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Abstract

Recently developed results for direct adaptive con-
trol design in the context of uncertain systems in de-
scriptor form are discussed and applied to a satel-
lite attitude control problem. Thanks to descriptor
model handling the methodology allows to address
with convexity arguments uncertainties on the iner-
tia matrix. The design of the adaptive law is done
with semi-definite programming tools (LMI solvers)
and is applicable with the sole knowledge of a con-
troller stabilizing the nominal system (no passivity
assumptions). The tackled satellite model is linear
(assuming small pointing errors), full 3D rotations
are considered (axes are coupled), and mixed reac-
tion wheel and magnetotorquer actuation is adopted.
Compared to the provided initial LTI control law,
adaptive control increases robustness margins by a
factor 262%.

1 Introduction

Attitude control of satellites has been a rising issue
for years and keeps being an important topic, both in
research ([5], [15], [23]) and in engineering ([24], [19],
[17]). A wide range of satellites, including those of
CNES Myriade series ([16]), are actuated by reaction
wheels, which allow a high pointing accuracy but
which can saturate, evolving the uncontrollability of
the spacecraft. To prevent reaction wheel saturation
and counter external disturbances, satellites are also

equipped with magnetotorquers ([14], [1], [22]).

Such devices are low cost and reliable but they
suffer from the unavoidable constraint to generate
a torque lying in the plane orthogonal to the lo-
cal direction of the geomagnetic field. Since this
last evolves along the satellite orbit, the obtained
system is time varying, making it hard to control
with classical techniques.Recently, some interesting
solutions have been proposed to tackle this issue
([26], [4], [20]), but none of them takes into account
parametric uncertainties in the model. In most
papers on attitude control, the inertia of a satellite
is either assumed known ([12], [25], [21], [23]), or
not well known but with an uncertainty never more
than 30% around its nominal value ([5], [3]). Since
adaptive control theory has been proved to deal well
with systems with high parametric uncertainties ([7],
[8], [11]), the controller proposed in this paper is
adaptive.

In this paper, we aim at stabilizing a 3 axes
satellite with several actuators for the widest range
of inertia. A multi input/multi output synthesis
is then required. Moreover, since the considered
uncertainties are all scalar (on the diagonal compo-
nents of the matrix of inertia of the satellite), the
method to be employed must guarantee parametric
robustness with respect to structured uncertainties
([6]). In [16], an optimal controller has already been
computed and widely used in the case when the



reaction wheels are far from saturation. This one
will be used as a baseline for the adaptive controller
synthesis.

Theoretical and practical results have been
published in [10] and [11]. They satisfy all these
criteria, excepted the taking into account of the data
yielded by the magnetotorquers. They use LMI-
based methods ([2]) with S-variables, making their
resolution effective. Neither passivity assumption,
nor parameter estimation is required, allowing di-
rect adaptation and therefore simple implementation.

The paper is organized as follows: The problem
is formulated in section 2. In section 3, theoretical
results to build a robust direct adaptive controller
are given. Based on these results, an adaptive
attitude controller for a CNES satellite is designed,
with no worse robustness than a corresponding static
output feedback in section 4, and with improved ro-
bustness in section 5. Conclusion is given in section 6.

Notation. I stands for the identity matrix. {1;V }
is the set of all the integers between 1 and V . AT is
the transpose of the matrix A. AS stands for the
symmetric matrix A + AT . A(�) ≺ B is the ma-
trix inequality stating that A − B is negative (semi-
)definite.

2 Problem statement

Performance and robustness of the attitude control
loop are two fundamental requirements to have a
high attitude pointing accuracy level. In the context
of small deviations, the satellite model is linearized
around a target attitude. Without loss of general-
ity, this one is assumed equal to zero for easier cal-
culations. The considered satellite has three reac-
tion wheels whose angular momentum is controlled
by three magneto-torquers. When the scientific mis-
sion must be achieved, the classical attitude control
loop has the modelisation of Figure 1.

For control design, we consider the following lin-
earised satellite dynamics:

JΘ̈ = T, Θ̇ = Ω (1)

Figure 1: Classical attitude control scheme in closed-
loop

where Θ ∈ R3 is the vector of attitude angles, Ω ∈ R3

is the vector of angular rates and J ∈ R3×3 is the
inertia of the satellite, whose diagonal coefficients are
assumed uncertain.
The aim of the study is to build a controller which
stabilizes the system for the highest range of inertia.
In all the following, these notations will be used:

J =

Jxx Jxy Jxz
Jyx Jyy Jyz
Jzx Jzy Jzz


Jii ∈ [(1− qi)Jii,nom; (1 + qi)Jii,nom] ; qi ∈ [0 q̄]

For all i ∈ {x, y, z}, Jii,nom is known:
Jxx,nom = 31.38kg.m2, Jyy,nom = 21.19kg.m2

and Jzz,nom = 35.70kg.m2. For j 6= i, Jij is
known: Jxy = Jyx = −1.114kg.m2, Jxz = Jzx =
−0.260kg.m2 and Jyz = Jzy = −0.778kg.m2. Notice
that the uncertainty range q̄ is the same on all the
three axes. q̄ is to be maximized.

The ”RW” block in Figure 1 is the model for the
reaction wheel actuators. These are represented
in the local linearization frame as three decoupled
second order lowpass filters. In simulations the reac-
tion wheels angular rates are saturated at±293rad/s.

The three magneto-torquers controlling the angu-
lar momentum of the three reaction wheels are pre-
sented in Figure 2. Assuming that the target angular
momentum is zero, the green square on the left of Fig-
ure 2 corresponds to the error between the real reac-
tion wheel and the target kinetic momenta. A PI con-
troller is then applied to this error, with a saturation



Figure 2: Momentum controller model

of the integral term. This gives a torque Ccom−MTB .
Apart from that, the local magnetic field Bsat is sim-
ulated at any time. The magnetic field model used is
IGRF5. Then, the component of Ccom−MTB which is
parallel to the local magnetic field Bsat is removed, so
that it just remains the magnetic momentum Mcom

needed in order to control the magnetotorquers. The
quantifier block aims at modeling the effect of the
modulator, which is converting the momentum input
into a number of 1/16s time slots activation. Due to
the modulator, the magnetic momentum applied to
the satellite is quantified with a Mmax/16 step. This
creates, together with the local magnetic field vec-
tor Bsat, but this time using IGRF10 model (which
is more accurate but involves more calculations), a
torque on the satellite CMTB = Mcom ∧ Bsat. This
model reflects the reality and will be used for simula-
tions. For the synthesis of the controllers (see section
3 and further), a linearized model provided by CNES
is used.

Attitude control of the nominal satellite with iner-
tia equal to Jnom is achieved by the combination of
three identical speed estimators

ωi =
s

1 + τs
θi

where the time constant τ is equal to 0.5s; three
stabilizing filters with coefficients chosen by multi-
objective H2/H∞ synthesis with pole placement in a
LMI region ([18]); and a known static output feed-
back u = KΘ0Θ +KΩ0Ω.
Replacing the static output feedback by an adaptive
output feedback has been the topic of [13], but the
control of the reaction wheel angular momentum was
not taken into account in the design process. Adap-

tation was only on attitude angle Θ and angular rate
Ω. The particularity of this study lies in the fact
that in addition to the six adaptive gains (three for
the attitude and three for the angular rates), we also
consider that the proportional gains of the magneto-
torquers PI controllers (one per axis) in Figure 2 are
time varying. Consequently, the considered system
has six inputs (blue circles on Figures 1 and 2) and
nine outputs (green squares on Figures 1 and 2). The
corresponding static output feedback has the follow-
ing form:

K0 =


KΘ0 0 0 KΩ0 0 0 0 0 0
0 KΘ0 0 0 KΩ0 0 0 0 0
0 0 KΘ0 0 0 KΩ0 0 0 0
0 0 0 0 0 0 Kp0 0 0
0 0 0 0 0 0 0 Kp0 0
0 0 0 0 0 0 0 0 Kp0

 .
(2)

3 Robust adaptive controller
design

This part is mainly a recall of theoretical results de-
tailed in [10] and [11], but they are essential for the
understanding of their application to satellite atti-
tude control. Let the following linear state-space
model:

Exx(q)ẋ(t) + Exπ(q)π(t) = A(q)x(t) +Bu(t)
y(t) = Cx(t)

(3)

where x ∈ Rnx is the state of the plant,
u ∈ Rnu is the control input, π ∈ Rnπ is an
auxiliary signal, y ∈ Rny is the output signal.
Exx(q) ∈ Rn×nx , Exπ(q) ∈ Rn×nπ and A(q) ∈ Rn×nx
must be affine functions of the uncertain vector
q, whose components are the uncertain parame-
ters (here q ∈ R3 is composed by the diagonal
coefficients of the inertia J). B ∈ Rn×nu and
C ∈ Rny×n. Without loss of generality, the
q-dependent matrices can be rewritten into a poly-

topic form: Exx(q) = Exx(δ) =
∑V
v=1 δvE

[v]
xx,

Exπ(q) = Exπ(δ) =
∑V
v=1 δvE

[v]
xπ and



A(q) = A(δ) =
∑V
v=1 δvA

[v]. The polytope is
defined by its V vertices δ1 . . . δV , which are the
V (= 23 here) extremal combinations of the compo-
nents of q. Every descriptor model with matrices
rational with respect to the components of the
uncertain vector can be rewritten into such a form.
A proof of this result and general techniques to
manage it in practice are given in [6].

The main idea of this study is to replace the given
static output feedback by the following adaptive law:

u(t) = (K0 + LK(t)R)y(t) (4)

where K(t) = diag(K1(t),K2(t), . . . ), L =
[L1 L2 ...], R

T =
[
RT1 RT2 ...

]
. Low rank matrices

Lk and Rk allow LK(t)R to have the same form as
K0 in (2). The time-varying gains Kk(t) evolve ac-
cording to:

K̇k(t) = IDk (Kk(t), Wk(t))
Wk(t) = γk(−Gky(t)(Rky(t))T − σkKk(t))

(5)

where Gk and Dk are computed by solving LMIs
([13],[9]). The value of Gk gives the direction of the
adaptation. Dk enters in the definition of the satu-
rated integrator IDk , which pushes Kk(t) inside a set
Ek when it is at its border, so that the adaptive gains
are bounded. The set Ek is defined by:

Kk ∈ Ek ⇔ Tr(KT
k DkKk) ≤ 1. (6)

The forgetting factor σk drives Kk(t) to zero when
the output y is zero. The value of γk gives the
variation speed of Kk(t).

Theorem 3.1 ([11]) yields a mean to find appro-
priate values for Gk and Dk such that system (3) is
robustly stable with controller (4):

Theorem 3.1 Considering system (3), if there exist

matrices P̂ [v] = P̂ [v]T and Ŝ such that the following
condition holds for all v ∈ {1;V }: 0 0 P̂ [v]

0 0 0

P̂ [v] 0 0

+
{
Ŝ
[
E[v]
xx E[v]

xπ −A[v]
c

]}S
≺ 0

(7)

where A
[v]
c = A[v] +BK0C, then:

(i) The closed-loop is robustly stable

(ii) There exist matrices P [v], S, GT =[
GT1 , . . . , G

T
k̄

]
, D = diag(D1, . . . , Dk̄) and

ε > 0 such that the following equation holds
∀v ∈ {1;V }:

0 0 P [v] 0
0 0 0 0
P [v] 0 εI + 2CTRTRC −CTGT
0 0 −GC −2D


+
{
S
[
E[v]
xx E[v]

xπ −A[v]
c −BL

]}S
≺ 0. (8)

Besides, the solution is such that the adap-
tive control (4) stabilizes the plant whatever pos-
itive values of σk, γk and for all δ ∈ ∆V :={
δ ∈ RV : δ ≥ 0,1T δ = 1

}
.

Conditions (7) imply that the static output
feedback u(t) = K0y(t) stabilizes the system for
every value of the uncertain vector in the polytope
∆V ([6]). An important remark is that checking the
feasibility of LMIs (8) on the vertices of the plant
with a common S is sufficient to prove the stability
of the system with controller (4) for every value
of the uncertain vector. This is possible thanks to
the fact that the matrices of the system are affine
functions of the uncertainty. A detailed proof of
Theorem 3.1 is given in [10].

Theorem 3.1 only ensures that the designed adap-
tive controller is no less robust than the correspond-
ing static output feedback. Theorem 3.2 proves that
the adaptive controller is actually more robust than
the static output feedback.

Theorem 3.2 Consider the following matrix in-
equalities with P̆ [v] � 0 and ε̆ > 0 for all v ∈ {1;V }:

0 0 P̆ [v] 0
0 0 0 0

P̆ [v] 0 ε̆I + 2CTRTRC +
{
CTRTF [v]GC

}S −CTGT
0 0 −GC −2D


+
{
S
[
E[v]
xx E

[v]
xπ −A

[v]
c∆ −BL

]}S
≺ 0 (9)



and[
Tk F

[v]T
k Dk

DkF
[v]
k Dk

]
� 0 ,Tr(Tk) ≤ 1 ∀ k ∈

{
1; k̄
}

(10)

where A
[v]
c∆ = A[v] +B(K0 + LF [v]R)C.

These constraints are such that:

(i) For fixed K0, G, S and D = diag(D1, . . . , Dk̄)
the constraints are LMIs in P̆ [v], ε̆ and F [v].

(ii) For K0, G, S and D solution to constraints in
Theorem 3.1, LMIs (9) and (10) are feasible.

(iii) If the constraints are feasible, then for all k ∈{
1; k̄
}

, F (δ) is such that Tr(Fk(δ)DkFk(δ)) ≤ 1
and u(t) = (K0 + LF (δ)R)y(t) stabilizes the
plant (3) for any value of the uncertainty δ,

where F (δ) =
∑V
v=1 δvF

[v].

(iv) If the constraints are feasible, then whatever pos-
itive γk the adaptive control (4) robustly stabi-
lizes the set of the states x such that x = 0 when
all σk = 0 and robustly stabilizes a neighborhood
of this same set when at least one σk > 0.

Here again, a detailed proof of Theorem 3.2 is
given in [11] and follows the same lines as the one of
Theorem 3.1.

The most important point is that the robust sta-
bility of the system with the static output feedback
is not required anymore. This strong improvement
will be used in the next section.

4 Application to attitude con-
trol with magneto-torquers -
no worse robustness

4.1 Design of the controller

The first step is to write the system modelised in
Figure 1 into the form of (3). We get 23 systems
(one for each extremal value of the components of
J) that we call (S). In this subsection only, the
maximal uncertainty around every component of J ,

Figure 3: Attitude angle θz. Dashed lines: with SOF.
Solid lines: with adaptive controller

q̄, is fixed and equal to 30%, which is a classical
assumption. The main objective of the study will be
reached in the next subsection.

The only requirement to apply Theorem 3.1 is the
knowledge of a static output feedback which satisfies
(7). K0 in (2), whose numerical value is known, is
used in all the following. We check that (7) is satisfied
with a common matrix Ŝ for the 8 systems of (S).
Then, we apply Theorem 3.1 and obtain numerical
values for parameters Gk, Dk, σk and γk. LMIs (8)
contain 5845 variables, 552 rows and are solved in 77
sec.

4.2 Simulations results

Time variations of attitude angle θz and of reac-
tion wheel speed ωrz along z-axis are given in Fig-
ures 3 and 4. The same results are observable for
the x and y axes. Dashed blue curves are with
the static output feedback (2) and solid red curves
are with adaptive controller (4). Each curve cor-
responds to one random value of the inertia in the
polytope ∆V . The same random inertias have been
used to plot the blue and the red curves. Ini-
tial conditions are the same for all the simulations:
Θ0 = [10 10 10]

◦
; Ω0 = [−0.01 − 0.01 − 0.01]

and Ωr0 = [290 290 290] rad/s, that is, very close
to the saturation.

Time variations of the attitude and reaction wheel
speed are smoother with the adaptive controller (4)
than with the static output feedback (2). More-



Figure 4: Reaction wheel speed ωrz. Dashed lines:
with SOF. Solid lines: with adaptive controller

over, there are less differences between the solid
red curves than between the dashed blue curves:
Adaptive controller (4) seems more robust than
the corresponding static output feedback (2). The
most important remark is that the reaction wheel
speed saturates very quickly with the static output
feedback, whatever the real value of the inertia.
In opposite, it never saturates with the adaptive
controller. The adaptive controller designed in
[13], with adaptation only on attitude angle and
angular speed, could not avoid the saturation of
the reaction wheels. This improvement is due to
the fact that we made the proportional gains of the
PI controllers of the magneto-torquers time-varying
and then evolving depending on the measurements
in real time. The fact that the reaction wheel rate
wr does not converge to zero is due to the presence
of external disturbances in the simulated model.
Besides, the torque Ccom−MTB never reaches its
saturation limit. Finally, it can be mentioned that
the initial position of the satellite along its orbit does
not affect the efficiency of the adaptive controller.

Time variations of the adaptive gains along z-axis
are given in Figures 5, 6 and 7. Blue curves, corre-
sponding to the static output feedback, are logically
constant whereas those standing for the adaptive con-
troller are time-varying. It is clear that all the adap-
tive gains are bounded.

Figure 5: Attitude gain Kθz. Dashed lines: with
SOF. Solid lines: with adaptive controller

Figure 6: Angular speed gain Kωz. Dashed lines:
with SOF. Solid lines: with adaptive controller

Figure 7: Magneto-torquer gain Kpz. Dashed lines:
with SOF. Solid lines: with adaptive controller



5 Application to attitude con-
trol with magneto-torquers -
improved robustness

In this section, the value of the maximal uncertainty
q̄ on the components of the inertia of the satellite
is not fixed anymore (it was of 30% in section 4).
Nevertheless, it is still assumed that the range is the
same along the three axes.

As said in section 3, the strength of Theorem 3.2
lies in the fact that the static output feedback does
not need to robustly stabilize the system anymore.
But rather than modifying the value of the static
output feedback, the following method is applied to
system (S), with static output feedback (2):

• The values of parameters Gk, Dk and S are fixed
and equal to the ones computed in section 4,
when solving LMIs (8).

• Using (i) in Theorem 3.2, we get that inequalities
(9) are LMIs.

• We find q̄, the maximal value for which LMIs
(9) are feasible for system (S) with inertia Jii ∈
[(1− q̄)Jii,nom; (1 + q̄)Jii,nom].

Based on (ii) in Theorem 3.2 and application of
Theorem 3.1 in section 4, we know that q̄ ≥ 30%.
LMIs (7) with static output feedback (2) become un-
feasible when the diagonal components of J have 34%
of uncertainty. Yet, as LMIs (7) are only sufficient
conditions, their unfeasibility is not enough to con-
clude about the instability of the closed-loop. How-
ever, system (3) without uncertainty, with diagonal
components of J increased by 34% from their nominal
value is unstable. Consequently, 34% of uncertainty
is the limit for the robust stability of system (3) with
static output feedback (2).

By simple dichotomy method, we get q̄ = 89%,
meaning that adaptive control (4) can stabilize
system (S) when considering that the inertia has
89% of uncertainty. One application of Theorem
3.2 lasts 36 sec on average. LMIs of Theorem 3.2
contain 3731 variables and 579 rows.

Figure 8: Attitude angle θz. Dashed lines: with SOF.
Solid lines: with adaptive controller

Figure 9: Angular rate ωz. Dashed lines: with SOF.
Solid lines: with adaptive controller

In order to illustrate this result, time variations
of the states of the system are plotted in Figures
8 (attitude angle θ), 9 (angular speed ω) and 10
(reaction wheel speed ωr). Simulation parameters
are the same as in section 4 and here again, similar
results have been obtained for x and y axes.

On one hand, curves in dashed red lines clearly
show that the static output feedback (2) does not
robustly stabilize system (S) for qz = q̄. Attitude an-
gle θ diverges and angular and reaction wheel rates
saturate after 20 seconds of simulation. This is not
surprising since the robust stabilization of the system
with the static output feedback is not a requirement
to apply Theorem 3.2. By the way, LMIs (7) are
not satisfied for qz = q̄. On the other hand, curves
in solid blue lines attest to the fact that with adap-
tive control (4) with parameters of Theorem 3.2, the



Figure 10: Reaction wheel rate ωrz. Dashed lines:
with SOF. Solid lines: with adaptive controller

states of system (S) converge at least to a neighbor-
hood of the origin. Notice nonetheless that in that
case, overshoots on θ, ω and ωr are not avoided.

6 Conclusion

A robust adaptive attitude controller has been de-
signed for satellite with magnetotorquers. Informa-
tion yielded by the magnetotorquers is fully used,
adaptation being made not only on attitude angle
and angular rate, but also on reaction wheel torque.
The adaptive controller turns out to be very robust
with respect to parametric uncertainties. It allows to
stabilize the satellite with a considered uncertainty
range on its inertia of ±89%. The case when the
cross coefficients of the inertia are uncertain will be
considered in a future work. From a practical point of
view, this can take place in the context of a shock be-
tween the satellite and another spacecraft or debris,
or during the deployment/folding of the panels of the
satellite. In such cases, the inertia of the satellite can
be subject to important and sudden changes, making
it unknown at much more than classical ±30%.
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