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Introduction and notations

Let N denote the set of natural numbers, including 0. A numerical semigroup S is an additive submonoid of (N, +) of finite complement in N, that is 0 ∈ S, if a, b ∈ S then a + b ∈ S and N \ S is a finite set. The elements of N \ S are called the gaps of S. The largest gap is denoted by f = f (S) =max(N \ S) and is called the Frobenius number of S. The smallest non zero element m = m(S) =min(S * ) is called the multiplicity of S and n = |{s ∈ S, s < f (S)}| is also denoted by n(S). Every numerical semigroup S is finitely generated, i.e. is of the form S =< g 1 , . . . , g ν >= Ng 1 + . . . + Ng ν for suitable unique coprime integers g 1 , . . . , g ν . The number of generators of S is denoted by ν = ν(S) and is called the embedding dimension of S. An integer x ∈ N \ S is called a pseudo-Frobenius number if x + S * ⊆ S.

The type of the semigroup, denoted by t(S) is the cardinality of set of pseudo-frobenius numbers. The Apéry set of S with respect to a ∈ S is defined as Ap(S, a) = {s ∈ S; s -a / ∈ S}.

The Diophantine Frobenius Problem, also called the Coin Problem, is to find the largest number f that cannot be written in the form n i=1 a i x i ; x i ∈ N for given coprime positive integers a 1 , • • • , a n . This problem is related to the theory of numerical semigroups in the following way: let S be the numerical semigroup generated by g 1 , . . . , g ν , then f is simply the largest integer not belonging to S. Hence the problem is to find a formula for f in terms of the set of generators of S. For ν = 2, the formula of f (< g 1 , g 2 >) is given by Sylvester ( [START_REF] Sylvester | Mathematical questions with their solutions[END_REF]), for ν ≥ 3 the problem is much harder. It has been proved in ( [START_REF] Ramírez-Alfonsín | Complexity of the Frobenius problem[END_REF]), that in general f (S) is not algebraic in the set of generators of S. In ( [START_REF] Wilf | A circle-of-lights algorithm for the "money-changing problem[END_REF]) 1978 H. S. Wilf proposed a lower bound for the number of generators of S in terms of the Frobenius number as follows: f (S) + 1 ≤ ν(S)n(S).

Although the problem has been considered by several authors (cf. [START_REF] Barucci | On propinquity of numerical semigroups and one-dimensional local Cohen Macaulay rings[END_REF], [START_REF] Bras-Amorós | Fibonacci-like behavior of the number of numerical semigroups of a given genus[END_REF], [START_REF] Dobbs | On a question of Wilf concerning numerical semigroups[END_REF], [START_REF] Eliahou | Wilf's Conjecture and Macaulay's theorem[END_REF], [START_REF] Fröberg | On numerical semigroups[END_REF], [START_REF] Kaplan | Counting numerical semigroups by genus and some cases of a question of Wilf[END_REF], [START_REF] Sammartano | Numerical semigroups with large embedding dimension satisfy Wilf's conjecture[END_REF] , [START_REF] Zhai | An asymptotic result concerning a question of Wilf[END_REF] ), only special cases have been solved and it remains wide open. In ( [START_REF] Dobbs | On a question of Wilf concerning numerical semigroups[END_REF]), D. Dobbs and G. Matthews proved Wilf's Conjecture for ν ≤ 3. In ( [START_REF] Kaplan | Counting numerical semigroups by genus and some cases of a question of Wilf[END_REF]) N. Kaplan proved it for f + 1 ≤ 2m and in ( [START_REF] Eliahou | Wilf's Conjecture and Macaulay's theorem[END_REF]) S. Eliahou extended Kaplan's work for f + 1 ≤ 3m.

This work is a generalisation of the case covered by A. Sammartano ([9]), who showed that Wilf's Conjecture holds for 2ν ≥ m and m ≤ 8, based on the idea of counting the elements of S in some intervals of length m. We use different intervals in order to get an equivalent form of Wilf's Conjecture and then to prove it in more cases. We also cover the case where 2ν ≥ m.

Here are few more details on the contents of this paper. Section 2 is devoted to give some notations that will enable us in the same section to give an equivalent form of Wilf's Conjecture. Section 3 is the heart of the paper. Let Ap(S, m) = {0 = w 0 < w 1 < • • • < w m-1 }. First, we show that Wilf's conjecture holds for numerical semigroups that satisfy w m-1 ≥ w 1 + w α and (2 + α-3 q )ν ≥ m for some 1 < α < m -1 where f + 1 = qm -ρ for some q ∈ N, 0 ≤ ρ ≤ m -1. Then we prove Wilf's Conjecture for numerical semigroups with m -ν ≤ 4 in order to cover the case where 2ν ≥ m, prove by Sammartano in ( [START_REF] Sammartano | Numerical semigroups with large embedding dimension satisfy Wilf's conjecture[END_REF]). We also show that a numerical semigroup with m -ν = 5 verify Wilf's Conjecture in order to prove the conjecture for m = 9. Finally, we show in this section, using the previous cases, that Wilf's conjecture holds for numerical semigroups with (2 + 1 q )ν ≥ m. In section 4 we prove Wilf's Conjecture for numerical semigroups with w m-1 ≥ w α-1 + w α and ( α+33 )ν ≥ m for some 1 < α < m -1.

A good reference on numerical semigroups is [START_REF] García-Sánchez | Numerical semigroups[END_REF].

Preliminaries

Let the notations be as in the introduction. For the sake of clarity we shall use the notations ν, f, n, ... for ν(S), f (S), n(S).... In this section we will introduce some notations and family of numbers that will enable us to give an equivalent form of Wilf's conjecture.

Definition. Let S be a numerical semigroup and let c = C(S) = f + 1 be the conductor of S. Denote by

q = ⌈ c m ⌉,
where ⌈x⌉ denote the smallest integer greater than or equal to x. Thus, qm ≥ c and c = qm -ρ with 0 ≤ ρ < m.

Given a non negative integer k, we define the kth interval of length m,

I k = [km -ρ, (k + 1)m -ρ[= {km -ρ, km -ρ + 1, . . . , (k + 1)m -ρ -1}.
We denote by

n k = |{s ∈ S ∩ I k }|.
For j ∈ {1, . . . , m -1}, we define η j to be the number of intervals I k with n k = j.

η j = |{k ∈ N; |I k ∩ S| = j}|.
Proposition 2.1 Under the previous notations, we have:

i) 1 ≤ n k ≤ m -1 for all k = 0, . . . , q -1. ii) n k = m for all k ≥ q. iii) n = n(S) = q-1 k=0 n k . iv) m-1 j=1 η j = q. v) m-1 j=1 jη j = q-1 k=0 n k = n.
Proof. i), ii), iii) are obvious. Now using i), ii) we will prove iv) and v). iv)

m-1 j=1 η j = m-1 j=1 |{k ∈ N; |I k ∩ S| = j}| = m-1 j=1 |{k ∈ N; n k = j; k = 0, . . . , q -1}| = q. v) m-1 j=1 jη j = m-1 j=1 j|{k ∈ N; |I k ∩ S| = j}| = m-1 j=1 j|{k ∈ N; n k = j; k = 0, . . . , q -1}| = q-1 k=0 n k = n.
Remark: We shall use the notation ⌊x⌋ for the largest integer smaller than or equal to x.

Next we will express η j in terms of th Apéry set. Proposition 2.2 Let Ap(S, m) = {w 0 = 0 < w 1 < w 2 < . . . < w m-1 }. Under the previous notations, we have for all j ∈ {1, . . . , m -1}

η j = ⌊ w j + ρ m ⌋ -⌊ w j-1 + ρ m ⌋.
Proof. Fix 0 ≤ k ≤ q -1, and let j ∈ {1, . . . , m -1}. We will show that the interval I k contains exactly j elements of S if and only if w j-1 < (k + 1)m -ρ ≤ w j . Recall to this end that for all s ∈ S, there exist 0

≤ i ≤ m -1, a ∈ N such that s = w i + am.
Suppose that I k contains j elements. Suppose, by contradiction, that w j-1 ≥ (k + 1)m -ρ. We have w m-1 > . . . > w j-1 ≥ (k + 1)m -ρ, thus w m-1 , . . . , w j-1 ∈ ∪ q t=k+1 I t . Hence, I k contains at most j -1 elements of S (namely w 0 + km = km, w 1 + k 1 m, w 2 + k 2 m, . . . , w j-2 + k j-2 m for some k 1 , . . . , k j-2 ∈ {0, . . . , k -1}). This contradicts the fact that I k contains exactly j elements of S. If w j < (k+1)m-ρ, then w 0 < . . . < w j < (k+1)m-ρ, thus w 0 , . . . , w j ∈ ∪ k t=0 I t . Hence, I k contains at least j+1 elements of S which are : w 0 + km = km, w 1 + k 1 m, w 2 + k 2 m, . . . , w j + k j m for some k 1 , . . . , k j ∈ {0, . . . , k -1}, which contradicts the fact that I k contains exactly j elements of S.

Conversely, w j-1 < (k + 1)m -ρ implies that w 0 < . . . < w j-1 < (k + 1)m -ρ, so w 0 , . . . , w j-1 ∈ ∪ k t=0 I t . Thus I k contains at least j elements which are :

w 0 + km = km, w 1 + k 1 m, w 2 + k 2 m, . . . , w j-1 + k j-1 m for some k 1 , . . . , k j-1 ∈ {0, . . . , k -1}.
On the other hand w j ≥ (k +1)m-ρ implies that w m-1 > . . . > w j ≥ (k +1)m-ρ, so w m-1 , . . . , w j ∈ ∪ q t=k+1 I t . Thus I k contains at most j elements which are : w 0 + km = km, w 1 + k 1 m, w 2 + k 2 m, . . . , w j-1 + k j-1 m for some k 1 , . . . , k j-1 ∈ {0, . . . , k -1}. Hence, if w j-1 < (k + 1)m -ρ ≤ w j , then I k contains exactly j elements of S and this proves our assertion. Consequently,

η j = |{k ∈ N such that |I k ∩ S| = j}| = |{k ∈ N such that w j-1 < (k + 1)m -ρ ≤ w j }| = |{k ∈ N such that wj-1+ρ m < (k + 1) ≤ wj +ρ m }| = |{k ∈ N such that wj-1+ρ m -1 < k ≤ wj +ρ m -1}| = |{k ∈ N such that ⌊ wj-1+ρ m ⌋ ≤ k ≤ ⌊ wj +ρ m ⌋ -1}| = ⌊ wj +ρ m ⌋ -⌊ wj-1+ρ m ⌋.
Proposition 2.3 gives an equivalent form of Wilf's Conjecture using Propositions 2.1 and 2.2.

Proposition 2.3 Let S be a numerical semigroup with multiplicity m, embedding dimension ν and conductor f + 1 = qm -ρ for some q ∈ N and 0 ≤ ρ ≤ m -1. Let w 0 = 0 < w 1 < w 2 < . . . < w m-1 be the elements of Ap(S, m). Then S satisfies Wilf's Conjecture if and only if

m-1 j=1 (⌊ w j + ρ m ⌋ -⌊ w j-1 + ρ m ⌋)(jν -m) + ρ ≥ 0.
Proof. By Proposition 2.1, we have

f + 1 ≤ nν ⇔ qm -ρ ≤ ν q-1 k=0 n k ⇔ q-1 k=0 m -ρ ≤ q-1 k=0 n k ν ⇔ q-1 k=0 (n k ν -m) + ρ ≥ 0 ⇔ m-1 j=1 η j (jν -m) + ρ ≥ 0.
Using Proposition 2.2, we have

m-1 j=1 η j (jν -m) + ρ ≥ 0 ⇔ m-1 j=1 (⌊ w j + ρ m ⌋ -⌊ w j-1 + ρ m ⌋)(jν -m) + ρ ≥ 0.
Thus the proof is complete.

Remark 2.4 Let Ap(S, m) = {w 0 = 0 < w 1 < . . . < w m-1 }.
The following technical results will be used through the paper:

1. ⌊ w0+ρ m ⌋ = 0 (w 0 = 0 and 0 ≤ ρ < m). 2. For all 1 ≤ i ≤ m -1, ⌊ wi+ρ m ⌋ ≥ 1 (w i > m). 3. For all 1 ≤ i ≤ m -1, either ⌊ wi+ρ m ⌋ = ⌊ wi m ⌋ or ⌊ wi+ρ m ⌋ = ⌊ wi m ⌋ + 1. In the second case ⌊ wi+ρ m ⌋ ≥ 2 and ρ ≥ 1. 4. If w i < w j for some 0 ≤ i < j ≤ m -1, then ⌊ wi+ρ m ⌋ ≤ ⌊ wj+ρ m ⌋. 5. ⌊ wm-1+ρ m ⌋ = ⌊ qm-ρ+m-1+ρ m ⌋ = q.

Main Results

In this section, we show that Wilf's Conjecture holds for numerical semigroups in the following cases:

1. w m-1 ≥ w 1 + w α and (2 + α-3 q )ν ≥ m for some 1 < α < m -1. 2. m -ν ≤ 5. (Note that the case m -ν ≤ 4 results from the fact that Wilf's Conjecture holds for 2ν ≥ m ( [START_REF] Sammartano | Numerical semigroups with large embedding dimension satisfy Wilf's conjecture[END_REF]), however we shall give the proof for m -ν ≤ 3 in order to cover this result through our techniques).

We then deduce the conjecture for m = 9 and for (2

+ 1 q )ν ≥ m.
The following technical Lemma will be used through the paper:

Lemma 3.1 Let Ap(S, m) = {w 0 = 0 < w 1 < . . . < w m-1 }. Suppose that w i ≥ w j + w k , then ⌊ wi+ρ m ⌋ ≥ ⌊ wj +ρ m ⌋+⌊ w k +ρ m ⌋-1. If furthermore, ⌊ wi+ρ m ⌋-⌊ wj+ρ m ⌋-⌊ w k +ρ m ⌋ = -1, then ⌊ wj +ρ m ⌋ = ⌊ wj m ⌋+1, ⌊ w k +ρ m ⌋ = ⌊ w k m ⌋+1 and ρ ≥ 1. In particular, ⌊ wj +ρ m ⌋ ≥ 2, ⌊ w k +ρ m ⌋ ≥ 2 and ρ ≥ 1.
Proof.

w i ≥ w j + w k implies that w i + ρ ≥ w j + w k + ρ, hence wi+ρ m ≥ wj +w k +ρ m . Consequently, ⌊ wi+ρ m ⌋ ≥ ⌊ wj +w k +ρ m ⌋. Therefore, ⌊ wi+ρ m ⌋ ≥ ⌊ wj +ρ m ⌋ + ⌊ w k m ⌋. Hence, by Remark 2.4 (3), ⌊ wi+ρ m ⌋ ≥ ⌊ wj +ρ m ⌋ + ⌊ w k +ρ m ⌋ -1. Suppose that w i ≥ w j + w k and that ⌊ wi+ρ m ⌋ -⌊ wj +ρ m ⌋ -⌊ w k +ρ m ⌋ = -1.
Suppose by the way of contradiction that either ⌊

wj +ρ m ⌋ = ⌊ wj m ⌋ + 1 or ⌊ w k +ρ m ⌋ = ⌊ w k m ⌋ + 1 or ρ < 1.
Then, by Remark 2.4 (3) and the fact that ρ ≥ 0, we have either ⌊

wj +ρ m ⌋ = ⌊ wj m ⌋ or ⌊ w k +ρ m ⌋ = ⌊ w k m ⌋ or ρ = 0. Since w i ≥ w j + w k , then ⌊ wi+ρ m ⌋ ≥ ⌊ wj +w k +ρ m ⌋. In this case ⌊ wi+ρ m ⌋ ≥ ⌊ wj +ρ m ⌋ + ⌊ w k +ρ m ⌋, which is impossible. Hence, ⌊ wj +ρ m ⌋ = ⌊ wj m ⌋ + 1, ⌊ w k +ρ m ⌋ = ⌊ w k m ⌋ + 1 and ρ ≥ 1. Therefore, by Remark 2.4 (2), ⌊ wj +ρ m ⌋ = ⌊ wj m ⌋ + 1 ≥ 2, ⌊ w k +ρ m ⌋ = ⌊ w k m ⌋ + 1 ≥ 2 and ρ ≥ 1.
Next we will show that Wilf's Conjecture holds for numerical semigroups with w m-1 ≥ w 1 +w α and (2+ α-3 q )ν ≥ m. Theorem 3.2 Let S be a numerical semigroup with multiplicity m, embedding dimension ν and conductor f + 1 = qm -ρ for some q ∈ N, 0 ≤ ρ ≤ m -1. Let w 0 = 0 < w 1 < w 2 < . . . < w m-1 be the elements of Ap(S, m). Suppose that w m-1 ≥ w 1 + w α for some 1 < α < m -1. If (2 + α-3 q )ν ≥ m, then S satisfies Wilf's Conjecture.

Proof. We are going to show that S satisfies Wilf's Conjecture by means of Proposition 2.3. We have,

(3.1) α j=1 (⌊ w j + ρ m ⌋ -⌊ w j-1 + ρ m ⌋)(jν -m) = α j=1 ⌊ w j + ρ m ⌋(jν -m) - α j=1 ⌊ w j-1 + ρ m ⌋(jν -m) = α j=1 ⌊ w j + ρ m ⌋(jν -m) - α-1 j=0 ⌊ w j + ρ m ⌋((j + 1)ν -m) = ⌊ w α + ρ m ⌋(αν -m) -⌊ w 0 + ρ m ⌋(ν -m) - α-1 j=1 ⌊ w j + ρ m ⌋ν = ⌊ w α + ρ m ⌋(αν -m) -⌊ w 1 + ρ m ⌋ν - α-1 j=2 ⌊ w j + ρ m ⌋ν ≥ ⌊ w α + ρ m ⌋(αν -m) -⌊ w 1 + ρ m ⌋ν - α-1 j=2 ⌊ w α + ρ m ⌋ν = ⌊ w α + ρ m ⌋(αν -m) -⌊ w 1 + ρ m ⌋ν -⌊ w α + ρ m ⌋(α -2)ν = -⌊ w 1 + ρ m ⌋ν + ⌊ w α + ρ m ⌋(2ν -m). (3.2) m-1 j=α+1 (⌊ w j + ρ m ⌋ -⌊ w j-1 + ρ m ⌋)(jν -m) ≥ m-1 j=α+1 (⌊ w j + ρ m ⌋ -⌊ w j-1 + ρ m ⌋)((α + 1)ν -m) = ((α + 1)ν -m) m-1 j=α+1 (⌊ w j + ρ m ⌋ -⌊ w j-1 + ρ m ⌋) = ((α + 1)ν -m)( m-1 j=α+1 ⌊ w j + ρ m ⌋ - m-1 j=α+1 ⌊ w j-1 + ρ m ⌋) = ((α + 1)ν -m)( m-1 j=α+1 ⌊ w j + ρ m ⌋ - m-2 j=α ⌊ w j + ρ m ⌋) = (⌊ w m-1 + ρ m ⌋ -⌊ w α + ρ m ⌋)((α + 1)ν -m). Since w m-1 ≥ w 1 + w α , by Lemma 3.1, it follows that ⌊ wm-1+ρ m ⌋ ≥ ⌊ w1+ρ m ⌋ + ⌊ wα+ρ m ⌋ -1. Let x = ⌊ wm-1+ρ m ⌋ - ⌊ w1+ρ m ⌋ -⌊ wα+ρ m ⌋. Then, ⌊ w1+ρ m ⌋ + ⌊ wα+ρ m ⌋ = q -x and x ≥ -1. Now using (3.1) and (3.2), we have m-1 j=1 (⌊ w j + ρ m ⌋ -⌊ w j-1 + ρ m ⌋)(jν -m) + ρ ≥ -⌊ w 1 + ρ m ⌋ν + ⌊ w α + ρ m ⌋(2ν -m) +(⌊ w m-1 + ρ m ⌋ -⌊ w α + ρ m ⌋)((α + 1)ν -m) + ρ = ⌊ w 1 + ρ m ⌋(-ν + ((α + 1)ν -m) -((α + 1)ν -m)) + ⌊ w α + ρ m ⌋(2ν -m) +(⌊ w m-1 + ρ m ⌋ -⌊ w α + ρ m ⌋)((α + 1)ν -m) + ρ = ⌊ w 1 + ρ m ⌋(αν -m) + ⌊ w α + ρ m ⌋(2ν -m) +(⌊ w m-1 + ρ m ⌋ -⌊ w α + ρ m ⌋ -⌊ w 1 + ρ m ⌋)((α + 1)ν -m) + ρ = (⌊ w 1 + ρ m ⌋ + ⌊ w α + ρ m ⌋)(2ν -m) + ⌊ w 1 + ρ m ⌋(α -2)ν +(⌊ w m-1 + ρ m ⌋ -⌊ w α + ρ m ⌋ -⌊ w 1 + ρ m ⌋)((α + 1)ν -m) + ρ = (q -x)(2ν -m) + ⌊ w 1 + ρ m ⌋(α -2)ν+x((α + 1)ν -m) + ρ ≥ (q -x)(2ν -m) + (α -2)ν+x((α + 1)ν -m) + ρ = ν(2q -2x + α -2 + xα + x) -qm + ρ = ν(2q + (α -2)(x + 1) + x) -qm + ρ ≥ ν(2q + α -3) -qm + ρ (x ≥ -1) = q(ν(2 + α -3 q ) -m) + ρ ≥ 0.
Using Proposition 2.3, we get that S satisfies Wilf's Conjecture.

Example 3.3 Consider the following numerical semigroup S =< 19, 21, 23, 25, 27, 28 >. Note that 3ν < m. We have w 1 = 21, w 14 = 56 and w m-1 = 83 i.e. w m-1 ≥ w 1 + w 14 . In addition, (2 + α-3 q )ν = (2 + 14-3 4 )6 ≥ 19 = m. Thus the conditions of Theorem 3.2 are valid, so S satisfies Wilf's Conjecture.

In the following we shall deduce some cases where Wilf's Conjecture holds. We start with the following technical Lemma.

Lemma 3.4 Let S be a numerical semigroup with multiplicity m and embedding dimension ν. Let w 0 = 0 < w 1 < w 2 < . . . < w m-1 be the elements of Ap(S, m).

If m -ν > ( α 2 ) = α(α -1) 2 for some α ∈ N * , then w m-1 ≥ w 1 + w α .
Proof. Recall that an element x of the Apéry set of S belongs to min(Ap(S, m)) if and only if x = w i + w j for all w i , w j ∈Ap(S, m) \ {0}, in particular m -ν = |Ap(S, m)\min(Ap(S, m))|. Suppose by the way of contradiction that w m-1 < w 1 +w α , and let w ∈ Ap(S, m)\min(Ap(S, m)). Then w ≤ w m-1 and w = w i +w j for some w i , w j ∈ Ap(S, m)\{0}. Hence, w ≤ w m-1 < w 1 +w α . Thus the only possible values for w are {w i +w j ; 1

≤ i ≤ j ≤ α-1}. Therefore, m -ν ≤ ( α 2 ) = α(α -1) 2 , which is impossible. Hence, w m-1 ≥ w 1 + w α .
Next we will deduce Wilf's Conjecture for numerical Semigroups with m -ν > α(α-1)

2

and (2 + α-3 q )ν ≥ m. It will be used later to show that the conjecture holds for those with (2 + 1 q )ν ≥ m, and inorder also to cover the result in [START_REF] Sammartano | Numerical semigroups with large embedding dimension satisfy Wilf's conjecture[END_REF] saying that the conjecture is true for 2ν ≥ m. Corollary 3.5 Let S be a numerical semigroup with multiplicity m, embedding dimension ν and conductor

f + 1 = qm -ρ for some q ∈ N, 0 ≤ ρ ≤ m -1. Suppose that m -ν > ( α 2 ) = α(α-1) 2 for some 1 < α < m -1. If (2 + α-3 q )ν ≥ m, then S satisfies Wilf's Conjecture. Proof. It follows from Lemma 3.4 that if m -ν > α(α-1)

2

, then w m-1 ≥ w 1 + w α . Now use Theorem 3.2.

As a direct consequence of Theorem 3.2, we get the following Corollary.

Corollary 3.6 Let S be a numerical semigroup with a given multiplicity m and conductor f + 1 = qm -ρ for some q ∈ N, 0 ≤ ρ ≤ m -1. Let w 0 = 0 < w 1 < . . . < w m-1 be the elements of Ap(S, m). If w m-1 ≥ w 1 + w α for some 1 < α < m -1 and m ≤ 8 + 4( α-3 q ) then S satisfies Wilf's Conjecture.

Proof. By Theorem 3.2, we may assume that (2 + α-3 q )ν < m. Therefore, ν < qm 2q+α-3 ≤ 8q+α-12 2q+α-3 . Hence ν < 4, consequently S satisfies Wilf's Conjecture ( [START_REF] Dobbs | On a question of Wilf concerning numerical semigroups[END_REF]).

In the following Lemma, we will show that Wilf's Conjecture holds for numerical semigroups with m -ν ≤ 3. This will enable us later to prove the conjecture for numerical semigroups with (2 + 1 q )ν ≥ m and cover the result in [START_REF] Sammartano | Numerical semigroups with large embedding dimension satisfy Wilf's conjecture[END_REF] saying that the conjecture is true for 2ν ≥ m. Proof. We my assume that ν ≥ 4 ( ν ≤ 3 is solved [START_REF] Dobbs | On a question of Wilf concerning numerical semigroups[END_REF]). We are going to show that S satisfies Wilf's Conjecture by means of Proposition 2.3.

i ) If m -ν = 1, then we may assume that m = ν + 1 ≥ 5. By taking α = 1 in (3.2), we get

m-1 j=2 (⌊ w j + ρ m ⌋ -⌊ w j-1 + ρ m ⌋)(jν -m) ≥ (⌊ w m-1 + ρ m ⌋ -⌊ w 1 + ρ m ⌋)(2ν -m). Hence, m-1 j=1 (⌊ w j + ρ m ⌋ -⌊ w j-1 + ρ m ⌋)(jν -m) + ρ = (⌊ w 1 + ρ m ⌋ -⌊ w 0 + ρ m ⌋)(ν -m) + m-1 j=2 (⌊ w j + ρ m ⌋ -⌊ w j-1 + ρ m ⌋)(jν -m) + ρ ≥ ⌊ w 1 + ρ m ⌋(ν -m) +(⌊ w m-1 + ρ m ⌋ -⌊ w 1 + ρ m ⌋)(2ν -m) + ρ = ⌊ w 1 + ρ m ⌋(ν -m + (2ν -m) -(2ν -m)) +(⌊ w m-1 + ρ m ⌋ -⌊ w 1 + ρ m ⌋)(2ν -m) + ρ = ⌊ w 1 + ρ m ⌋(3ν -2m) +(⌊ w m-1 + ρ m ⌋ -⌊ w 1 + ρ m ⌋ -⌊ w 1 + ρ m ⌋)(2ν -m) + ρ = ⌊ w 1 + ρ m ⌋(m -3) +(⌊ w m-1 + ρ m ⌋ -⌊ w 1 + ρ m ⌋ -⌊ w 1 + ρ m ⌋)(m -2) + ρ.
Since m -ν = 1 > 0 = 1(0) 2 , then by Lemma 3.4, it follows that w m-1 ≥ w 1 + w 1 . Consequently, by Lemma 3.1, we have

⌊ wm-1+ρ m ⌋ ≥ ⌊ w1+ρ m ⌋ + ⌊ w1+ρ m ⌋ -1. • If ⌊ wm-1+ρ m ⌋ -⌊ w1+ρ m ⌋ -⌊ w1+ρ m ⌋ = -1. Then by Lemma 3.1, we have ⌊ w1+ρ m ⌋ ≥ 2. Since m ≥ 5, then m-1 j=1 (⌊ w j + ρ m ⌋ -⌊ w j-1 + ρ m ⌋)(jν -m) + ρ ≥ 2(m -3) -(m -2) + ρ ≥ 0. • If ⌊ wm-1+ρ m ⌋ -⌊ w1+ρ m ⌋ -⌊ w1+ρ m ⌋ ≥ 0. Since m ≥ 5, then m-1 j=1 (⌊ w j + ρ m ⌋ -⌊ w j-1 + ρ m ⌋)(jν -m) + ρ ≥ (m -3) + ρ ≥ 0.
Using Proposition 2.3, we get that S satisfies Wilf's Conjecture if m -ν = 1.

ii

) If m -ν ∈ {2, 3}. By taking α = 2 in (3.2), we get m-1 j=3 (⌊ w j + ρ m ⌋ -⌊ w j-1 + ρ m ⌋)(jν -m) ≥ (⌊ w m-1 + ρ m ⌋ -⌊ w 2 + ρ m ⌋)(3ν -m). Hence, (3.3) m-1 j=1 (⌊ w j + ρ m ⌋ -⌊ w j-1 + ρ m ⌋)(jν -m) + ρ = (⌊ w 1 + ρ m ⌋ -⌊ w 0 + ρ m ⌋)(ν -m) +(⌊ w 2 + ρ m ⌋ -⌊ w 1 + ρ m ⌋)(2ν -m) + m-1 j=3 (⌊ w j + ρ m ⌋ -⌊ w j-1 + ρ m ⌋)(jν -m) + ρ ≥ ⌊ w 1 + ρ m ⌋(-ν) + ⌊ w 2 + ρ m ⌋(2ν -m) +(⌊ w m-1 + ρ m ⌋ -⌊ w 2 + ρ m ⌋)(3ν -m) + ρ = ⌊ w 1 + ρ m ⌋(-ν + (3ν -m) -(3ν -m)) +⌊ w 2 + ρ m ⌋(2ν -m) +(⌊ w m-1 + ρ m ⌋ -⌊ w 2 + ρ m ⌋)(3ν -m) + ρ = ⌊ w 1 + ρ m ⌋(2ν -m) + ⌊ w 2 + ρ m ⌋(2ν -m) +(⌊ w m-1 + ρ m ⌋ -⌊ w 1 + ρ m ⌋ -⌊ w 2 + ρ m ⌋)(3ν -m) +ρ. Since m -ν ∈ {2, 3} > 1, by Lemma 3.4, we have w m-1 ≥ w 1 + w 2 . It follows from Lemma 3.1 that ⌊ wm-1+ρ m ⌋ ≥ ⌊ w1+ρ m ⌋ + ⌊ w2+ρ m ⌋ -1.
• If m -ν = 2. then we may assume that m = ν + 2 ≥ 6. Now (3.3) gives,

m-1 j=1 (⌊ w j + ρ m ⌋ -⌊ w j-1 + ρ m ⌋)(jν -m) + ρ ≥ ⌊ w 1 + ρ m ⌋(m -4) + ⌊ w 2 + ρ m ⌋(m -4) +(⌊ w m-1 + ρ m ⌋ -⌊ w 1 + ρ m ⌋ -⌊ w 2 + ρ m ⌋)(2m -6) + ρ.
-

If ⌊ wm-1+ρ m ⌋-⌊ w1+ρ m ⌋-⌊ w2+ρ m ⌋ = -1. Then by Lemma 3.1 we have, ⌊ w1+ρ m ⌋ ≥ 2 and ⌊ w2+ρ m ⌋ ≥ 2. Since m ≥ 6, then m-1 j=1 (⌊ w j + ρ m ⌋ -⌊ w j-1 + ρ m ⌋)(jν -m) + ρ ≥ 2(m -4) + 2(m -4) -(2m -6) + ρ ≥ 0.
-

If ⌊ wm-1+ρ m ⌋ -⌊ w1+ρ m ⌋ -⌊ w2+ρ m ⌋ ≥ 0. Since m ≥ 6, then m-1 j=1 (⌊ w j + ρ m ⌋ -⌊ w j-1 + ρ m ⌋)(jν -m) + ρ ≥ (m -4) + (m -4) + ρ ≥ 0.
Using Proposition 2.3, we get that S satisfies Wilf's Conjecture if m -ν = 2.

• If m -ν = 3, then we may assume that m = ν + 3 ≥ 7. Now (3.3) gives,

m-1 j=1 (⌊ w j + ρ m ⌋ -⌊ w j-1 + ρ m ⌋)(jν -m) + ρ ≥ ⌊ w 1 + ρ m ⌋(m -6) + ⌊ w 2 + ρ m ⌋(m -6) +(⌊ w m-1 + ρ m ⌋ -⌊ w 1 + ρ m ⌋ -⌊ w 2 + ρ m ⌋)(2m -9) + ρ.
-

If ⌊ wm-1+ρ m ⌋ -⌊ w1+ρ m ⌋ -⌊ w2+ρ m ⌋ = -1. Then by Lemma 3.1 we have, ⌊ w1+ρ m ⌋ ≥ 2, ⌊ w2+ρ m ⌋ ≥ 2 and ρ ≥ 1. Since m ≥ 7, then m-1 j=1 (⌊ w j + ρ m ⌋ -⌊ w j-1 + ρ m ⌋)(jν -m) + ρ ≥ 2(m -6) + 2(m -6) -(2m -9) + 1 ≥ 0.
-

If ⌊ wm-1+ρ m ⌋ -⌊ w1+ρ m ⌋ -⌊ w2+ρ m ⌋ ≥ 0. Since m ≥ 7, then m-1 j=1 (⌊ w j + ρ m ⌋ -⌊ w j-1 + ρ m ⌋)(jν -m) + ρ ≥ (m -6) + (m -6) + ρ ≥ 0.
Using Proposition 2. In the following Corollary we will deduce Wilf's Conjecture for numerical semigroups with m -ν = 4. This will enable us later to prove the conjecture for those with (2 + 1 q )ν ≥ m.

Corollary 3.9 Let S be a numerical semigroup with multiplicity m and embedding dimension ν. If m -ν = 4, then S satisfies Wilf's Conjecture.

Proof. Since Wilf's conjecture holds for ν ≤ 3 ([3]), then we may assume that ν ≥ 4. Hence, ν ≥ m -ν. Consequently, 2ν ≥ m. Hence, S satisfies Wilf's Conjecture.

The following technical Lemma will be used through the paper.

Lemma 3.10 Let S be a numerical semigroup with multiplicity m and embedding dimension ν. Let w 0 = 0 < w 1 < . . . < w m-1 be the elements of Ap(S, m).

If m -ν ≥ ( α 2 ) -1 = α(α-1) 2 -1 for some 3 ≤ α ≤ m -2, then w m-1 ≥ w 1 + w α or w m-1 ≥ w α-2 + w α-1 .
Proof. Suppose by the way of contradiction that w m-1 < w 1 + w α and w m-1 < w α-2 + w α-1 . Let w ∈Ap(S, m)\min(Ap(S, m)), then w ≤ w m-1 and w = w i + w j for some w i , w j ∈Ap(S, m) \ {0}. In this case, the only possible values of w are

{w i + w j ; 1 ≤ i ≤ j ≤ α -1} \ {w α-2 + w α-1 , w α-1 + w α-1 }. Consequently, m-ν = |Ap(S, m)\min(Ap(S, m))| ≤ α(α-1) 2 -2. But α(α-1) 2 -2 < α(α-1) 2 -1, which contradicts the hypothesis. Hence, w m-1 ≥ w 1 + w α or w m-1 ≥ w α-2 + w α-1 .
In the next theorem, we will show that Wilf's Conjecture holds for numerical semigroups with m -ν = 5. Theorem 3.11 Let S be a numerical semigroup with multiplicity m and embedding dimension ν. If m-ν = 5, then S satisfies Wilf's Conjecture.

Proof. Let m -ν = 5. Since Wilf's Conjecture holds for 2ν ≥ m, then we may assume that 2ν < m. This implies that ν < 5. Since the case ν ≤ 3 is known ( [START_REF] Dobbs | On a question of Wilf concerning numerical semigroups[END_REF]), then we shall assume that ν = 4. This also implies that m = 9. (⌊ (⌊ [START_REF] Wilf | A circle-of-lights algorithm for the "money-changing problem[END_REF]. Now using (3.5), we get

w j + ρ 9 ⌋ -⌊ w j-1 + ρ 9 ⌋)(4j -9) + ρ = (⌊ w 1 + ρ 9 ⌋ -⌊ w 0 + ρ 9 ⌋)(-5) +(⌊ w 2 + ρ 9 ⌋ -⌊ w 1 + ρ 9 ⌋)(-1) +(⌊ w 3 + ρ 9 ⌋ -⌊ w 2 + ρ 9 ⌋)(3) + 8 j=4 (⌊ w j + ρ 9 ⌋ -⌊ w j-1 + ρ 9 ⌋)(4j -9) + ρ ≥ ⌊ w 1 + ρ 9 ⌋(-4) + ⌊ w 2 + ρ 9 ⌋(-4)+⌊ w 3 + ρ 9 ⌋ (3) 
+(⌊ w 8 + ρ 9 ⌋ -⌊ w 3 + ρ 9 ⌋)(7) + ρ ≥ ⌊ w 2 + ρ m ⌋(( - 3 
4 )4) + ⌊ w 3 + ρ 9 ⌋(( - 1 
w j + ρ 9 ⌋ -⌊ w j-1 + ρ 9 ⌋)(4j -9) ≥ (⌊ w 8 + ρ 9 ⌋ -⌊ w 4 + ρ 9 ⌋)
(3.6) 8 j=1 (⌊ w j + ρ 9 ⌋ -⌊ w j-1 + ρ 9 ⌋)(4j -9) + ρ = (⌊ w 1 + ρ 9 ⌋ -⌊ w 0 + ρ 9 ⌋)(-5) +(⌊ w 2 + ρ 9 ⌋ -⌊ w 1 + ρ 9 ⌋)(-1) +(⌊ w 3 + ρ 9 ⌋ -⌊ w 2 + ρ m ⌋)(3) +(⌊ w 4 + ρ 9 ⌋ -⌊ w 3 + ρ 9 ⌋)(7) + 8 j=5 (⌊ w j + ρ 9 ⌋ -⌊ w j-1 + ρ 9 ⌋)(4j -9) + ρ
Lemma 3.13 Let S be a numerical Semigroup with multiplicity m, embedding dimension ν and conductor f + 1 = qm -ρ for some q ∈ N, 0 ≤ ρ ≤ m -1. If m -ν = 6 and (2 + 1 q )ν ≥ m, then S satisfies Wilf's Conjecture.

Proof. Since m -ν = 6 ≥ 4 (3) 2 -1, by Lemma 3.10, it follows that w m-1 ≥ w 1 + w 4 or w m-1 ≥ w 2 + w 3 .

i ) If w m-1 ≥ w 1 + w 4 . By hypothesis (2 + 1 q )ν ≥ m and Theorem 3.2 Wilf's Conjecture holds in this case. ii ) If w m-1 ≥ w 2 + w 3 . We may assume that w m-1 < w 1 + w 4 , since otherwise we are back to case 1. Hence, Ap(S, m)\min(Ap(S, m)) = {w 1 + w 1 , w 1 + w 2 , w 1 + w 3 , w 2 + w 2 , w 2 + w 3 , w 3 + w 3 }.

By taking α = 3 in (3.2), we get

m-1 j=4 (⌊ w j + ρ m ⌋ -⌊ w j-1 + ρ m ⌋)(jν -m) ≥ (⌊ w m-1 + ρ m ⌋ -⌊ w 3 + ρ m ⌋)(4ν -m).
Hence,

m-1 j=1

(⌊ w j + ρ m ⌋ -⌊ w j-1 + ρ m ⌋)(jν -m) + ρ = (⌊ w 1 + ρ m ⌋ -⌊ w 0 + ρ m ⌋)(ν -m) +(⌊ w 2 + ρ m ⌋ -⌊ w 1 + ρ m ⌋)(2ν -m) +(⌊ w 3 + ρ m ⌋ -⌊ w 2 + ρ m ⌋)(3ν -m) + m-1 j=4 (⌊ w j + ρ m ⌋ -⌊ w j-1 + ρ m ⌋)(jν -m) + ρ ≥ ⌊ w 1 + ρ m ⌋(-ν)+⌊ w 2 + ρ m ⌋(-ν) +⌊ w 3 + ρ m ⌋(3ν -m) +(⌊ w m-1 + ρ m ⌋ -⌊ w 3 + ρ m ⌋)(4ν -m) + ρ ≥ ⌊ w 2 + ρ m ⌋( -ν 2 ) + ⌊ w 3 + ρ m ⌋( -ν 2 ) +⌊ w 2 + ρ m ⌋(-ν)+⌊ w 3 + ρ m ⌋(3ν -m) +(⌊ w m-1 + ρ m ⌋ -⌊ w 3 + ρ m ⌋)(4ν -m) + ρ = ⌊ w 2 + ρ m ⌋( -3ν 2 ) + ⌊ w 3 + ρ m ⌋( 5ν 2 -m) +(⌊ w m-1 + ρ m ⌋ -⌊ w 3 + ρ m ⌋)(4ν -m) + ρ = ⌊ w 2 + ρ m ⌋( -3ν 2 + (4ν -m) -(4ν -m)) +⌊ w 3 + ρ m ⌋( 5ν 2 -m) +(⌊ w m-1 + ρ m ⌋ -⌊ w 3 + ρ m ⌋)(4ν -m) + ρ = ⌊ w 2 + ρ m ⌋( 5ν 2 -m) + ⌊ w 3 + ρ m ⌋( 5ν 2 -m) +(⌊ w m-1 + ρ m ⌋ -⌊ w 2 + ρ m ⌋ -⌊ w 3 + ρ m ⌋)(4ν -m) +ρ = ⌊ w 2 + ρ m ⌋( 3ν 2 -6) + ⌊ w 3 + ρ m ⌋( 3ν 2 -6) +(⌊ w m-1 + ρ m ⌋ -⌊ w 2 + ρ m ⌋ -⌊ w 3 + ρ m ⌋)(3ν -6)
+ρ.

We have w m-1 ≥ w 2 + w 3 , by Lemma 3.1, it follows that

⌊ wm-1+ρ m ⌋ ≥ ⌊ w2+ρ m ⌋ + ⌊ w3+ρ m ⌋ -1. • If ⌊ wm-1+ρ m ⌋ -⌊ w2+ρ m ⌋ -⌊ w3+ρ m ⌋ ≥ 0, using ν ≥ 4 in (3.7) (ν ≤ 3 is solved [3]), we get m-1 j=1 (⌊ w j + ρ m ⌋ -⌊ w j-1 + ρ m ⌋)(jν -m) + ρ ≥ 0. • If ⌊ wm-1+ρ m ⌋ -⌊ w2+ρ m ⌋ -⌊ w3+ρ m ⌋ = -1. Then, (3.8) ⌊ w 2 + ρ m ⌋ + ⌊ w 3 + ρ m ⌋ = q + 1.
We have w 3 + w 3 ∈Ap(S, m)\min(Ap(S, m)), then w m-1 ≥ w 3 + w 3 . By Lemma 3.1, we have

⌊ wm-1+ρ m ⌋ ≥ 2⌊ w3+ρ m ⌋ -1. In particular, (3.9) ⌊ w 3 + ρ m ⌋ ≤ q + 1 2 .
Since Wilf's Conjecture holds for q ≤ 3 ([4], [START_REF] Kaplan | Counting numerical semigroups by genus and some cases of a question of Wilf[END_REF]), so we may assume that q ≥ 4. Since ⌊ w2+ρ m ⌋ ≤ ⌊ w3+ρ m ⌋, by (3.8) and (3.9), it follows that ⌊ w2+ρ m ⌋ = ⌊ w3+ρ m ⌋ = q+1 2 , in particular q is odd, so we have to assume that q ≥ 5. Now using Now using (3.8), q ≥ 5 and the hypothesis (2

+ 1 q )ν ≥ m = ν + 6 in (3.7), we get m-1 j=1 (⌊ w j + ρ m ⌋ -⌊ w j-1 + ρ m ⌋)(jν -m) + ρ ≥ (⌊ w 2 + ρ m ⌋ + ⌊ w 3 + ρ m ⌋)( 3ν 2 -6) +(⌊ w m-1 + ρ m ⌋ -⌊ w 2 + ρ m ⌋ -⌊ w 3 + ρ m ⌋)(3ν -6) + ρ = (q + 1)( 3ν 2 -6) -(3ν -6) + ρ = ν( 3q 2 + 3 2 -3) -6q + ρ ≥ ν( 3q 2 - 3 2 ) -qν -ν + ρ (6q ≤ qν + ν) = ν( q 2 - 5 2 ) + ρ ≥ 0.
Using Proposition 2.3, we get that S satisfies Wilf's Conjecture in this case.

Thus, Wilf's Conjecture holds if m -ν = 6 and (2 + 1 q )ν ≥ m.

Next we will generalize a result for Sammartano ([9]) and show that Wilf's Conjecture holds for numerical semigroups satisfying (2 + 1 q )ν ≥ m, using Lemma 3.7, Corollary 3.9, Theorem 3.11, Lemma 3.13 and Corollary 3.5. Theorem 3.14 Let S be a numerical semigroup with multiplicity m, embedding dimension ν and conductor f + 1 = qm -ρ for some q ∈ N, 0 ≤ ρ ≤ m -1. If (2 + 1 q )ν ≥ m, then S satisfies Wilf's Conjecture. Proof.

• If m -ν ≤ 3, then by Lemma 3. We have (2 + 1 q )ν = (2 + 1 4 )6 ≥ 13 = m. Thus the conditions of Theorem 3.14 are valid, so S satisfies Wilf's Conjecture.

Corollary 3.16 Let S be a numerical semigroup with multiplicity m and conductor f + 1 = qm -ρ for some q ∈ N, 0 ≤ ρ ≤ m -1. If m ≤ 8 + 4 q , then S satisfies Wilf's Conjecture.

Proof. If ν < 4, then S satisfies Wilf's Conjecture ( [START_REF] Dobbs | On a question of Wilf concerning numerical semigroups[END_REF]). Hence, we can suppose that ν ≥ 4. Thus, (2 + 1 q )ν ≥ (2 + 1 q )4 ≥ m. By using Theorem 3.14 S satisfies Wilf's Conjecture .

4 Numerical semigroups with w m-1 ≥ w α-1 + w α and ( α+3 3 )ν ≥ m

In this section, we will show that if S is a numerical Semigroup such that w m-1 ≥ w α-1 + w α and ( α+3 3 )ν ≥ m, then S satisfies Wilf's Conjecture. Theorem 4.1 Let S be a numerical semigroup with multiplicity m and embedding dimension ν. Let w 0 = 0 < w 1 < w 2 < . . . < w m-1 be the elements of Ap(S, m). Suppose that w m-1 ≥ w α-1 + w α for some 1 < α < m -1.

If ( α+3

3 )ν ≥ m, then S satisfies Wilf's Conjecture.

Proof. We may assume that ρ ≥ (3-q)αm 2α+6 . Indeed, if 0 ≤ ρ < (3-q)αm 2α+6 , then q < 3 and Wilf's conjecture holds for this case ( [START_REF] Kaplan | Counting numerical semigroups by genus and some cases of a question of Wilf[END_REF]). We are going to show that S satisfies Wilf's Conjecture by means of Proposition 2.3. We have, 
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 37 Let S be a numerical Semigroup with multiplicity m and embedding dimension ν. If m -ν ≤ 3, then S satisfies Wilf's Conjecture.
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 738 3, we get that S satisfies Wilf's Conjecture if m -ν = 3. Thus Wilf's Conjecture holds if m -ν ≤ 3. The next Corollary covers the result of Sammartano for numerical semigroups with 2ν ≥ m ([9]) using Corollary 3.5 and Lemma 3.Corollary Let S be a numerical semigroup with multiplicity m and embedding dimension ν. If 2ν ≥ m, then S satisfies Wilf's Conjecture. Proof. If m -ν > 3 and 2ν ≥ m, then by Corollary 3.5 Wilf's Conjecture holds. If m -ν ≤ 3, by Lemma 3.7, S satisfies Wilf's Conjecture.

  Since m -ν = 5 = 4(3) 2 -1, by Lemma 3.10, it follows that w 8 ≥ w 2 + w 3 or w 8 ≥ w 1 + w 4 . i ) If w 8 ≥ w 2 + w 3 . By taking α = 3 in (3.2) (m = 9, ν = 4), we get
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 7 Wilf's Conjecture holds. • If m -ν = 4, then by Corollary 3.9 Wilf's Conjecture holds. • If m -ν = 5, then by Theorem 3.11 Wilf's Conjecture holds. • If m -ν = 6 and (2 + 1 q )ν ≥ m, then by Lemma 3.13 Wilf's Conjecture holds. • If m -ν > 6 and (2 + 1 q )ν ≥ m, then by Corollary 3.5 Wilf's Conjecture holds. Example 3.15 Consider the following numerical semigroup S =< 13, 15, 17, 19, 21, 27 >. Note that 2ν < m.

  m) -⌊ w α-1 + ρ m ⌋( αν2).

= ⌊

w 2 + ρ 9 ⌋(-7) + ⌊ w 3 + ρ 9 ⌋( 2)

Since w 8 ≥ w 2 + w 3 , by Lemma 3.1, it follows that ⌊ w8+ρ 9 ⌋ ≥ ⌊ w2+ρ 9 ⌋ + ⌊ w3+ρ 9 ⌋ -1.

• If ⌊ w8+ρ 9 ⌋ -⌊ w2+ρ 9 ⌋ -⌊ w3+ρ 9 ⌋ ≥ 0, then (3.4) gives

• If ⌊ w8+ρ 9 ⌋ -⌊ w2+ρ 9 ⌋ -⌊ w3+ρ 9 ⌋ = -1. By Lemma 3.1, we have ρ ≥ 1. Since for q ≤ 3 Wilf's Conjecture is solved ( [START_REF] Eliahou | Wilf's Conjecture and Macaulay's theorem[END_REF], [START_REF] Kaplan | Counting numerical semigroups by genus and some cases of a question of Wilf[END_REF]), then may assume that q ≥ 4. Since ⌊ w2+ρ 9 ⌋ ≤ ⌊ w3+ρ 9 ⌋ and ⌊ w2+ρ 9 ⌋ + ⌊ w3+ρ 9 ⌋ = ⌊ w8+ρ 9 ⌋ + 1 = q + 1, in this case it follows that ⌊ w3+ρ 9 ⌋ ≥ 3.

Using Proposition 2.3, we get that S satisfies Wilf's Conjecture in this case.

ii ) If w 8 ≥ w 1 + w 4 . We may assume that w 8 < w 2 + w 3 , since otherwise we are back to case 1. Hence, the possible values of w ∈ Ap(S, 9)\min(Ap(S, 9)) are {w 1 + w j ; 1 ≤ j ≤ 7} ∪ {w 2 + w 2 }.

• Recall that an element x of the Apéry set of S belongs to max(Ap(S, m)) if and only if w i = x + w j for all w i , w j ∈Ap(S, m) \ {0}. If Ap(S, 9)\min(Ap(S, 9)) ⊆ {w 1 + w j ; 1 ≤ j ≤ 7}, then there exists at least five elements in Ap(S, 9) that are not maximal, hence t(S) = |{max(Ap(S, 9))

We have w 8 ≥ w 1 + w 4 , then by Lemma 3.1

9 ⌋ -⌊ w1+ρ 9 ⌋ -⌊ w4+ρ 9 ⌋ ≥ 0. Let x = ⌊ w8+ρ 9 ⌋ -⌊ w1+ρ 9 ⌋ -⌊ w4+ρ 9 ⌋. Hence, x ≥ 0 and ⌊ w1+ρ 9 ⌋ + ⌊ w4+ρ 9 ⌋ = q -x. Then (3.6) gives,

-If ⌊ w8+ρ 9 ⌋ -⌊ w1+ρ 9 ⌋ -⌊ w4+ρ 9 ⌋ = -1. Then ⌊ w1+ρ m ⌋ + ⌊ w4+ρ 9 ⌋ = q + 1. By Lemma 3.1, we have ⌊ w1+ρ

9 ⌋ ≥ 2 and ρ ≥ 1. Since q ≥ 1, then (3.6) gives,

Using Proposition 2.3, we get that S satisfies Wilf's Conjecture in this case.

Thus, Wilf's Conjecture holds if m -ν = 5.

In the next corollary, we will deduce the conjecture for m = 9.

Corollary 3.12 If S is a numerical Semigroup with multiplicity m = 9, then S satisfies Wilf's Conjecture.

Proof. By Lemma 3.7, Corollary 3.9 and Theorem 3.11, we may assume that m -ν > 5, hence ν < m -5 = 4.

By ([3]) S satisfies Wilf's Conjecture.

The following Lemma will enable us later to show that Wilf's Conjecture holds for numerical semigroups with

Using Proposition 2.3, we get that S satisfies Wilf's Conjecture. Proof. Since m -ν ≥ α(α-1)

2

-1, then by Lemma 3.10 we have w m-1 ≥ w 1 + w α or w m-1 ≥ w α-2 + w α-1 . Suppose that w m-1 ≥ w 1 + w α . Since (2 + α-3 q )ν ≥ m, by applying Theorem 3.2, S satisfies wilf's Conjecture. Now suppose that w m-1 ≥ w α-2 + w α-1 . We may assume that q ≥ 4 (q ≤ 3 is solved [START_REF] Kaplan | Counting numerical semigroups by genus and some cases of a question of Wilf[END_REF], [START_REF] Eliahou | Wilf's Conjecture and Macaulay's theorem[END_REF]). Then for α ≥ 7 we have, ( α-1+3 3 )ν ≥ (2 + α-3 q )ν. Consequently, ( α-1+3

3

)ν ≥ m. Now by applying Theorem 4.1, S satisfies Wilf's Conjecture.

As a direct consequence of Theorem 4.1, we get the following Corollary. Corollary 4.4 Let S be a numerical semigroup with multiplicity m and embedding dimension ν. Let w 0 = 0 < w 1 < w 2 < . . . < w m-1 be the elements of Ap(S, m). Suppose that w m-1 ≥ w α-1 + w α for some 1 < α < m -1. If m ≤ 4(α+3) 3 , then S satisfies Wilf's Conjecture.

Proof. If ν < 4, then S satisfies Wilf's Conjecture ( [START_REF] Dobbs | On a question of Wilf concerning numerical semigroups[END_REF]). Hence, we can suppose that ν ≥ 4. Thus, ( α+33 )(ν) ≥