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LMI-based design of a structured direct adaptive satellite attitude control with actuator rate feedback

Satellite attitude control of a microsatellite of the CNES Myriade series is considered. Reduction of saturations on the angular rate of reaction wheel actuators is addressed by means of control gain adaptation. The proposed adaptive control design has the following features: performances of the adaptive law are the same as those of a predefined linear time-invariant control when the state is close to the equilibrium; adaptation is structured allowing to include engineering considerations in the design; asymptotic stability is guaranteed based on Lyapunov arguments; fine tuning of adaptive gains is made by linear matrix inequality based convex optimization. The novelties compared to previous results are: to include magnetotorquer information in the adaptive scheme; to provide a simplified design procedure.

Introduction

The attitude control of satellites is a challenging issue that has attracted much attention of the scientific community (see for example [START_REF] Wen | The attitude control problem[END_REF][START_REF] Chaturvedi | Rigid-body attitude control[END_REF]). Many of these contributions consider an idealized rigid body model with ideal actuators which allows to provide powerful global hybrid stabilization solutions such as in [START_REF] Mayhew | Quaternion-based hybrid control for robust global attitude tracking[END_REF][START_REF] Schlanbusch | On the stability and stabilization of quartenion equilibria of rigid bodies[END_REF]. One can also cite sliding mode control solutions as for example [START_REF] Hu | Sliding mode attitude control with L 2 -gain performance and vibration reduction of flexible spacecraft with actuator dynamics[END_REF] where additional flexible structure characteristics are included to the basic rigid body model, or [START_REF] Zhu | Adaptive sliding mode control for attitude stabilization with actuator saturation[END_REF] where actuator saturation is considered. Such non-linear approaches have the advantage of providing global stability characteristics essential when the satellite performs large atti-tude changes, but they can scarcely characterize the attitude control at fine pointing mode in which the satellite is most of the time.

A complementary approach is the design of a local linear control, for example using linear matrix inequality (LMI) based results as in [START_REF] Pittet | LMI based multi-objective H ∞ control of flexible microsatellites[END_REF][START_REF] Charbonnel | H ∞ and LMI attitude control design: towards performances and robustness enhancement[END_REF][START_REF] Wu | Multi-objective output-feedback control for microsatellite attitude control: an LMI approach[END_REF]. Such approaches have the advantage to provide robust controllers with optimized performances that can designed for precise models including flexible modes and actuator dynamics. The main disadvantage of the obtained controllers is that they have high gain characteristics (for improved performance) that inevitably saturate the actuators as soon as the pointing errors are greater than a few degrees. To expand the neighborhood of the equilibrium point where the local linear control remains valid without saturating actuators, a solution adopted by CNES [START_REF] Pittet | Gyroless attitude control of a flexible microsatellite[END_REF] is to switch to a less aggressive control when depointing exceeds some fixed threshold. In [START_REF] Biannic | LPV analysis of switched controllers for attitude control systems[END_REF] a linear parameter-varying alternative is proposed that avoids the discontinuities due to switching. An other solution based on adaptive control is proposed in [START_REF] Luzi | Structured adaptive attitude control of a satellite[END_REF][START_REF] Luzi | Commande variante dans le temps pour le contrôle d'attitude de satellites[END_REF] and was satisfactorily tested onboard the PICARD satellite [START_REF] Pittet | In flight results of adaptive attitude control law for a microsatellite[END_REF]. The goal of the paper is to improve these last results and to justify theoretically some heuristic tunings done in [START_REF] Pittet | In flight results of adaptive attitude control law for a microsatellite[END_REF].

At the difference of [START_REF] Egeland | Passivity based adaptive attitude control of a rigid spacecraft[END_REF][START_REF] Costic | A quaternion-based adaptive attitude tracking controller without velocity measurements[END_REF][START_REF] Zhu | Adaptive sliding mode control for attitude stabilization with actuator saturation[END_REF], we adopt a direct adaptive control strategy that does not rely on online parameter estimation, but tunes directly the control gains based on the measurements. Such direct adaptive strategy follows the passivity-based results of [START_REF] Fradkov | Adaptive stabilization of a linear dynamic plant[END_REF][START_REF] Kaufman | Direct adaptive control algorithms[END_REF][START_REF] Fradkov | Nonlinear and Adaptive Control of Complex Systems[END_REF][START_REF] Peaucelle | Robust adaptive L 2 -gain control of polytopic MIMO LTI systems -LMI results[END_REF]. Here we apply some of the most recent developments from [START_REF] Luzi | Structured adaptive attitude control of a satellite[END_REF] that have the following important features: the adaptive control design only requires feedback stabilizability of the plant (no closed-loop passivity assumption); the adaptive law can be structured which allows engineering considerations; the design of the adaptive law parameters is via linear matrix inequality (LMI) constrained optimization (that is convex and solvable efficiently in polynomial time).

The contributions of the paper are both in terms of improved attitude control strategy by adapting the magnetotorquer proportional gain, and in terms of reduction of the numerical burden of the LMI-based design.

Following the specifications [START_REF] Pittet | DEMETER: a benchmark for robust analysis and control of the attitude of flexible microsatellites[END_REF] given by CNES (the french space agency that develops the Myriade series of micro satellites), and at the difference of many papers such as [START_REF] Zhu | Adaptive sliding mode control for attitude stabilization with actuator saturation[END_REF], the critical saturation issue that we consider is not in terms of saturation of the control torques, but the saturation of the reaction wheels angular rate. The actual control torque is related to the derivative of this angular rate and hence the satellite is uncontrollable by reaction wheels when saturation occurs. Our contribution is to include in the adaptive control strategy the information about the reaction wheels angular rate with the objective to avoid as much as possible the saturations.

The second contribution is to revisit the LMI-based design strategy. The new conditions we provide not only allow the design of the adaptive law parameters in one unique LMI step (two steps in [START_REF] Luzi | Structured adaptive attitude control of a satellite[END_REF]) but the adaptive control has proved asymptotic convergence to equilibrium points even in the presence of forgetting factor terms.

The paper is organized as follows. First we expose the satellite attitude control problem for the latest Myriade series satellite. Section III then provides the theoretical contributions, namely the LMI-based design methodology and the proofs of asymptotic stability of the direct adaptive control law. The fourth section demonstrates how the proposed methodology applies to the satellite example and illustrates the improvements made possible when adapting the magnetotorquer gain. Finally we draw some conclusions and perspectives for future work.

Notation. I stands for the identity matrix. A T is the transpose of the matrix A. {A} S stands for the symmetric matrix {A} S = A + A T . A( ) ≺ B is the matrix inequality stating that A-B is negative (semi-)definite. diag(F 1 , • • • , Fk) stands for a bloc-diagonal matrix whose diagonal blocs are the F 1 , . . . F k , . . . Fk matrices.

Taranis microsatellite attitude control

In 2016-2017, CNES schedules to send to orbit an other microsatellite from the Myriade series, Taranis, dedicated to the study of thunderstorms. The satellite will weight from 150 to 200kg and its architecture is very close to that of Demeter [START_REF] Pittet | DEMETER: a benchmark for robust analysis and control of the attitude of flexible microsatellites[END_REF] satellites launched in 2004. It is more complex to control than the Picard satellite launched in 2010 since it has four appendices (as for Demeter) that bring low frequency flexible modes to the dynamics. The current study is assuming the dynamics of the three axes are decoupled and we consider the linearized x-axis model with flexible modes: θ = G T ar (s)T = 0.449s 2 + 0.0038s + 1 2.3169s 4 + 0.1425s 3 + 37.49s 2 T.

(1) The actuation torque T is realized by reaction wheels modeled as

T = G r (s)ω rs = (1.214s + 0.7625)J r s s 2 + 2.4s + 0.7625 ω rs , ω r = 1 J r s u f (2) 
where ω r is the reaction wheel angular rate and J r is the inertia of the reaction wheel. In practice the reaction wheel is saturated in terms of angular rate: ω rs = sat ωr (ω r ) where ±ω r = ±293rad/s are the limits on the angular rate. Due to the derivative type term in G r (s), as soon as the reaction wheel rate saturates, the actuation torque T is zero: the satellite is non actuated. It is a situation to be avoided. The classical control law structure for the Myriade series is composed of an estimator of the satellite angular rate ω e = G e (s)θ, a proportional/derivative baseline control u c = F θ θ+F ω ω e and some stabilizing fourth order filter u f = G f (s)u. The same filter is considered as in [START_REF] Pittet | Gyroless attitude control of a flexible microsatellite[END_REF]. This classical structure suffers from the fact that the reaction wheel rate is a non asymptotically stable state. To stabilize it without introducing much difference with the existing control architecture, we also consider in this paper case the action of a magnetotorquer, whose transfer function is a proportional-integral controller:

T = (G r (s)+J r G mgt (s))ω rs , G mgt (s) = 0.01+ 6e -5 s .
(3) To illustrate the modification brought by the magnetotorquer the time histories of the satellite angle, angular rate and the reaction wheel angular rate are plotted respectively in Figures 1, 2 and 3. The initial conditions θ(0) = 10deg, ω(0) = 0.01rad/s and ω r (0) = 0rad/s are such that the reaction wheel saturates. The angular rate shows some rapid oscillations due to the flexible mode. The proportional-integral controller improves the dynamics of the response and reduces slightly the time of saturation, at the expense of a slower stabilization of the reaction wheel speed (the magnetotorquer uses magnetic field data). Our goal is to reduce it further, without modifying the characteristics of the closed-loop at fine foisting. For that purpose we propose in the following a rigorous LMI-based methodology to design an adaptive version of this controller. and assume some existing structured stabilizing static output feedback control written in the following format

u = k k=1 L k F k R k y (5) 
where L k and R k are full rank matrices composed of zero or unity elements, defining the structure of the controller, and where F k are full-block independent gains. For building compact formulas we denote

L = L 1 • • • Lk , R T = R T 1 • • • R T k
and F = diag(F 1 , . . . , Fk) the block-diagonal matrix composed of all the gains. With these notations one has u = LF Ry For the attitude control example, the output vector is y T = ω r θ ω e and the control input is u T = u r u c . The considered controller structure is such that

LF R = 1 0 0 0 1 1   F r 0 0 0 F θ 0 0 0 F ω     1 0 0 0 1 0 0 0 1  
The proposed structured adaptive control amounts to replacing the static gains F k by dynamically adapted ones such that u(t) = LK(t)Ry(t) with K(t) = diag(K 1 (t), . . . , Kk(t)) and each individual gain K k (t) is solution to non-linear differential equations

Kk (t) = Proj D k (K k (t) -F k , W k (t)) W k (t) = γ k (-G k y(t)(R k y(t)) T -σ k (K k (t) -F k )).
(6) In these equations the Proj D k operator is parameterized by a matrix D k that defines an ellipsoidal-like set defined by the following inequality:

(K k -F k ) ∈ E k ⇔ Tr((K k -F k ) T D k (K k -F k )) ≤ 1 (7)
The operator Proj D k has a similar definition as in [START_REF] Pomet | Adaptive nonlinear regulation: Equation error from the lyapunov function[END_REF]. It outputs the value W k when the gain K k -F k is in the interior of the set and enforces the derivative of K k to be such that the gain is pushed to the interior of the set when it is at the border:

Proj D k (K k -F k , W k ) = W k -H k where H k is such that H k = 0 if (K k -F k ) ∈ E k else s.t. Tr((W k -H k ) T D k (K k -F k )) ≤ 0 Tr((K k -F k ) T H k ) ≥ 0 (8)
The first of the two inequalities in [START_REF] Hu | Sliding mode attitude control with L 2 -gain performance and vibration reduction of flexible spacecraft with actuator dynamics[END_REF] ensures that the derivative of Tr((

K k -F k ) T D k (K k -F k )) is negative when Tr((K k -F k ) T D k (K k -F k )) = 1.
Hence the gains cannot exit the set E k . The second imposes H k to be oriented towards the exterior of the set (no need so subtract any component if W k already pushes the gain to the interior of the set).

The operator guarantees that whatever values of W k , the gains K k remain in a bounded neighborhood of F k parameterized by D k . In the case of scalar gains K k the set E k is an interval and the Proj D k operator can be implemented as a saturated integrator.

The adaptation in ( 6) is driven by two terms. The first term G k y(t)(R k y(t)) T drives the adaptation while the second term -σ k (K k (t) -F k ) is a forgetting factor that brings the gain back to the value F k as soon as the system is at the zero equilibrium. The adaptation law hence has the property that the control is exactly the same as the baseline control F when the errors are small (at least very close to it). Any property of the control F computed on the linear model remains valid for the adaptive control, at least for small deviations from the equilibrium point where the linear model is valid.

The design problem for the adaptive law ( 6) is to choose appropriately the matrices D k , G k and the scalars σ k , γ k . The following theorem answers this question.

Theorem 3.1 If LF R is an asymptotically stabilizing gain for the plant (4), then there exist P 0,

> 0, G = G T 1 • • • Gk T and D = diag(D 1 , . . . , Dk) solution to {P (A + BLF RC)} S + I + 2C T R T RC P BL -C T G T L T B T P -GC -2D 0.
(9) Moreover, the solution is such that the adaptive control (6) stabilizes the plant whatever positive values of σ k , γ k .

Proof: The first part of the proof is to assess that if the stability property holds for the static gain F , then there indeed exist , D k and G k parameters solution to the LMI. Let V (x) = x T P x, P 0 be a quadratic Lyapunov function which proves the asymptotic stability of ẋ = (A + BLF RC)x, i.e. { P (A + BLF RC)} S ≺ 0. By a small perturbation argument, and whatever a priori choice of Ĝ, there exist small positive ˘ > 0, ˆ > 0 and ˜ > 0 such that

{ P (A + BLF RC)} S -˘ I -ˆ C T R T RC -˜ ( P BL -C T ĜT )(L T B T P -ĜC).
Multiply this inequality by κ = 2/ˆ and take = κ˘ , P = κ P , G = κ Ĝ, D = (ˆ /˜ )I, the inequality also reads as

{P (A + BLF RC)} S -I -2C T R T RC -(P BL -C T G T )(2D) -1 (L T B T P -GC).
By a Schur complement argument, this inequality is equivalent to the LMI [START_REF] Kaufman | Direct adaptive control algorithms[END_REF]. Now let us prove the stability of the closed-loop with adaptive control. Pre an post-multiply (9) by x T x T C T R T (K -F ) T and its transpose respectively, to get for y = Cx:

2x T P Ax + 2x T P BLF Ry + x T x + 2y T R T Ry +2x T (P BL -C T G T )(K -F )Ry -2y T R T (K -F ) T D(K -F )Ry ≤ 0.
Along the adaptive control closed-loop system trajectories ẋ = (A + BLKRC)x, this inequality also reads as

2x T P ẋ -x T P BL(K -F )Ry + 2y T R T Ry +2x T (P BL -C T G T )(K -F )Ry -2y T R T (K -F ) T D(K -F )Ry ≤ -x T x
or after rearranging terms

2x T P ẋ -2y T G T (K -F )Ry +2y T R T (I -(K -F ) T D(K -F ))Ry ≤ -x T x.
Due to the block-diagonal nature of the matrices K, F and D, the matrix

I -(K -F ) T D(K -F )) is block diagonal with I -(K k -F k ) T D k (K k -F k ))
elements on its diagonal. Moreover recall that for a positive definite matrix M , Tr(M ) ≤ 1 implies I -M 0. Because of this one has:

2x T P ẋ -2y T G T (K -F )Ry ≤ -x T x. (10) 
We shall now exploit [START_REF] Löfberg | YALMIP : A toolbox for modeling and optimization in MATLAB[END_REF] to prove stability of the adaptive control closed-loop. For that purpose consider the following Lyapunov function:

V (x, K) = x T P x + Tr((K -F ) T Γ -1 (K -F ))
where Γ = diag(γ 1 I m1 , • • • , γkI mk ) and m k is the number of columns of L k . The derivative of this Lyapunov function along the trajectories of the adaptive closed-loop system reads as

V (x, K) = 2x T P ẋ + 2Tr((K -F ) T Γ -1 K) = 2x P ẋ -2Tr((K -F ) T (Gy)(Ry) T ) -2Tr((K -F ) T σ(K -F )) -2Tr((K -F ) T Γ -1 H)
The second row of this formula is obtained by replacing the derivative of the adaptive add-on by its formula, while taking σ = diag(σ 1 I m1 , . . . , σkI mk ) and H = diag(H 1 , . . . , Hk). Using the properties of the trace operator, the fact that matrices are block diagonal and the definition of the H k matrices one gets:

Tr((K -F ) T Γ -1 H) = k k=1 γ -1 k Tr((K k -F k ) T H k ) ≥ 0.

Moreover, thanks to the trace operator properties on has

Tr((K -F ) T (Gy)(Ry) T ) = Tr((Ry)(Gy) T (K -F )) = Tr((Gy) T (K -F )(Ry)) = y T G T (K -F )Ry.
Hence using [START_REF] Löfberg | YALMIP : A toolbox for modeling and optimization in MATLAB[END_REF], the derivative of the Lyapunov function is negative:

V (x, K) ≤ -x T x - k k=1 σ k Tr((K k -F k ) T (K k -F k )).
According to the Lyapunov theory the non-linear adaptive closed-loop system is asymptotically stable and the states x and K k converge respectively to zero and F k . Remark 1: The D k matrices parametrize the sets in which the adaptive gains lie. The "larger" D k is, then the smaller is the set E k . This means that if we aim at having large sets in which the adaption performs, one has to look for the "smallest" possible D k . In practice we suggest to minimize

f w (D) = k k=1 w k Tr(D k )
where the weights w k are chosen as a tradeoff between the different gains and the trace operator is chosen such that the "size" is defined by a linear function. Minimizing f w (D) under the LMI constrains ( 10) is a convex optimization problem that can be easily coded in Matlab using the YALMIP parser [START_REF] Löfberg | YALMIP : A toolbox for modeling and optimization in MATLAB[END_REF] and solved efficiently using semi-definite programming tools such as [START_REF] Toh | SDPT3 -a MATLAB software package for semidefinite programming[END_REF].

Remark 2: The condition [START_REF] Löfberg | YALMIP : A toolbox for modeling and optimization in MATLAB[END_REF] being linear in G, it is possible to perform the convex LMI optimization with any additional linear constraints on the coefficients of G. This is used in the following for the satellite example in order to force the directions in which adaptation is done, based on engineering considerations.

Remark 3: Theorem 3.1 is an improved version of results given in [START_REF] Luzi | Structured adaptive attitude control of a satellite[END_REF]. The improvements have the following characteristics

• The LMI-based design is done in one step (two steps in [START_REF] Luzi | Structured adaptive attitude control of a satellite[END_REF]) thus reducing the computation burden by a factor two.

• The adaptive gains are guaranteed to converge asymptotically to the nominal values F k , while in [START_REF] Luzi | Structured adaptive attitude control of a satellite[END_REF] only convergence to a neighborhood of these is guaranteed. The drawback is that the sets in which the gains evolve may be smaller.

• In [START_REF] Luzi | Structured adaptive attitude control of a satellite[END_REF] boundedness of the adaptive gains is guaranteed by a penalty barrier function in the adaptation equation. Such barrier function has proved complex to implement, even in the case of scalar gains (see [START_REF] Luzi | Commande variante dans le temps pour le contrôle d'attitude de satellites[END_REF]). The projection operator appears to be more appropriate for implementation.

Design of the Taranis adaptive attitude control

By default the adaptive law for the satellite control with three scalar gains is driven by the following equations

W θ (t) = γ θ (-G θ y(t)θ(t) -σ θ (K θ (t) -F θ )), W ω (t) = γ ω (-G ω y(t)ω e (t) -σ ω (K ω (t) -F ω )), W mgt (t) = γ mgt (-G mgt y(t)h r (t) -σ mgt (K mgt (t) -F mgt )), h r (t) = = J r ω r (t).
and the projection operator guarantees the gains to be in intervals centered at the nominal values and of length proportional to the inverse of the square root of the D matrices:

K θ ∈ [ F θ -D -1/2 θ , F θ + D -1/2 θ ], K ω ∈ [ F ω -D -1/2 ω , F ω + D -1/2 ω ], K mgt ∈ [ F mgt -D -1/2 mgt , F mgt + D -1/2 mgt ].

Design without actuator rate feedback

To analyse the usefulness of the magnetotorquer introduced in section 2 for the adaptive control problem, we first consider the case when only position and rate are adapted. F mgt = -0.01 is constant and G mgt = 0. The LMI problem is then solved with the following constraints on the other matrices:

G θ = g θ 0 0 , g θ ≥ 1, G ω = 0 g ω 0 , g ω ≤ -10g θ .
This choice is done such that: when the depointing is large (θ 2 is large), the adaptation will push K θ to smaller values, thus reducing the actuation effort; when the satellite rotation rate is large (ω 2 e is large), the adaptation will push K ω to larger values, thus regulating strongly the angular rate to zero. Both these effects tend to slow down the convergence of the attitude with the expected benefit of avoiding actuator rate saturation. The factor 10 between the two gains is chosen heuristically to avoid numerical issues. It has no influence on the adaptive control itself since the adaptation equations ( 6) are finally multiplied by a positive scalar γ k that drives the adaptation speed of each gain independently.

Weights chosen as w θ = 10, w ω = 1 in order to push for larger variations of K θ compared to those on K ω . The LMI optimization problem is solved with a computation time of about 1 second and gives:

g θ = 2.52, D -1/2 θ = 0.0986, g ω = -25.19, D -1/2 ω = 0.0517.
The other parameters are chosen accordingly to the methodology exposed in [START_REF] Luzi | Structured adaptive attitude control of a satellite[END_REF]. Their values are γ θ = 0.569, σ θ = 0.049, γ ω = 0.569, σ ω = 0.037.

Simulation results with this adaptive control are plotted with dash lines in Figures 4, 5, 6, 7 and 8.

Design with actuator rate feedback

In [START_REF] Pittet | In flight results of adaptive attitude control law for a microsatellite[END_REF] a modification of the adaptive law is proposed (and successfully tested onboard the PICARD satellite). This modification is heuristic and comes from the intuition that there is no reason for slowing down the dynamics when the reactions wheel angular rate is far from saturation. The proposed modification is on the adaptive rule for K θ and reads as

W θ (t) = γ θ (-g θ θ 2 (t) + g r ω 2 r -σ θ (K θ (t) -F θ )),
Rather than testing this heuristic solution, we suggest a new one that can be validated with the LMI design and that assumes that the proportional gain K p of the proportional-integral controller of the magnetotorquer can be adapted as the gains K θ and K ω are.

The design is lead with the following constraints

G θ = g θ 0 0 , g θ ≥ 0, G ω = 0 g ω 0 ,
g ω ≤ 0, G mgt = 0 0 g mgt , g mgt ≤ 0 Weights are chosen to fit the previous ones w θ = 10, w ω = 1 and with w mgt = 10 -4 that need not to be large since K mgt will vary around small values (F mgt = -10 -2 ). The LMI optimization problem is solved with a computation time of about 1 second and gives: 

Simulation results

Time responses of the attitude angle with the same initial conditions as those used in Section II are plotted in Figure 4. The comparison with Figure 1 shows that the adaptive controllers allow a faster convergence. Time responses of the actuator angular rate are plotted in Figure 5. The comparison with Figure 3 shows that the adaptive controllers allow a reduced Time histories of the adaptive gain K mgt are plotted in Figure 6. The dotted curve is constant since it corresponds to the case when no adaptation is done for this gain. In the adapted case the variations are non negligible compared to the nominal value.

Time histories of the gains K θ and K ω are plotted in Figures 7 and8 respectively. In the case of adaptation involving the actuator rate the bounds in which the gains evolve are tighter. This is coherent with the smaller values of D An important feature is that the gains do converge back to their nominal values as soon as the satellite is close to the equilibrium. The convergence rate is driven by the σ • values (see [START_REF] Luzi | Structured adaptive attitude control of a satellite[END_REF] for the explanation on how these should be chosen based on thresholds between large and small distances to equilibrium). An other feature is that the gains evolve rather smoothly. This is achieved by tuning the γ • values knowing the range of evolution of the different signals, in order to have reasonable, implementable, values for the derivatives Kk .

CONCLUSIONS AND FU-TURE WORKS

We have explored in this paper the opportunity to adapt control gains based on all available information from the plant: attitude angle and rate, plus actuator rate. Results show that such adaptive control can be designed based on any existing linear-time invariant control, that performances of this baseline control are recovered when the state is close to equilibrium, and that the design can be lead using up-to-date convex optimization techniques. In terms of the application, the adaptive control improves slightly the criterion that we have considered (faster time response and reduction of the actuator rate saturation). This feature needs to be validated on a 3 axis non-linear model of the satellite which is left for future work. The advantage of the linear-matrix inequality based design is that, except for possible numerical issues, it should be applicable to full 3 axis models.
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 1 Figure 1: Attitude angle. Dashed: classical control architecture; Solid: with the magnetotorquer.
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 2 Figure 2: Attitude angular rate. Dashed: classical control architecture; Solid: with the magnetotorquer.
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 3 Figure 3: Actuator angular rate. Dashed: classical control architecture; Solid: with the magnetotorquer.

Figure 4 :

 4 Figure 4: Attitude angle. Dashed: without mgt proportional gain adaptation; Solid: with mgt proportional gain adaptation.

  g mgt = -163.85, D -1/2 mgt = 0.0020. The other parameters are chosen accordingly to the methodology exposed in [12]. Their values are γ θ = 0.014, σ θ = 4.801, γ ω = 0.014, σ ω = 4.424, γ mgt = 0.007, σ mgt = 613.137. Simulation results with this adaptive control are plotted with solid lines in Figures 4, 5, 6, 7 and 8.

  -adaptive with negative initial rate

Figure 5 :

 5 Figure 5: Actuator angular rate. Dashed: without mgt proportional gain adaptation; Solid: with mgt proportional gain adaptation.

  -adaptive with positive initial rate
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 6 Figure 6: Adaptive gain K mgt . Dashed: without mgt proportional gain adaptation; Solid: with mgt proportional gain adaptation.

  adaptive with positive initial rate

Figure 7 :

 7 Figure 7: Adaptive gain K θ . Dashed: without mgt proportional gain adaptation; Solid: with mgt proportional gain adaptation.

  adaptive with positive initial rate

Figure 8 :

 8 Figure 8: Adaptive gain K ω . Dashed: without mgt proportional gain adaptation; Solid: with mgt proportional gain adaptation.