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Wilf’s Conjecture for numerical semigroups ∗

Mariam Dhayni †

Abstract: Let S ⊆ N be a numerical semigroup with multiplicity m, embedding dimension ν and conductor
c = f + 1 = qm − ρ for some q, ρ ∈ N with ρ < m. Let Ap(S,m) = {w0 < w1 < . . . < wm−1} be the Apéry
set of S. The aim of this paper is to prove Wilf’s Conjecture in some special cases. First, we prove that if
wm−1 ≥ w1 + wα and (2 + α−3

q
)ν ≥ m for some 1 < α < m − 1, then S satisfies Wilf’s Conjecture. Then, we

prove the conjecture in the following cases: (2 + 1
q
)ν ≥ m, m − ν ≤ 5 and m = 9. Finally, the conjecture is

proved if wm−1 ≥ wα−1 + wα and (α+3
3 )ν ≥ m for some 1 < α < m− 1.

1 Introduction and notations

Let N denote the set of natural numbers, including 0. A numerical semigroup S is an additive submonoid of
(N,+) of finite complement in N, that is 0 ∈ S, if a, b ∈ S then a+ b ∈ S and N \S is a finite set. The elements
of N \ S are called the gaps of S. The largest gap is denoted by f = f(S) =max(N \ S) and is called the
Frobenius number of S. The smallest non zero element m = m(S) =min(S∗) is called the multiplicity of S and
n = |{s ∈ S, s < f(S)}| is also denoted by n(S). Every numerical semigroup S is finitely generated, i.e. is of
the form

S =< g1, . . . , gν >= Ng1 + . . .+ Ngν

for suitable unique coprime integers g1, . . . , gν . The number of generators of S is denoted by ν = ν(S) and is
called the embedding dimension of S. An integer x ∈ N \S is called a pseudo-Frobenius number if x+S∗ ⊆ S.
The type of the semigroup, denoted by t(S) is the cardinality of set of pseudo-frobenius numbers. The Apéry

set of S with respect to a ∈ S is defined as Ap(S, a) = {s ∈ S; s− a /∈ S}.

The Diophantine Frobenius Problem, also called the Coin Problem, is to find the largest number f that cannot
be written in the form

∑n

i=1 aixi; xi ∈ N for given coprime positive integers a1, · · · , an. This problem is related
to the theory of numerical semigroups in the following way: let S be the numerical semigroup generated by
g1, . . . , gν , then f is simply the largest integer not belonging to S. Hence the problem is to find a formula for
f in terms of the set of generators of S. For ν = 2, the formula of f(< g1, g2 >) is given by Sylvester ([10]), for
ν ≥ 3 the problem is much harder. It has been proved in ([7]), that in general f(S) is not algebraic in the set
of generators of S. In ([11]) 1978 H. S. Wilf proposed a lower bound for the number of generators of S in terms
of the Frobenius number as follows: f(S) + 1 ≤ ν(S)n(S).

Although the problem has been considered by several authors (cf. [1], [2], [3], [4], [5], [6], [9] , [12] ), only special
cases have been solved and it remains wide open. In ([3]), D. Dobbs and G. Matthews proved Wilf’s Conjecture
for ν ≤ 3. In ([6]) N. Kaplan proved it for f + 1 ≤ 2m and in ([4]) S. Eliahou extended Kaplan’s work for
f + 1 ≤ 3m.
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This work is a generalisation of the case covered by A. Sammartano ([9]), who showed that Wilf’s Conjecture
holds for 2ν ≥ m and m ≤ 8, based on the idea of counting the elements of S in some intervals of length m.
We use different intervals in order to get an equivalent form of Wilf’s Conjecture and then to prove it in more
cases. We also cover the case where 2ν ≥ m.

Here are few more details on the contents of this paper. Section 2 is devoted to give some notations that will
enable us in the same section to give an equivalent form of Wilf’s Conjecture. Section 3 is the heart of the
paper. Let Ap(S,m) = {0 = w0 < w1 < · · · < wm−1}. First, we show that Wilf’s conjecture holds for numerical
semigroups that satisfy wm−1 ≥ w1 + wα and (2 + α−3

q
)ν ≥ m for some 1 < α < m− 1 where f + 1 = qm− ρ

for some q ∈ N, 0 ≤ ρ ≤ m− 1. Then we prove Wilf’s Conjecture for numerical semigroups with m− ν ≤ 4 in
order to cover the case where 2ν ≥ m, prove by Sammartano in ([9]). We also show that a numerical semigroup
with m − ν = 5 verify Wilf’s Conjecture in order to prove the conjecture for m = 9. Finally, we show in this
section, using the previous cases, that Wilf’s conjecture holds for numerical semigroups with (2 + 1

q
)ν ≥ m. In

section 4 we prove Wilf’s Conjecture for numerical semigroups with wm−1 ≥ wα−1 + wα and (α+3
3 )ν ≥ m for

some 1 < α < m− 1.

A good reference on numerical semigroups is [8].

2 Preliminaries

Let the notations be as in the introduction. For the sake of clarity we shall use the notations ν, f, n, ... for
ν(S), f(S), n(S).... In this section we will introduce some notations and family of numbers that will enable us
to give an equivalent form of Wilf’s conjecture.

Definition. Let S be a numerical semigroup and let c = C(S) = f + 1 be the conductor of S. Denote by

q = ⌈
c

m
⌉,

where ⌈x⌉ denote the smallest integer greater than or equal to x. Thus, qm ≥ c and c = qm−ρ with 0 ≤ ρ < m.

Given a non negative integer k, we define the kth interval of length m,

Ik = [km− ρ, (k + 1)m− ρ[= {km− ρ, km− ρ+ 1, . . . , (k + 1)m− ρ− 1}.

We denote by
nk = |{s ∈ S ∩ Ik}|.

For j ∈ {1, . . . ,m− 1}, we define ηj to be the number of intervals Ik with nk = j.

ηj = |{k ∈ N; |Ik ∩ S| = j}|.

Proposition 2.1 Under the previous notations, we have:

i) 1 ≤ nk ≤ m− 1 for all k = 0, . . . , q − 1.

ii) nk = m for all k ≥ q.

iii) n = n(S) =
∑q−1

k=0 nk.

iv)
∑m−1

j=1 ηj = q.

v)
∑m−1

j=1 jηj =
∑q−1

k=0 nk = n.

Proof. i), ii), iii) are obvious. Now using i), ii) we will prove iv) and v).
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iv)
∑m−1

j=1 ηj =
∑m−1

j=1 |{k ∈ N; |Ik ∩ S| = j}| =
∑m−1

j=1 |{k ∈ N;nk = j; k = 0, . . . , q − 1}| = q.

v)
∑m−1

j=1 jηj =
∑m−1

j=1 j|{k ∈ N; |Ik ∩ S| = j}| =
∑m−1

j=1 j|{k ∈ N;nk = j; k = 0, . . . , q − 1}| =
∑q−1

k=0 nk =
n. �

Remark: We shall use the notation ⌊x⌋ for the largest integer smaller than or equal to x.

Next we will express ηj in terms of th Apéry set.

Proposition 2.2 Let Ap(S,m) = {w0 = 0 < w1 < w2 < . . . < wm−1}. Under the previous notations, we have
for all j ∈ {1, . . . ,m− 1}

ηj = ⌊
wj + ρ

m
⌋ − ⌊

wj−1 + ρ

m
⌋.

Proof. Fix 0 ≤ k ≤ q − 1, and let j ∈ {1, . . . ,m − 1}. We will show that the interval Ik contains exactly
j elements of S if and only if wj−1 < (k + 1)m − ρ ≤ wj . Recall to this end that for all s ∈ S, there exist
0 ≤ i ≤ m− 1, a ∈ N such that s = wi + am.

Suppose that Ik contains j elements. Suppose, by contradiction, that wj−1 ≥ (k + 1)m− ρ. We have wm−1 >
. . . > wj−1 ≥ (k + 1)m − ρ, thus wm−1, . . . , wj−1 ∈ ∪q

t=k+1It. Hence, Ik contains at most j − 1 elements of S
(namely w0 + km = km,w1 + k1m,w2 + k2m, . . . , wj−2 + kj−2m for some k1, . . . , kj−2 ∈ {0, . . . , k − 1}). This
contradicts the fact that Ik contains exactly j elements of S.
If wj < (k+1)m−ρ, then w0 < . . . < wj < (k+1)m−ρ, thus w0, . . . , wj ∈ ∪k

t=0It. Hence, Ik contains at least j+1
elements of S which are : w0+km = km,w1+k1m,w2+k2m, . . . , wj+kjm for some k1, . . . , kj ∈ {0, . . . , k−1},
which contradicts the fact that Ik contains exactly j elements of S.

Conversely, wj−1 < (k+1)m− ρ implies that w0 < . . . < wj−1 < (k+1)m− ρ, so w0, . . . , wj−1 ∈ ∪k
t=0It. Thus

Ik contains at least j elements which are : w0 + km = km,w1 + k1m,w2 + k2m, . . . , wj−1 + kj−1m for some
k1, . . . , kj−1 ∈ {0, . . . , k − 1}.
On the other hand wj ≥ (k+1)m−ρ implies that wm−1 > . . . > wj ≥ (k+1)m−ρ, so wm−1, . . . , wj ∈ ∪q

t=k+1It.
Thus Ik contains at most j elements which are : w0 + km = km,w1 + k1m,w2 + k2m, . . . , wj−1 + kj−1m for
some k1, . . . , kj−1 ∈ {0, . . . , k − 1}. Hence, if wj−1 < (k+ 1)m− ρ ≤ wj , then Ik contains exactly j elements of
S and this proves our assertion.
Consequently,

ηj = |{k ∈ N such that |Ik ∩ S| = j}|

= |{k ∈ N such that wj−1 < (k + 1)m− ρ ≤ wj}|

= |{k ∈ N such that
wj−1+ρ

m
< (k + 1) ≤

wj+ρ

m
}|

= |{k ∈ N such that
wj−1+ρ

m
− 1 < k ≤

wj+ρ

m
− 1}|

= |{k ∈ N such that ⌊
wj−1+ρ

m
⌋ ≤ k ≤ ⌊

wj+ρ

m
⌋ − 1}|

= ⌊
wj+ρ

m
⌋ − ⌊

wj−1+ρ

m
⌋. �

Proposition 2.3 gives an equivalent form of Wilf’s Conjecture using Propositions 2.1 and 2.2.

Proposition 2.3 Let S be a numerical semigroup with multiplicity m, embedding dimension ν and conductor
f + 1 = qm − ρ for some q ∈ N and 0 ≤ ρ ≤ m − 1. Let w0 = 0 < w1 < w2 < . . . < wm−1 be the elements of
Ap(S,m). Then S satisfies Wilf’s Conjecture if and only if

m−1
∑

j=1

(⌊
wj + ρ

m
⌋ − ⌊

wj−1 + ρ

m
⌋)(jν −m) + ρ ≥ 0.
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Proof. By Proposition 2.1, we have

f + 1 ≤ nν ⇔ qm− ρ ≤ ν

q−1
∑

k=0

nk ⇔

q−1
∑

k=0

m− ρ ≤

q−1
∑

k=0

nkν ⇔

q−1
∑

k=0

(nkν −m) + ρ ≥ 0 ⇔
m−1
∑

j=1

ηj(jν −m) + ρ ≥ 0.

Using Proposition 2.2, we have

m−1
∑

j=1

ηj(jν −m) + ρ ≥ 0 ⇔
m−1
∑

j=1

(⌊
wj + ρ

m
⌋ − ⌊

wj−1 + ρ

m
⌋)(jν −m) + ρ ≥ 0.

Thus the proof is complete. �

Remark 2.4 Let Ap(S,m) = {w0 = 0 < w1 < . . . < wm−1}. The following technical results will be used
through the paper:

1. ⌊w0+ρ
m

⌋ = 0 (w0 = 0 and 0 ≤ ρ < m).

2. For all 1 ≤ i ≤ m− 1, ⌊wi+ρ

m
⌋ ≥ 1 (wi > m).

3. For all 1 ≤ i ≤ m − 1, either ⌊wi+ρ

m
⌋ = ⌊wi

m
⌋ or ⌊wi+ρ

m
⌋ = ⌊wi

m
⌋ + 1. In the second case ⌊wi+ρ

m
⌋ ≥ 2 and

ρ ≥ 1.

4. If wi < wj for some 0 ≤ i < j ≤ m− 1, then ⌊wi+ρ

m
⌋ ≤ ⌊

wj+ρ

m
⌋.

5. ⌊wm−1+ρ

m
⌋ = ⌊ qm−ρ+m−1+ρ

m
⌋ = q.

3 Main Results

In this section, we show that Wilf’s Conjecture holds for numerical semigroups in the following cases:

1. wm−1 ≥ w1 + wα and (2 + α−3
q

)ν ≥ m for some 1 < α < m− 1.

2. m− ν ≤ 5. (Note that the case m− ν ≤ 4 results from the fact that Wilf’s Conjecture holds for 2ν ≥ m
([9]), however we shall give the proof for m− ν ≤ 3 in order to cover this result through our techniques).

We then deduce the conjecture for m = 9 and for (2 + 1
q
)ν ≥ m.

The following technical Lemma will be used through the paper:

Lemma 3.1 Let Ap(S,m) = {w0 = 0 < w1 < . . . < wm−1}. Suppose that wi ≥ wj + wk, then ⌊wi+ρ

m
⌋ ≥

⌊
wj+ρ

m
⌋+⌊wk+ρ

m
⌋−1. If furthermore, ⌊wi+ρ

m
⌋−⌊

wj+ρ

m
⌋−⌊wk+ρ

m
⌋ = −1, then ⌊

wj+ρ

m
⌋ = ⌊

wj

m
⌋+1, ⌊wk+ρ

m
⌋ = ⌊wk

m
⌋+1

and ρ ≥ 1. In particular, ⌊
wj+ρ

m
⌋ ≥ 2, ⌊wk+ρ

m
⌋ ≥ 2 and ρ ≥ 1.

Proof. wi ≥ wj + wk implies that wi + ρ ≥ wj + wk + ρ, hence wi+ρ

m
≥

wj+wk+ρ

m
. Consequently, ⌊wi+ρ

m
⌋ ≥

⌊
wj+wk+ρ

m
⌋. Therefore, ⌊wi+ρ

m
⌋ ≥ ⌊

wj+ρ

m
⌋+ ⌊wk

m
⌋. Hence, by Remark 2.4 (3), ⌊wi+ρ

m
⌋ ≥ ⌊

wj+ρ

m
⌋+ ⌊wk+ρ

m
⌋ − 1.

Suppose that wi ≥ wj + wk and that ⌊wi+ρ

m
⌋ − ⌊

wj+ρ

m
⌋ − ⌊wk+ρ

m
⌋ = −1. Suppose by the way of contradiction

that either ⌊
wj+ρ

m
⌋ 6= ⌊

wj

m
⌋+1 or ⌊wk+ρ

m
⌋ 6= ⌊wk

m
⌋+1 or ρ < 1. Then, by Remark 2.4 (3) and the fact that ρ ≥ 0,

we have either ⌊
wj+ρ

m
⌋ = ⌊

wj

m
⌋ or ⌊wk+ρ

m
⌋ = ⌊wk

m
⌋ or ρ = 0. Since wi ≥ wj + wk, then ⌊wi+ρ

m
⌋ ≥ ⌊

wj+wk+ρ

m
⌋. In

this case ⌊wi+ρ

m
⌋ ≥ ⌊

wj+ρ

m
⌋+ ⌊wk+ρ

m
⌋, which is impossible. Hence, ⌊

wj+ρ

m
⌋ = ⌊

wj

m
⌋+ 1, ⌊wk+ρ

m
⌋ = ⌊wk

m
⌋+ 1 and

ρ ≥ 1. Therefore, by Remark 2.4 (2), ⌊
wj+ρ

m
⌋ = ⌊

wj

m
⌋+ 1 ≥ 2, ⌊wk+ρ

m
⌋ = ⌊wk

m
⌋+ 1 ≥ 2 and ρ ≥ 1. �

Next we will show that Wilf’s Conjecture holds for numerical semigroups with wm−1 ≥ w1+wα and (2+ α−3
q

)ν ≥
m.
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Theorem 3.2 Let S be a numerical semigroup with multiplicity m, embedding dimension ν and conductor
f + 1 = qm − ρ for some q ∈ N, 0 ≤ ρ ≤ m − 1. Let w0 = 0 < w1 < w2 < . . . < wm−1 be the elements of
Ap(S,m). Suppose that wm−1 ≥ w1 + wα for some 1 < α < m− 1. If (2 + α−3

q
)ν ≥ m, then S satisfies Wilf’s

Conjecture.

Proof. We are going to show that S satisfies Wilf’s Conjecture by means of Proposition 2.3. We have,

(3.1)

α
∑

j=1

(⌊
wj + ρ

m
⌋ − ⌊

wj−1 + ρ

m
⌋)(jν −m) =

α
∑

j=1

⌊
wj + ρ

m
⌋(jν −m)−

α
∑

j=1

⌊
wj−1 + ρ

m
⌋(jν −m)

=

α
∑

j=1

⌊
wj + ρ

m
⌋(jν −m)−

α−1
∑

j=0

⌊
wj + ρ

m
⌋((j + 1)ν −m)

= ⌊
wα + ρ

m
⌋(αν −m)− ⌊

w0 + ρ

m
⌋(ν −m)−

α−1
∑

j=1

⌊
wj + ρ

m
⌋ν

= ⌊
wα + ρ

m
⌋(αν −m)− ⌊

w1 + ρ

m
⌋ν −

α−1
∑

j=2

⌊
wj + ρ

m
⌋ν

≥ ⌊
wα + ρ

m
⌋(αν −m)− ⌊

w1 + ρ

m
⌋ν −

α−1
∑

j=2

⌊
wα + ρ

m
⌋ν

= ⌊
wα + ρ

m
⌋(αν −m)− ⌊

w1 + ρ

m
⌋ν − ⌊

wα + ρ

m
⌋(α− 2)ν

= −⌊
w1 + ρ

m
⌋ν + ⌊

wα + ρ

m
⌋(2ν −m).

(3.2)

m−1
∑

j=α+1

(⌊
wj + ρ

m
⌋ − ⌊

wj−1 + ρ

m
⌋)(jν −m) ≥

m−1
∑

j=α+1

(⌊
wj + ρ

m
⌋ − ⌊

wj−1 + ρ

m
⌋)((α + 1)ν −m)

= ((α+ 1)ν −m)

m−1
∑

j=α+1

(⌊
wj + ρ

m
⌋ − ⌊

wj−1 + ρ

m
⌋)

= ((α+ 1)ν −m)(

m−1
∑

j=α+1

⌊
wj + ρ

m
⌋ −

m−1
∑

j=α+1

⌊
wj−1 + ρ

m
⌋)

= ((α+ 1)ν −m)(
m−1
∑

j=α+1

⌊
wj + ρ

m
⌋ −

m−2
∑

j=α

⌊
wj + ρ

m
⌋)

= (⌊
wm−1 + ρ

m
⌋ − ⌊

wα + ρ

m
⌋)((α + 1)ν −m).

Since wm−1 ≥ w1 +wα, by Lemma 3.1, it follows that ⌊wm−1+ρ

m
⌋ ≥ ⌊w1+ρ

m
⌋+ ⌊wα+ρ

m
⌋ − 1. Let x = ⌊wm−1+ρ

m
⌋ −

⌊w1+ρ

m
⌋ − ⌊wα+ρ

m
⌋. Then, ⌊w1+ρ

m
⌋+ ⌊wα+ρ

m
⌋ = q − x and x ≥ −1. Now using (3.1) and (3.2), we have
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m−1
∑

j=1

(⌊
wj + ρ

m
⌋ − ⌊

wj−1 + ρ

m
⌋)(jν −m) + ρ ≥ −⌊

w1 + ρ

m
⌋ν + ⌊

wα + ρ

m
⌋(2ν −m)

+(⌊
wm−1 + ρ

m
⌋ − ⌊

wα + ρ

m
⌋)((α + 1)ν −m) + ρ

= ⌊
w1 + ρ

m
⌋(−ν + ((α + 1)ν −m)− ((α+ 1)ν −m)) + ⌊

wα + ρ

m
⌋(2ν −m)

+(⌊
wm−1 + ρ

m
⌋ − ⌊

wα + ρ

m
⌋)((α + 1)ν −m) + ρ

= ⌊
w1 + ρ

m
⌋(αν −m) + ⌊

wα + ρ

m
⌋(2ν −m)

+(⌊
wm−1 + ρ

m
⌋ − ⌊

wα + ρ

m
⌋ − ⌊

w1 + ρ

m
⌋)((α + 1)ν −m) + ρ

= (⌊
w1 + ρ

m
⌋+ ⌊

wα + ρ

m
⌋)(2ν −m) + ⌊

w1 + ρ

m
⌋(α− 2)ν

+(⌊
wm−1 + ρ

m
⌋ − ⌊

wα + ρ

m
⌋ − ⌊

w1 + ρ

m
⌋)((α + 1)ν −m) + ρ

= (q − x)(2ν −m) + ⌊
w1 + ρ

m
⌋(α− 2)ν+x((α + 1)ν −m) + ρ

≥ (q − x)(2ν −m) + (α − 2)ν+x((α+ 1)ν −m) + ρ

= ν(2q − 2x+ α− 2 + xα+ x)− qm+ ρ

= ν(2q + (α− 2)(x+ 1) + x)− qm+ ρ

≥ ν(2q + α− 3)− qm+ ρ (x ≥ −1)

= q(ν(2 +
α− 3

q
)−m) + ρ

≥ 0.

Using Proposition 2.3, we get that S satisfies Wilf’s Conjecture. �

Example 3.3 Consider the following numerical semigroup S =< 19, 21, 23, 25, 27, 28>. Note that 3ν < m. We
have w1 = 21, w14 = 56 and wm−1 = 83 i.e. wm−1 ≥ w1+w14. In addition, (2+ α−3

q
)ν = (2+ 14−3

4 )6 ≥ 19 = m.
Thus the conditions of Theorem 3.2 are valid, so S satisfies Wilf’s Conjecture.

In the following we shall deduce some cases where Wilf’s Conjecture holds. We start with the following technical
Lemma.

Lemma 3.4 Let S be a numerical semigroup with multiplicity m and embedding dimension ν. Let w0 = 0 <

w1 < w2 < . . . < wm−1 be the elements of Ap(S,m). If m − ν > (α2 ) =
α(α− 1)

2
for some α ∈ N

∗, then

wm−1 ≥ w1 + wα.

Proof. Recall that an element x of the Apéry set of S belongs to min(Ap(S,m)) if and only if x 6= wi+wj for all
wi, wj ∈Ap(S,m) \ {0}, in particular m− ν = |Ap(S,m)\min(Ap(S,m))|. Suppose by the way of contradiction
that wm−1 < w1+wα, and let w ∈ Ap(S,m)\min(Ap(S,m)). Then w ≤ wm−1 and w = wi+wj for some wi, wj ∈
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Ap(S,m)\{0}. Hence, w ≤ wm−1 < w1+wα. Thus the only possible values for w are {wi+wj ; 1 ≤ i ≤ j ≤ α−1}.

Therefore, m− ν ≤ (α2 ) =
α(α − 1)

2
, which is impossible. Hence, wm−1 ≥ w1 + wα. �

Next we will deduce Wilf’s Conjecture for numerical Semigroups with m− ν > α(α−1)
2 and (2 + α−3

q
)ν ≥ m. It

will be used later to show that the conjecture holds for those with (2 + 1
q
)ν ≥ m, and inorder also to cover the

result in [9] saying that the conjecture is true for 2ν ≥ m.

Corollary 3.5 Let S be a numerical semigroup with multiplicity m, embedding dimension ν and conductor

f + 1 = qm− ρ for some q ∈ N, 0 ≤ ρ ≤ m− 1. Suppose that m− ν > (α2 ) =
α(α−1)

2 for some 1 < α < m− 1.
If (2 + α−3

q
)ν ≥ m, then S satisfies Wilf’s Conjecture.

Proof. It follows from Lemma 3.4 that if m− ν > α(α−1)
2 , then wm−1 ≥ w1 + wα. Now use Theorem 3.2. �

As a direct consequence of Theorem 3.2, we get the following Corollary.

Corollary 3.6 Let S be a numerical semigroup with a given multiplicity m and conductor f + 1 = qm− ρ for
some q ∈ N, 0 ≤ ρ ≤ m− 1. Let w0 = 0 < w1 < . . . < wm−1 be the elements of Ap(S,m). If wm−1 ≥ w1 + wα

for some 1 < α < m− 1 and m ≤ 8 + 4(α−3
q

) then S satisfies Wilf’s Conjecture.

Proof. By Theorem 3.2, we may assume that (2+ α−3
q

)ν < m. Therefore, ν < qm

2q+α−3 ≤ 8q+α−12
2q+α−3 . Hence ν < 4,

consequently S satisfies Wilf’s Conjecture ([3]). �

In the following Lemma, we will show that Wilf’s Conjecture holds for numerical semigroups with m− ν ≤ 3.
This will enable us later to prove the conjecture for numerical semigroups with (2 + 1

q
)ν ≥ m and cover the

result in [9] saying that the conjecture is true for 2ν ≥ m.

Lemma 3.7 Let S be a numerical Semigroup with multiplicity m and embedding dimension ν. If m− ν ≤ 3,
then S satisfies Wilf’s Conjecture.

Proof. We my assume that ν ≥ 4 ( ν ≤ 3 is solved [3]). We are going to show that S satisfies Wilf’s Conjecture
by means of Proposition 2.3.

i) If m− ν = 1, then we may assume that m = ν + 1 ≥ 5. By taking α = 1 in (3.2), we get
m−1
∑

j=2

(⌊
wj + ρ

m
⌋ − ⌊

wj−1 + ρ

m
⌋)(jν −m) ≥ (⌊

wm−1 + ρ

m
⌋ − ⌊

w1 + ρ

m
⌋)(2ν −m). Hence,

m−1
∑

j=1

(⌊
wj + ρ

m
⌋ − ⌊

wj−1 + ρ

m
⌋)(jν −m) + ρ = (⌊

w1 + ρ

m
⌋ − ⌊

w0 + ρ

m
⌋)(ν −m)

+

m−1
∑

j=2

(⌊
wj + ρ

m
⌋ − ⌊

wj−1 + ρ

m
⌋)(jν −m) + ρ

≥ ⌊
w1 + ρ

m
⌋(ν −m)

+(⌊
wm−1 + ρ

m
⌋ − ⌊

w1 + ρ

m
⌋)(2ν −m) + ρ

= ⌊
w1 + ρ

m
⌋(ν −m+ (2ν −m)− (2ν −m))

+(⌊
wm−1 + ρ

m
⌋ − ⌊

w1 + ρ

m
⌋)(2ν −m) + ρ

7



= ⌊
w1 + ρ

m
⌋(3ν − 2m)

+(⌊
wm−1 + ρ

m
⌋ − ⌊

w1 + ρ

m
⌋ − ⌊

w1 + ρ

m
⌋)(2ν −m) + ρ

= ⌊
w1 + ρ

m
⌋(m− 3)

+(⌊
wm−1 + ρ

m
⌋ − ⌊

w1 + ρ

m
⌋ − ⌊

w1 + ρ

m
⌋)(m− 2) + ρ.

Since m − ν = 1 > 0 = 1(0)
2 , then by Lemma 3.4, it follows that wm−1 ≥ w1 + w1. Consequently, by

Lemma 3.1, we have ⌊wm−1+ρ

m
⌋ ≥ ⌊w1+ρ

m
⌋+ ⌊w1+ρ

m
⌋ − 1.

• If ⌊wm−1+ρ

m
⌋− ⌊w1+ρ

m
⌋− ⌊w1+ρ

m
⌋ = −1. Then by Lemma 3.1, we have ⌊w1+ρ

m
⌋ ≥ 2. Since m ≥ 5, then

m−1
∑

j=1

(⌊
wj + ρ

m
⌋ − ⌊

wj−1 + ρ

m
⌋)(jν −m) + ρ ≥ 2(m− 3)− (m− 2) + ρ ≥ 0.

• If ⌊wm−1+ρ

m
⌋ − ⌊w1+ρ

m
⌋ − ⌊w1+ρ

m
⌋ ≥ 0. Since m ≥ 5, then

m−1
∑

j=1

(⌊
wj + ρ

m
⌋ − ⌊

wj−1 + ρ

m
⌋)(jν −m) + ρ ≥ (m− 3) + ρ ≥ 0.

Using Proposition 2.3, we get that S satisfies Wilf’s Conjecture if m− ν = 1.

ii) If m− ν ∈ {2, 3}. By taking α = 2 in (3.2), we get
m−1
∑

j=3

(⌊
wj + ρ

m
⌋ − ⌊

wj−1 + ρ

m
⌋)(jν −m) ≥ (⌊

wm−1 + ρ

m
⌋ − ⌊

w2 + ρ

m
⌋)(3ν −m). Hence,

(3.3)

m−1
∑

j=1

(⌊
wj + ρ

m
⌋ − ⌊

wj−1 + ρ

m
⌋)(jν −m) + ρ = (⌊

w1 + ρ

m
⌋ − ⌊

w0 + ρ

m
⌋)(ν −m)

+(⌊
w2 + ρ

m
⌋ − ⌊

w1 + ρ

m
⌋)(2ν −m)

+

m−1
∑

j=3

(⌊
wj + ρ

m
⌋ − ⌊

wj−1 + ρ

m
⌋)(jν −m) + ρ

≥ ⌊
w1 + ρ

m
⌋(−ν) + ⌊

w2 + ρ

m
⌋(2ν −m)

+(⌊
wm−1 + ρ

m
⌋ − ⌊

w2 + ρ

m
⌋)(3ν −m) + ρ

= ⌊
w1 + ρ

m
⌋(−ν + (3ν −m)− (3ν −m))

+⌊
w2 + ρ

m
⌋(2ν −m)

+(⌊
wm−1 + ρ

m
⌋ − ⌊

w2 + ρ

m
⌋)(3ν −m) + ρ

= ⌊
w1 + ρ

m
⌋(2ν −m) + ⌊

w2 + ρ

m
⌋(2ν −m)

+(⌊
wm−1 + ρ

m
⌋ − ⌊

w1 + ρ

m
⌋ − ⌊

w2 + ρ

m
⌋)(3ν −m)

+ρ.

Since m − ν ∈ {2, 3} > 1, by Lemma 3.4, we have wm−1 ≥ w1 + w2. It follows from Lemma 3.1 that
⌊wm−1+ρ

m
⌋ ≥ ⌊w1+ρ

m
⌋+ ⌊w2+ρ

m
⌋ − 1.
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• If m− ν = 2. then we may assume that m = ν + 2 ≥ 6. Now (3.3) gives,

m−1
∑

j=1

(⌊
wj + ρ

m
⌋ − ⌊

wj−1 + ρ

m
⌋)(jν −m) + ρ ≥ ⌊

w1 + ρ

m
⌋(m− 4) + ⌊

w2 + ρ

m
⌋(m− 4)

+(⌊
wm−1 + ρ

m
⌋ − ⌊

w1 + ρ

m
⌋ − ⌊

w2 + ρ

m
⌋)(2m− 6) + ρ.

– If ⌊wm−1+ρ

m
⌋−⌊w1+ρ

m
⌋−⌊w2+ρ

m
⌋ = −1. Then by Lemma 3.1 we have, ⌊w1+ρ

m
⌋ ≥ 2 and ⌊w2+ρ

m
⌋ ≥ 2.

Since m ≥ 6, then
m−1
∑

j=1

(⌊
wj + ρ

m
⌋ − ⌊

wj−1 + ρ

m
⌋)(jν −m) + ρ ≥ 2(m− 4) + 2(m− 4)− (2m− 6) + ρ ≥ 0.

– If ⌊wm−1+ρ

m
⌋ − ⌊w1+ρ

m
⌋ − ⌊w2+ρ

m
⌋ ≥ 0. Since m ≥ 6, then

m−1
∑

j=1

(⌊
wj + ρ

m
⌋ − ⌊

wj−1 + ρ

m
⌋)(jν −m) + ρ ≥ (m− 4) + (m− 4) + ρ ≥ 0.

Using Proposition 2.3, we get that S satisfies Wilf’s Conjecture if m− ν = 2.

• If m− ν = 3, then we may assume that m = ν + 3 ≥ 7. Now (3.3) gives,
m−1
∑

j=1

(⌊
wj + ρ

m
⌋ − ⌊

wj−1 + ρ

m
⌋)(jν −m) + ρ ≥ ⌊

w1 + ρ

m
⌋(m− 6) + ⌊

w2 + ρ

m
⌋(m− 6)

+(⌊
wm−1 + ρ

m
⌋ − ⌊

w1 + ρ

m
⌋ − ⌊

w2 + ρ

m
⌋)(2m− 9) + ρ.

– If ⌊wm−1+ρ

m
⌋ − ⌊w1+ρ

m
⌋ − ⌊w2+ρ

m
⌋ = −1. Then by Lemma 3.1 we have, ⌊w1+ρ

m
⌋ ≥ 2, ⌊w2+ρ

m
⌋ ≥

2 and ρ ≥ 1. Since m ≥ 7, then
m−1
∑

j=1

(⌊
wj + ρ

m
⌋ − ⌊

wj−1 + ρ

m
⌋)(jν −m) + ρ ≥ 2(m− 6) + 2(m− 6)− (2m− 9) + 1 ≥ 0.

– If ⌊wm−1+ρ

m
⌋ − ⌊w1+ρ

m
⌋ − ⌊w2+ρ

m
⌋ ≥ 0. Since m ≥ 7, then

m−1
∑

j=1

(⌊
wj + ρ

m
⌋ − ⌊

wj−1 + ρ

m
⌋)(jν −m) + ρ ≥ (m− 6) + (m− 6) + ρ ≥ 0.

Using Proposition 2.3, we get that S satisfies Wilf’s Conjecture if m− ν = 3.

Thus Wilf’s Conjecture holds if m− ν ≤ 3. �

The next Corollary covers the result of Sammartano for numerical semigroups with 2ν ≥ m ([9]) using Corollary
3.5 and Lemma 3.7.

Corollary 3.8 Let S be a numerical semigroup with multiplicity m and embedding dimension ν. If 2ν ≥ m,
then S satisfies Wilf’s Conjecture.

Proof. If m− ν > 3 and 2ν ≥ m, then by Corollary 3.5 Wilf’s Conjecture holds. If m− ν ≤ 3, by Lemma 3.7,
S satisfies Wilf’s Conjecture. �

In the following Corollary we will deduce Wilf’s Conjecture for numerical semigroups with m− ν = 4. This will
enable us later to prove the conjecture for those with (2 + 1

q
)ν ≥ m.

Corollary 3.9 Let S be a numerical semigroup with multiplicity m and embedding dimension ν. If m− ν = 4,
then S satisfies Wilf’s Conjecture.
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Proof. Since Wilf’s conjecture holds for ν ≤ 3 ([3]), then we may assume that ν ≥ 4. Hence, ν ≥ m − ν.
Consequently, 2ν ≥ m. Hence, S satisfies Wilf’s Conjecture. �

The following technical Lemma will be used through the paper.

Lemma 3.10 Let S be a numerical semigroup with multiplicity m and embedding dimension ν. Let w0 = 0 <

w1 < . . . < wm−1 be the elements of Ap(S,m). If m− ν ≥ (α2 )− 1 = α(α−1)
2 − 1 for some 3 ≤ α ≤ m− 2, then

wm−1 ≥ w1 + wα or wm−1 ≥ wα−2 + wα−1.

Proof. Suppose by the way of contradiction that wm−1 < w1 + wα and wm−1 < wα−2 + wα−1. Let
w ∈Ap(S,m)\min(Ap(S,m)), then w ≤ wm−1 and w = wi + wj for some wi, wj ∈Ap(S,m) \ {0}. In this case,
the only possible values of w are {wi + wj ; 1 ≤ i ≤ j ≤ α − 1} \ {wα−2 + wα−1, wα−1 + wα−1}. Consequently,

m−ν = |Ap(S,m)\min(Ap(S,m))| ≤ α(α−1)
2 −2. But α(α−1)

2 −2 < α(α−1)
2 −1, which contradicts the hypothesis.

Hence, wm−1 ≥ w1 + wα or wm−1 ≥ wα−2 + wα−1. �

In the next theorem, we will show that Wilf’s Conjecture holds for numerical semigroups with m− ν = 5.

Theorem 3.11 Let S be a numerical semigroup with multiplicity m and embedding dimension ν. If m−ν = 5,
then S satisfies Wilf’s Conjecture.

Proof. Let m − ν = 5. Since Wilf’s Conjecture holds for 2ν ≥ m, then we may assume that 2ν < m. This
implies that ν < 5. Since the case ν ≤ 3 is known ([3]), then we shall assume that ν = 4. This also implies that
m = 9.

Since m− ν = 5 = 4(3)
2 − 1, by Lemma 3.10, it follows that w8 ≥ w2 + w3 or w8 ≥ w1 + w4.

i) If w8 ≥ w2 + w3. By taking α = 3 in (3.2) (m = 9, ν = 4), we get

8
∑

j=4

(⌊
wj + ρ

9
⌋ − ⌊

wj−1 + ρ

9
⌋)(4j − 9) ≥ (⌊

w8 + ρ

9
⌋ − ⌊

w3 + ρ

9
⌋)(16− 9) = (⌊

w8 + ρ

9
⌋ − ⌊

w3 + ρ

9
⌋)(7).

Hence,

(3.4)

8
∑

j=1

(⌊
wj + ρ

9
⌋ − ⌊

wj−1 + ρ

9
⌋)(4j − 9) + ρ = (⌊

w1 + ρ

9
⌋ − ⌊

w0 + ρ

9
⌋)(−5)

+(⌊
w2 + ρ

9
⌋ − ⌊

w1 + ρ

9
⌋)(−1)

+(⌊
w3 + ρ

9
⌋ − ⌊

w2 + ρ

9
⌋)(3)

+
8

∑

j=4

(⌊
wj + ρ

9
⌋ − ⌊

wj−1 + ρ

9
⌋)(4j − 9) + ρ

≥ ⌊
w1 + ρ

9
⌋(−4) + ⌊

w2 + ρ

9
⌋(−4)+⌊

w3 + ρ

9
⌋(3)

+(⌊
w8 + ρ

9
⌋ − ⌊

w3 + ρ

9
⌋)(7) + ρ

≥

(

⌊
w2 + ρ

m
⌋((

−3

4
)4) + ⌊

w3 + ρ

9
⌋((

−1

4
)4)

)

+⌊
w2 + ρ

9
⌋(−4)+⌊

w3 + ρ

9
⌋(3)

+(⌊
w8 + ρ

9
⌋ − ⌊

w3 + ρ

9
⌋)(7) + ρ
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= ⌊
w2 + ρ

9
⌋(−7) + ⌊

w3 + ρ

9
⌋(2)

+(⌊
w8 + ρ

9
⌋ − ⌊

w3 + ρ

9
⌋)(7) + ρ

= ⌊
w3 + ρ

9
⌋(2)

+(⌊
w8 + ρ

9
⌋ − ⌊

w2 + ρ

9
⌋ − ⌊

w3 + ρ

9
⌋)(7) + ρ.

Since w8 ≥ w2 + w3, by Lemma 3.1, it follows that ⌊w8+ρ

9 ⌋ ≥ ⌊w2+ρ

9 ⌋+ ⌊w3+ρ

9 ⌋ − 1.

• If ⌊w8+ρ
9 ⌋ − ⌊w2+ρ

9 ⌋ − ⌊w3+ρ
9 ⌋ ≥ 0, then (3.4) gives

8
∑

j=1

(⌊
wj + ρ

9
⌋ − ⌊

wj−1 + ρ

9
⌋)(4j − 9) + ρ ≥ 0.

• If ⌊w8+ρ
9 ⌋ − ⌊w2+ρ

9 ⌋ − ⌊w3+ρ
9 ⌋ = −1. By Lemma 3.1, we have ρ ≥ 1.

Since for q ≤ 3 Wilf’s Conjecture is solved ([4], [6]), then may assume that q ≥ 4. Since ⌊w2+ρ

9 ⌋ ≤

⌊w3+ρ

9 ⌋ and ⌊w2+ρ

9 ⌋+ ⌊w3+ρ

9 ⌋ = ⌊w8+ρ

9 ⌋+ 1 = q + 1, in this case it follows that ⌊w3+ρ

9 ⌋ ≥ 3.

Now (3.4) gives,

8
∑

j=1

(⌊
wj + ρ

9
⌋ − ⌊

wj−1 + ρ

9
⌋)(4j −m) + ρ ≥ 3(2)− 7 + 1 ≥ 0.

Using Proposition 2.3, we get that S satisfies Wilf’s Conjecture in this case.

ii) If w8 ≥ w1 + w4. We may assume that w8 < w2 + w3, since otherwise we are back to case 1. Hence, the
possible values of w ∈ Ap(S, 9)\min(Ap(S, 9)) are {w1 + wj ; 1 ≤ j ≤ 7} ∪ {w2 + w2}.

• Recall that an element x of the Apéry set of S belongs to max(Ap(S,m)) if and only if wi 6= x+wj

for all wi, wj ∈Ap(S,m)\{0}. If Ap(S, 9)\min(Ap(S, 9)) ⊆ {w1+wj ; 1 ≤ j ≤ 7}, then there exists at
least five elements in Ap(S, 9) that are not maximal, hence t(S) = |{max(Ap(S, 9))−9}| ≤ 3 = ν−1.
Consequently, S satisfies Wilf’s Conjecture ([3] Proposition 2.3).

• If w2 + w2 ∈ Ap(S, 9)\min(Ap(S, 9)), then w8 ≥ w2 + w2. By Lemma 3.1 we have ⌊w8+ρ
9 ⌋ ≥

2⌊w2+ρ
9 ⌋ − 1. In particular,

(3.5) ⌊
w2 + ρ

9
⌋ ≤

q + 1

2
.

By taking α = 4 in (3.2) (m = 9, ν = 4), we get
8

∑

j=5

(⌊
wj + ρ

9
⌋ − ⌊

wj−1 + ρ

9
⌋)(4j − 9) ≥ (⌊

w8 + ρ

9
⌋ − ⌊

w4 + ρ

9
⌋)(11). Now using (3.5), we get

(3.6)

8
∑

j=1

(⌊
wj + ρ

9
⌋ − ⌊

wj−1 + ρ

9
⌋)(4j − 9) + ρ = (⌊

w1 + ρ

9
⌋ − ⌊

w0 + ρ

9
⌋)(−5)

+(⌊
w2 + ρ

9
⌋ − ⌊

w1 + ρ

9
⌋)(−1)

+(⌊
w3 + ρ

9
⌋ − ⌊

w2 + ρ

m
⌋)(3)

+(⌊
w4 + ρ

9
⌋ − ⌊

w3 + ρ

9
⌋)(7)

+

8
∑

j=5

(⌊
wj + ρ

9
⌋ − ⌊

wj−1 + ρ

9
⌋)(4j − 9) + ρ
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≥ ⌊
w1 + ρ

9
⌋(−4) + ⌊

w2 + ρ

9
⌋(−4) + ⌊

w3 + ρ

9
⌋(−4)

+⌊
w4 + ρ

9
⌋(7)+(⌊

w8 + ρ

9
⌋ − ⌊

w4 + ρ

9
⌋)(11) + ρ

≥ ⌊
w1 + ρ

9
⌋(−4) + (

q + 1

2
)(−4) + ⌊

w4 + ρ

9
⌋(−4)

+⌊
w4 + ρ

9
⌋(7)+(⌊

w8 + ρ

9
⌋ − ⌊

w4 + ρ

9
⌋)(11) + ρ

= ⌊
w1 + ρ

9
⌋(−4)− 2(q + 1) + ⌊

w4 + ρ

9
⌋(3)

+(⌊
w8 + ρ

9
⌋ − ⌊

w4 + ρ

9
⌋)(11) + ρ

= ⌊
w1 + ρ

9
⌋(−4 + 11− 11)− 2(q + 1)

+⌊
w4 + ρ

9
⌋(3) + (⌊

w8 + ρ

9
⌋ − ⌊

w4 + ρ

9
⌋)(11) + ρ

= ⌊
w1 + ρ

9
⌋(7)− 2(q + 1) + ⌊

w4 + ρ

9
⌋(3)

+(⌊
w8 + ρ

9
⌋ − ⌊

w4 + ρ

9
⌋ − ⌊

w1 + ρ

9
⌋)(11) + ρ

= (⌊
w1 + ρ

9
⌋+ ⌊

w4 + ρ

9
⌋)(3) + ⌊

w1 + ρ

9
⌋(4)− 2(q + 1)

+(⌊
w8 + ρ

9
⌋ − ⌊

w1 + ρ

9
⌋ − ⌊

w4 + ρ

9
⌋)(11) + ρ.

We have w8 ≥ w1 + w4, then by Lemma 3.1 ⌊w8+ρ

9 ⌋ ≥ ⌊w1+ρ

9 ⌋+ ⌊w4+ρ

9 ⌋ − 1.

– If ⌊w8+ρ

9 ⌋ − ⌊w1+ρ

9 ⌋ − ⌊w4+ρ

9 ⌋ ≥ 0. Let x = ⌊w8+ρ

9 ⌋ − ⌊w1+ρ

9 ⌋ − ⌊w4+ρ

9 ⌋. Hence, x ≥ 0 and

⌊w1+ρ

9 ⌋+ ⌊w4+ρ

9 ⌋ = q − x. Then (3.6) gives,
8

∑

j=1

(⌊
wj + ρ

9
⌋ − ⌊

wj−1 + ρ

9
⌋)(4j − 9) + ρ ≥ (q − x)(3) + 4− 2(q + 1) + 11x+ ρ = q + 8x+ 2 + ρ ≥ 0.

– If ⌊w8+ρ

9 ⌋ − ⌊w1+ρ

9 ⌋ − ⌊w4+ρ

9 ⌋ = −1. Then ⌊w1+ρ

m
⌋ + ⌊w4+ρ

9 ⌋ = q + 1. By Lemma 3.1, we have

⌊w1+ρ

9 ⌋ ≥ 2 and ρ ≥ 1. Since q ≥ 1, then (3.6) gives,
8

∑

j=1

(⌊
wj + ρ

9
⌋ − ⌊

wj−1 + ρ

9
⌋)(4j − 9) + ρ ≥ (q + 1)(3) + 8− 2(q + 1)− 11 + 1 = q − 1 ≥ 0.

Using Proposition 2.3, we get that S satisfies Wilf’s Conjecture in this case.

Thus, Wilf’s Conjecture holds if m− ν = 5. �

In the next corollary, we will deduce the conjecture for m = 9.

Corollary 3.12 If S is a numerical Semigroup with multiplicity m = 9, then S satisfies Wilf’s Conjecture.

Proof. By Lemma 3.7, Corollary 3.9 and Theorem 3.11, we may assume that m− ν > 5, hence ν < m− 5 = 4.
By ([3]) S satisfies Wilf’s Conjecture. �

The following Lemma will enable us later to show that Wilf’s Conjecture holds for numerical semigroups with
(2 + 1

q
)ν ≥ m.
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Lemma 3.13 Let S be a numerical Semigroup with multiplicity m, embedding dimension ν and conductor
f + 1 = qm − ρ for some q ∈ N, 0 ≤ ρ ≤ m − 1. If m − ν = 6 and (2 + 1

q
)ν ≥ m, then S satisfies Wilf’s

Conjecture.

Proof. Since m− ν = 6 ≥ 4(3)
2 − 1, by Lemma 3.10, it follows that wm−1 ≥ w1 + w4 or wm−1 ≥ w2 + w3.

i) If wm−1 ≥ w1 + w4. By hypothesis (2 + 1
q
)ν ≥ m and Theorem 3.2 Wilf’s Conjecture holds in this case.

ii) If wm−1 ≥ w2 +w3. We may assume that wm−1 < w1 +w4, since otherwise we are back to case 1. Hence,
Ap(S,m)\min(Ap(S,m)) = {w1 + w1, w1 + w2, w1 + w3, w2 + w2, w2 + w3, w3 + w3}.

By taking α = 3 in (3.2), we get

m−1
∑

j=4

(⌊
wj + ρ

m
⌋ − ⌊

wj−1 + ρ

m
⌋)(jν −m) ≥ (⌊

wm−1 + ρ

m
⌋ − ⌊

w3 + ρ

m
⌋)(4ν −m).

Hence,

(3.7)

m−1
∑

j=1

(⌊
wj + ρ

m
⌋ − ⌊

wj−1 + ρ

m
⌋)(jν −m) + ρ = (⌊

w1 + ρ

m
⌋ − ⌊

w0 + ρ

m
⌋)(ν −m)

+(⌊
w2 + ρ

m
⌋ − ⌊

w1 + ρ

m
⌋)(2ν −m)

+(⌊
w3 + ρ

m
⌋ − ⌊

w2 + ρ

m
⌋)(3ν −m)

+

m−1
∑

j=4

(⌊
wj + ρ

m
⌋ − ⌊

wj−1 + ρ

m
⌋)(jν −m) + ρ

≥ ⌊
w1 + ρ

m
⌋(−ν)+⌊

w2 + ρ

m
⌋(−ν)

+⌊
w3 + ρ

m
⌋(3ν −m)

+(⌊
wm−1 + ρ

m
⌋ − ⌊

w3 + ρ

m
⌋)(4ν −m) + ρ

≥
(

⌊
w2 + ρ

m
⌋(
−ν

2
) + ⌊

w3 + ρ

m
⌋(
−ν

2
)
)

+⌊
w2 + ρ

m
⌋(−ν)+⌊

w3 + ρ

m
⌋(3ν −m)

+(⌊
wm−1 + ρ

m
⌋ − ⌊

w3 + ρ

m
⌋)(4ν −m) + ρ

= ⌊
w2 + ρ

m
⌋(
−3ν

2
) + ⌊

w3 + ρ

m
⌋(
5ν

2
−m)

+(⌊
wm−1 + ρ

m
⌋ − ⌊

w3 + ρ

m
⌋)(4ν −m) + ρ

= ⌊
w2 + ρ

m
⌋(
−3ν

2
+ (4ν −m)− (4ν −m))

+⌊
w3 + ρ

m
⌋(
5ν

2
−m)

+(⌊
wm−1 + ρ

m
⌋ − ⌊

w3 + ρ

m
⌋)(4ν −m) + ρ

= ⌊
w2 + ρ

m
⌋(
5ν

2
−m) + ⌊

w3 + ρ

m
⌋(
5ν

2
−m)

+(⌊
wm−1 + ρ

m
⌋ − ⌊

w2 + ρ

m
⌋ − ⌊

w3 + ρ

m
⌋)(4ν −m)

+ρ

13



= ⌊
w2 + ρ

m
⌋(
3ν

2
− 6) + ⌊

w3 + ρ

m
⌋(
3ν

2
− 6)

+(⌊
wm−1 + ρ

m
⌋ − ⌊

w2 + ρ

m
⌋ − ⌊

w3 + ρ

m
⌋)(3ν − 6)

+ρ.

We have wm−1 ≥ w2 + w3, by Lemma 3.1, it follows that ⌊wm−1+ρ

m
⌋ ≥ ⌊w2+ρ

m
⌋+ ⌊w3+ρ

m
⌋ − 1.

• If ⌊wm−1+ρ

m
⌋ − ⌊w2+ρ

m
⌋ − ⌊w3+ρ

m
⌋ ≥ 0, using ν ≥ 4 in (3.7) (ν ≤ 3 is solved [3]), we get

m−1
∑

j=1

(⌊
wj + ρ

m
⌋ − ⌊

wj−1 + ρ

m
⌋)(jν −m) + ρ ≥ 0.

• If ⌊wm−1+ρ

m
⌋ − ⌊w2+ρ

m
⌋ − ⌊w3+ρ

m
⌋ = −1. Then,

(3.8) ⌊
w2 + ρ

m
⌋+ ⌊

w3 + ρ

m
⌋ = q + 1.

We have w3 + w3 ∈Ap(S,m)\min(Ap(S,m)), then wm−1 ≥ w3 + w3. By Lemma 3.1, we have
⌊wm−1+ρ

m
⌋ ≥ 2⌊w3+ρ

m
⌋ − 1. In particular,

(3.9) ⌊
w3 + ρ

m
⌋ ≤

q + 1

2
.

Since Wilf’s Conjecture holds for q ≤ 3 ([4], [6]), so we may assume that q ≥ 4. Since ⌊w2+ρ
m

⌋ ≤

⌊w3+ρ

m
⌋, by (3.8) and (3.9), it follows that ⌊w2+ρ

m
⌋ = ⌊w3+ρ

m
⌋ = q+1

2 , in particular q is odd, so we have
to assume that q ≥ 5. Now using Now using (3.8), q ≥ 5 and the hypothesis (2 + 1

q
)ν ≥ m = ν + 6

in (3.7), we get

m−1
∑

j=1

(⌊
wj + ρ

m
⌋ − ⌊

wj−1 + ρ

m
⌋)(jν −m) + ρ ≥ (⌊

w2 + ρ

m
⌋+ ⌊

w3 + ρ

m
⌋)(

3ν

2
− 6)

+(⌊
wm−1 + ρ

m
⌋ − ⌊

w2 + ρ

m
⌋ − ⌊

w3 + ρ

m
⌋)(3ν − 6) + ρ

= (q + 1)(
3ν

2
− 6)− (3ν − 6) + ρ

= ν(
3q

2
+

3

2
− 3)− 6q + ρ

≥ ν(
3q

2
−

3

2
)− qν − ν + ρ (6q ≤ qν + ν)

= ν(
q

2
−

5

2
) + ρ ≥ 0.

Using Proposition 2.3, we get that S satisfies Wilf’s Conjecture in this case.

Thus, Wilf’s Conjecture holds if m− ν = 6 and (2 + 1
q
)ν ≥ m. �

Next we will generalize a result for Sammartano ([9]) and show that Wilf’s Conjecture holds for numerical
semigroups satisfying (2+ 1

q
)ν ≥ m, using Lemma 3.7, Corollary 3.9, Theorem 3.11, Lemma 3.13 and Corollary

3.5.
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Theorem 3.14 Let S be a numerical semigroup with multiplicity m, embedding dimension ν and conductor
f + 1 = qm− ρ for some q ∈ N, 0 ≤ ρ ≤ m− 1. If (2 + 1

q
)ν ≥ m, then S satisfies Wilf’s Conjecture.

Proof.

• If m− ν ≤ 3, then by Lemma 3.7 Wilf’s Conjecture holds.

• If m− ν = 4, then by Corollary 3.9 Wilf’s Conjecture holds.

• If m− ν = 5, then by Theorem 3.11 Wilf’s Conjecture holds.

• If m− ν = 6 and (2 + 1
q
)ν ≥ m, then by Lemma 3.13 Wilf’s Conjecture holds.

• If m− ν > 6 and (2 + 1
q
)ν ≥ m, then by Corollary 3.5 Wilf’s Conjecture holds. �

Example 3.15 Consider the following numerical semigroup S =< 13, 15, 17, 19, 21, 27 >. Note that 2ν < m.
We have (2 + 1

q
)ν = (2 + 1

4 )6 ≥ 13 = m. Thus the conditions of Theorem 3.14 are valid, so S satisfies Wilf’s
Conjecture.

Corollary 3.16 Let S be a numerical semigroup with multiplicity m and conductor f + 1 = qm− ρ for some
q ∈ N, 0 ≤ ρ ≤ m− 1. If m ≤ 8 + 4

q
, then S satisfies Wilf’s Conjecture.

Proof. If ν < 4, then S satisfies Wilf’s Conjecture ([3]). Hence, we can suppose that ν ≥ 4. Thus, (2 + 1
q
)ν ≥

(2 + 1
q
)4 ≥ m. By using Theorem 3.14 S satisfies Wilf’s Conjecture . �

4 Numerical semigroups with wm−1 ≥ wα−1 + wα and (α+3
3 )ν ≥ m

In this section, we will show that if S is a numerical Semigroup such that wm−1 ≥ wα−1+wα and (α+3
3 )ν ≥ m,

then S satisfies Wilf’s Conjecture.

Theorem 4.1 Let S be a numerical semigroup with multiplicity m and embedding dimension ν. Let w0 = 0 <
w1 < w2 < . . . < wm−1 be the elements of Ap(S,m). Suppose that wm−1 ≥ wα−1+wα for some 1 < α < m−1.
If (α+3

3 )ν ≥ m, then S satisfies Wilf’s Conjecture.

Proof. We may assume that ρ ≥ (3−q)αm
2α+6 . Indeed, if 0 ≤ ρ < (3−q)αm

2α+6 , then q < 3 and Wilf’s conjecture holds
for this case ([6]). We are going to show that S satisfies Wilf’s Conjecture by means of Proposition 2.3. We have,

α
∑

j=1

(⌊
wj + ρ

m
⌋ − ⌊

wj−1 + ρ

m
⌋)(jν −m) =

α
∑

j=1

⌊
wj + ρ

m
⌋(jν −m)−

α
∑

j=1

⌊
wj−1 + ρ

m
⌋(jν −m)

=

α
∑

j=1

⌊
wj + ρ

m
⌋(jν −m)−

α−1
∑

j=0

⌊
wj + ρ

m
⌋((j + 1)ν −m)

= ⌊
wα + ρ

m
⌋(αν −m)− ⌊

w0 + ρ

m
⌋(ν −m)−

α−1
∑

j=1

⌊
wj + ρ

m
⌋ν

= ⌊
wα + ρ

m
⌋(αν −m)− ⌊

wα−1 + ρ

m
⌋ν −

α−2
∑

j=1

⌊
wj + ρ

m
⌋ν

≥ ⌊
wα + ρ

m
⌋(αν −m)− ⌊

wα−1 + ρ

m
⌋ν −

α−2
∑

j=1

(

⌊wα+ρ

m
⌋+ ⌊wα−1+ρ

m
⌋

2

)

ν

= ⌊
wα + ρ

m
⌋(αν −m)− ⌊

wα−1 + ρ

m
⌋ν − (⌊

wα + ρ

m
⌋+ ⌊

wα−1 + ρ

m
⌋)
(α− 2)ν

2

= ⌊
wα + ρ

m
⌋((

α+ 2

2
)ν −m)− ⌊

wα−1 + ρ

m
⌋(
αν

2
).
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By (3.2), we have

m−1
∑

j=α+1

(⌊
wj + ρ

m
⌋ − ⌊

wj−1 + ρ

m
⌋)(jν −m) ≥ (⌊

wm−1 + ρ

m
⌋ − ⌊

wα + ρ

m
⌋)((α+ 1)ν −m).

Since wm−1 ≥ wα−1+wα, by Lemma 3.1, it follows that ⌊wm−1+ρ

m
⌋ ≥ ⌊wα−1+ρ

m
⌋+⌊wα+ρ

m
⌋−1. Let x = ⌊wm−1+ρ

m
⌋-

⌊wα−1+ρ

m
⌋− ⌊wα+ρ

m
⌋. Then, ⌊wα−1+ρ

m
⌋+ ⌊wα+ρ

m
⌋ = q− x and x ≥ −1. Now using ρ ≥ (3−q)αm

2α+6 and (α+3
3 )ν ≥ m,

we get

m−1
∑

j=1

(⌊
wj + ρ

m
⌋ − ⌊

wj−1 + ρ

m
⌋)(jν −m) + ρ ≥ ⌊

wα + ρ

m
⌋((

α+ 2

2
)ν −m)− ⌊

wα−1 + ρ

m
⌋(
αν

2
)

+(⌊
wm−1 + ρ

m
⌋ − ⌊

wα + ρ

m
⌋)((α + 1)ν −m) + ρ

= ⌊
wα−1 + ρ

m
⌋(
−αν

2
+ (α+ 1)ν −m− ((α+ 1)ν −m))

+⌊
wα + ρ

m
⌋((

α+ 2

2
)ν −m) + (⌊

wm−1 + ρ

m
⌋ − ⌊

wα + ρ

m
⌋)((α + 1)ν −m)

+ρ

= (⌊
wα−1 + ρ

m
⌋+ ⌊

wα + ρ

m
⌋)((

α + 2

2
)ν −m)

+(⌊
wm−1 + ρ

m
⌋ − ⌊

wα−1 + ρ

m
⌋ − ⌊

wα + ρ

m
⌋)((α + 1)ν −m) + ρ

= (q − x)((α+2
2 )ν −m) + x((α + 1)ν −m) + ρ

= ν(q + qα

2 + xα
2 )− qm+ ρ

≥ ν(q + qα

2 − α
2 )− qm+ (3−q)αm

2α+6

= ν(q + qα

2 − α
2 )−m( q(2α+6)+(q−3)α

2α+6 )

= ν(q + qα

2 − α
2 )−m( 3q

α+3 + 3qα
2(α+3) −

3α
2(α+3) )

= (q + qα

2 − α
2 )(

3
α+3 )((

α+3
3 )ν −m)

≥ 0.

Using Proposition 2.3, we get that S satisfies Wilf’s Conjecture. �

Example 4.2 Consider the following numerical semigroup S =< 22, 23, 25, 27, 29, 31, 33>. Note that 3ν < m.
We have w6 = 33, w7 = 46 and wm−1 = 87 and i.e. wm−1 ≥ w6 + w7. Moreover, (α+3

3 )ν = (7+3
3 )7 ≥ 22 = m,

thus the conditions of Theorem 4.1 are valid. Hence, S satisfies Wilf’s Conjecture. �

Th following Corollary 4.3 is an extension for Corollary 3.5 using Theorems 3.2 and 4.1.

Corollary 4.3 Let S be a numerical semigroup with multiplicity m and embedding dimension ν. Suppose that

m− ν ≥ α(α−1)
2 − 1 for some 7 ≤ α ≤ m− 2. If (2 + α−3

q
)ν ≥ m, then S satisfies Wilf’s Conjecture.

Proof. Since m − ν ≥ α(α−1)
2 − 1, then by Lemma 3.10 we have wm−1 ≥ w1 + wα or wm−1 ≥ wα−2 + wα−1.

Suppose that wm−1 ≥ w1 +wα. Since (2 + α−3
q

)ν ≥ m, by applying Theorem 3.2, S satisfies wilf’s Conjecture.

Now suppose that wm−1 ≥ wα−2 + wα−1. We may assume that q ≥ 4 (q ≤ 3 is solved [6], [4]). Then for α ≥ 7
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we have, (α−1+3
3 )ν ≥ (2 + α−3

q
)ν. Consequently, (α−1+3

3 )ν ≥ m. Now by applying Theorem 4.1, S satisfies
Wilf’s Conjecture. �

As a direct consequence of Theorem 4.1, we get the following Corollary.

Corollary 4.4 Let S be a numerical semigroup with multiplicity m and embedding dimension ν. Let w0 = 0 <
w1 < w2 < . . . < wm−1 be the elements of Ap(S,m). Suppose that wm−1 ≥ wα−1+wα for some 1 < α < m−1.

If m ≤ 4(α+3)
3 , then S satisfies Wilf’s Conjecture.

Proof. If ν < 4, then S satisfies Wilf’s Conjecture ([3]). Hence, we can suppose that ν ≥ 4. Thus, (α+3
3 )(ν) ≥

4(α+3)
3 ≥ m. By applying Theorem 4.1 S satisfies Wilf’s Conjecture. �
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