arenas (mobas). The Computer Games Journal, pages 1–25, 2016.

[11] Olivier Cavadenti, Vı́ctor Codocedo, Jean-François Boulicaut, and
Mehdi Kaytoue. When cyberathletes conceal their game: Clustering
confusion matrices to identify avatar aliases. In IEEE International
Conference on Data Science and Advanced Analytics (DSAA 2015),
pages 1–10, 2015.

[12] Varun Chandola, Arindam Banerjee, and Vipin Kumar. Anomaly
detection: A survey. ACM Computing Surveys, 41(3):15:1–15:58, July
2009.

[13] Gifford Cheung and Jeff Huang. Starcraft from the stands: understand-
ing the game spectator. In Proceedings of the International Conference
on Human Factors in Computing Systems, CHI 2011, pages 763–772,
2011.

[14] M. Claypool, J. Decelle, G. Hall, and L. O’Donnell. Surrender at
20? matchmaking in league of legends. In IEEE Games Entertainment
Media Conference (GEM), pages 1–4, 2015.

[15] Renato Luiz De Freitas Cunha, Marlos C. Machado, and Luiz Chaimow-
icz. Rtsmate: Towards an advice system for rts games. Computers in
Entertainment, 12(1):1:1–1:20, February 2015.

[16] Victor do Nascimento Silva and Luiz Chaimowicz. A tutor agent for
moba games. In SBGames, 2015.

[17] Guozhu Dong and Jinyan Li. Efficient mining of emerging patterns:
Discovering trends and differences. In SIGKDD’99, pages 43–52, 1999.

[18] A. Drachen, M. Yancey, J. Maguire, D. Chu, I. Y. Wang, T. Mahlmann,
M. Schubert, and D. Klabajan. Skill-based differences in spatio-
temporal team behaviour in defence of the ancients 2 (dota 2). In
Games Media Entertainment (GEM), 2014 IEEE, pages 1–8, Oct 2014.

[19] Lei Duan, Guanting Tang, Jian Pei, James Bailey, Akiko Campbell, and
Changjie Tang. Mining outlying aspects on numeric data. Data Mining
and Knowledge Discovery, 29(5):1116–1151, September 2015.

[20] F. Flouvat, J. Sanhes, C. Pasquier, N. Selmaoui, and J-F. Boulicaut.
Improving pattern discovery relevancy by deriving constraints from
expert models. In ECAI’14, pages 327–332, August 2014.

[21] Philippe Fournier-Viger, Antonio Gomariz, Ted Gueniche, Azadeh
Soltani, Cheng-Wei Wu, and Vincent S. Tseng. SPMF: a java open-
source pattern mining library. Journal of Machine Learning Research,
15(1):3389–3393, 2014.

[22] Tias Guns. Declarative pattern mining using constraint programming.
Constraints, 20(4):492–493, 2015.

[23] Mehdi Kaytoue, Arlei Silva, Loı̈c Cerf, Wagner Meira Jr., and Chedy
Raı̈ssi. Watch me playing, i am a professional: a first study on video
game live streaming. In Proceedings of the 21st World Wide Web
Conference, WWW 2012, pages 1181–1188, 2012.

[24] Tobias Mahlmann Matthias Schubert, Anders Drachen. Esports analyt-
ics through encounter detection. In MIT Sloan, editor, Proceedings of
the MIT Sloan Sports Analytics Conference 2016, 2016.

[25] S. Moens, E. Aksehirli, and B. Goethals. Frequent itemset mining for
big data. In Big Data, 2013 IEEE International Conference on, pages
111–118, Oct 2013.

[26] Benjamin Negrevergne, Alexandre Termier, Marie-Christine Rousset,
and Jean-FranÃ§ois Mehaut. ParaMiner: a Generic Pattern Mining

Algorithm for Multi-Core Architectures. Journal of Data Mining and
Knowledge Discovery (DMKD), 2013.

[27] Santiago Ontañón, Gabriel Synnaeve, Alberto Uriarte, Florian Richoux,
David Churchill, and Mike Preuss. A survey of real-time strategy game
AI research and competition in starcraft. IEEE Trans. Comput. Intellig.
and AI in Games, 5(4):293–311, 2013.

[28] Marc Plantevit and Bruno Crémilleux. Condensed representation of
sequential patterns according to frequency-based measures. In IDA’09,
pages 155–166, 2009.

[29] François Rioult, Jean-Philippe Metivier, Boris Helleu, Nicolas Scelles,
and Christophe Durand. Mining Tracks of Competitive Video Games.
In AASRI Conference on Sports Engineering and Computer Science
(SECS 2014), Londres, United Kingdom, 2014.

[30] Guanting Tang, James Bailey, Jian Pei, and Guozhu Dong. Mining
multidimensional contextual outliers from categorical relational data.
In Proceedings of the 25th International Conference on Scientific and
Statistical Database Management, SSDBM, pages 43:1–43:4, New
York, NY, USA, 2013. ACM.

[31] T. L. Taylor. Raising the Stakes:E-Sports and the Professionalization
of Computer Gaming. MIT Press, 2012.

[32] Maxime Véron, Olivier Marin, and Sébastien Monnet. Matchmaking
in multi-player on-line games: Studying user traces to improve the user
experience. In Proceedings of Network and Operating System Support
on Digital Audio and Video Workshop, NOSSDAV ’14, pages 7:7–7:12,
New York, NY, USA, 2014. ACM.

[33] Arthur Von Eschen. Machine learning and data mining in call of
duty. In European Conference on Machine Learning and Knowledge
Discovery in Databases (ECML-PKDD), LNCS 8724. Springer, 2014.
an Industrial Invited Talk.

[34] Eddie Q. Yan, Jeff Huang, and Gifford K. Cheung. Masters of control:
Behavioral patterns of simultaneous unit group manipulation in starcraft
2. In Bo Begole, Jinwoo Kim, Kori Inkpen, and Woontack Woo, editors,
Proceedings of the 33rd Annual ACM Conference on Human Factors
in Computing Systems (CHI 2015), pages 3711–3720. ACM, 2015.

[35] M.J. Zaki and C.-J. Hsiao. Efficient algorithms for mining closed
itemsets and their lattice structure. IEEE Transactions on Knowledge
and Data Engineering, 17(4):462–478, April 2005.

