P Salminen 
  
ON EXPONENTIAL FUNCTIONALS OF PROCESSES WITH INDEPENDENT INCREMENTS

In this paper we study the exponential functionals of the processes X with independent increments , namely

exp(-X s )ds, , t ≥ 0, and also

I ∞ = ∞ 0 exp(-X s )ds.
When X is a semi-martingale with absolutely continuous characteristics, we derive necessary and sufficient conditions for the existence of the Laplace exponent of I t , and also the sufficient conditions of finiteness of the Mellin transform E(I α t ) with α ∈ R. We give a recurrent integral equations for this Mellin transform. Then we apply these recurrent formulas to calculate the moments. We present also the corresponding results for the exponential functionals of Levy processes, which hold under less restrictive conditions then in [START_REF] Bertoin | Exponential functionals of Levy processes[END_REF]. In particular, we obtain an explicit formula for the moments of I t and I ∞ , and we precise the exact number of finite moments of I ∞ .
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Introduction

The exponential functionals arise in many areas : in the theory of selfsimilar Markov processes, in the theory of random processes in random environments, in the mathematical statistics, in the mathematical finance, in the insurance. In fact, self-similar Markov processes are related with exponential functionals via Lamperti transform, namely self-similar Markov process can be written as an exponential of Levy process time changed by the inverse of exponential functional of the same Levy process (see [START_REF] Lamperti | Semi-stable Markov Processes[END_REF]). In the mathematical statistics the exponential functionals appear, for exemple, in the study of Pitman estimators (see [START_REF] Novikov | Pitman estimators: an asymptotic variance revisited[END_REF]). In the mathematical finance the question is related to the perpetuities containing the liabilities, the perpetuities subjected to the influence of economical factors (see, for example, [START_REF] Kardaras | Continuous time perpetuities and time reversal of diffusions ARXIV[END_REF]), and also with the prices of Asian options and related questions (see, for instance, [START_REF] Jeanblanc | Mathematical Methods for Financial Markets[END_REF] and references therein). In the insurance, this connection is made via the ruin problem, the problem in which the exponential functionals appear very naturally (see, for exemple [START_REF] Paulsen | Ruin models with investment income[END_REF], [START_REF] Asmussen | Ruin probabilities[END_REF], [START_REF] Yu | In the insurance business risky investment are dangerous: the case of negative risk sums[END_REF] and references therein).

In the case of Levy processes, the asymptotic behaviour of exponential functionals was studied in [START_REF] Carmona | On the distribution and asymptotic results for exponential functionals of Levy processes[END_REF], in particular for α-stable Levy processes. The authors also give an integro-differential equation for the density of the law of exponential functionals, when this density w.r.t the Lebesgue measure exists. In [START_REF] Bertoin | Exponential functionals of Levy processes[END_REF], for Levy subordinators, the authors give the formulas for the positive and negative moments, the Mellin transform and the Laplace transform. The questions related with the characterisation of the law of exponential functionals by the moments was also studied. General information about Levy processes can be find in [START_REF] Sato | Lévy Processes and Infinitely Divisible Distributions[END_REF], [START_REF] Bertoin | Lévy processes[END_REF], [START_REF] Kyprianou | Fluctuations of Lévy processes with applications[END_REF].

In more general setting, related to the Lévy case, the following functional (1) ∞ 0 exp(-X s )dη s was studied by many authors, where X = (X t ) t≥0 and η = (η t ) t≥0 are independent Lévy processes. The interest to this functional can be explained by a very close relation between the distribution of this functional and the stationary density of the corresponding generalized Ornshtein-Uhlenbeck process. We recall that the generalized Ornshtein-Uhlenbeck process Y = (Y t ) t≥0 verify the following differential equation [START_REF] Barndorff-Nielsen | Change of Time and Change of Measure[END_REF] dY t = Y t-dX t + dη t

When the jumps of the process η are strictly bigger than -1, and X 0 = 0, the solution of this equation is

(3) Y t = E(X) t Y 0 + t 0 dη s E(X) s
where E(X) is Doléan-Dade exponential (see [START_REF] Jacod | Limit theorems for Stochastic Processes[END_REF] for the details). Finally, if we introduce another Lévy process X such that for all t > 0 E(X) t = exp( Xt ), then the integral of the type (1) appear in [START_REF] Behme | Exponential functionals of Lévy Processes with Jumps, ALEA[END_REF].

The conditions for finiteness of the integral (1) was obtained in [START_REF] Erickson | Generalised Ornstein-Uhlenbeck processes and the convergence of Lévy integrals[END_REF]. The continuity properties of the law of this integral was studied in [START_REF] Bertoin | On continuity Properties of the Law of Integrals of Levy Processes[END_REF], where the authors give the condition for absence of the atoms and also the conditions for absolute continuity of the laws of integral functionals w.r.t. the Lebesgue measure. Under the assumptions which ensure the existence of the density of these functionals, the equations for the density are given in [START_REF] Behme | Exponential functionals of Lévy Processes with Jumps, ALEA[END_REF], [START_REF] Behme | On exponential functionals of Levy processes[END_REF], [START_REF] Kuznetsov | Distributional properties of exponential functionals of Levy processes[END_REF]. It should be noticed that taking the process η being only drift, one can get I ∞ as a special case of the Lévy framework.

In the papers [START_REF] Patie | Bernstein-Gamma functions and exponential functionals of Lévy processes[END_REF] and [START_REF] Pardo | On the density of exponential functionals of Lévy processes[END_REF], again for Levy process, the properties of the exponential functionals I τq was studied where τ q is independent exponential random variable of the parameter q > 0. In the article [START_REF] Pardo | On the density of exponential functionals of Lévy processes[END_REF] the authors studied the existence of the density of the law of I τq , they give an integral equation for the density and the asymptotics of the law of I ∞ at zero and at infinity, when X is a positive subordinator. The results given in [START_REF] Patie | Bernstein-Gamma functions and exponential functionals of Lévy processes[END_REF] involve analytic Wiener-Hopf factorisation, Bernstein functions and contain the conditions for regularity, semiexplicite expression and asymptotics for the distribution function of the exponential functional killed at the independent exponential time τ q . Despite numerous studies, the distribution properties of I t and I ∞ are known only in a limited number of cases. When X is Brownian motion with drift, the distributions of I t and I ∞ was studied in [START_REF] Dufresne | The distribution of a perpetuity, with applications to risk theory and pension funding[END_REF] and for a big number of specific processes X and η, like Brownian motion with drift and compound Poisson process, the distributions of I ∞ was given in [START_REF] Gjessing | Present value distributions with applications to ruin theory and stochastic equations[END_REF].

Exponential functionals for diffusions was studied in [START_REF] Salminen | Perpetual integral functional of diffusions and their numerical computations[END_REF]. The authors considered exponential functionals stopped at first hitting time and they derive the Laplace transform of these functionals. To find the laws of such exponential functionals, the authors perform a numerical inversion of the corresponding Laplace transform. The relations between the hitting times and the occupation times for the exponential functionals was considered in [START_REF] Salminen | Perpetual Integral Functionals as Hitting and Occupation Times[END_REF], where the versions of identities in law such as Dufresne's identity, Ciesielski-Taylor's identity, Biane's identity, LeGall's identity was considered.

Howerever, the exponential functionals involving non-homogeneous processes with independent increments (PII in short) has not been studied sufficiently up to now. Only a few results can be found in the literature. Some results about the moments of the exponential functional of this type are given in [START_REF] Epifani | Exponential functionals and mean of neutral-to-the-right priors[END_REF]. At the same time PII models for logarithme of the prices are quite natural in the mathematical finance, it is the case of the non-homogeneous Poisson process, the Levy process with deterministic time change, the integrals of Lévy processes with deterministic integrands, the hitting times for diffusions and so on (see for instance [START_REF] Shiryaev | Essentials of Stochastic Finance: Facts, Models, Theory[END_REF], [START_REF] Carr | Time-changed Lévy processes and option pricing[END_REF], [START_REF] Barndorff-Nielsen | Change of Time and Change of Measure[END_REF]).

The aim of this paper is to study the exponential functionals of the processes X with independent increments, namely (4)

I t = t 0 exp(-X s )ds, t ≥ 0,
and also

I ∞ = ∞ 0 exp(-X s )ds,
and give such important characteristics of these exponential functionals as the moments and the Laplace transforms and the Mellin transforms of mentioned functionals.

For that we consider a real valued process X = (X t ) t≥0 with independent increments and X 0 = 0, which is a semi-martingale with respect to its natural filtration. We denote by (B, C, ν) a semi-martingale triplet of this process, which can be chosen deterministic (see [START_REF] Jacod | Limit theorems for Stochastic Processes[END_REF], Ch. II, p.106). We suppose that B = (B t ) t≥0 , C = (C t ) t≥0 and ν are absolutely continuous with respect to the Lebesgue measure in t, i.e. that X is an Ito process such that

B t = t 0 b s ds, C t = t 0 c s ds, ν(dt, dx) = dtK t (dx)
with measurable functions b = (b s ) s≥0 , c = (c s ) s≥0 , and the kernel K = (K t (A)) t≥0,A∈B(R\{0}) . For more information about the semimartingales and the Ito processes see [START_REF] Jacod | Limit theorems for Stochastic Processes[END_REF].

We assume that the compensator of the measure of the jumps ν verify the usual condition: for each t ∈ R +

(5)

t 0 R\{0} (x 2 ∧ 1)K s (dx) ds < ∞.
We recall that the characteristic function of

X t φ t (λ) = E exp(iλX t )
is defined by the following expression: for λ ∈ R

φ t (λ) = exp{iλB t - 1 2 λ 2 C t + t 0 R\{0} (e iλx -1-iλx1 {|x|≤1} ) K s (dx) ds}
which can be easily obtained by the Ito formula for semimartingales. We recall also that X is a semi-martingale if and only if for all λ ∈ R the characteristic function of X t is of finite variation in t on finite intervals (cf. [START_REF] Jacod | Limit theorems for Stochastic Processes[END_REF], Ch.2, Th. 4.14, p.106 ). Moreover, the process X always can be written as a sum of a semi-martingale and a deterministic function which is not necessarily of finite variation on finite intervals.

From the formula for the characteristic function we can easily find the Laplace transform of X t , if it exists:

E(e -αXt ) = e -Φ(t,α)

Putting λ = iα in the previous formula, we get that

Φ(t, α) = αB t - 1 2 α 2 C t - t 0 R\{0} (e -αx -1 + αx1 {|x|≤1} ) K s (dx) ds.
As known, in the case when X is a Levy process with parameters (b 0 , c 0 , K 0 ), it holds E(e -αXt ) = e -tΦ(α) with

Φ(α) = αb 0 - 1 2 α 2 c 0 - R\{0} (e -αx -1 + αx1 {|x|≤1} ) K 0 (dx).
In this article we establish necessary and sufficient conditions of the existence of the Laplace exponent, and also the sufficient conditions for finiteness of E(I α t ) with fixed t > 0 (see Proposition 1). Next, we use time reversal of the process X at fixed time t > 0 to introduce a new process

Y (t) = (Y (t) s ) 0≤s≤t with Y (t) s = X t -X (t-s)-.
In Lemma 1 we show that

I t = e -Y (t) t t 0 e Y (t)
s ds.

Then, we prove that Y (t) is a process with independent increments and we identify its semi-martingale characteristics. This time reversal plays an important role and permits to replace the process (I t ) t≥0 which is not Markov, by a family of Markov processes

V (t) = (V (t)
s ) 0≤s≤t indexed by t > 0, where

V (t) s = e -Y (t) s s 0 e Y (t)
u du. In the sequel we omit (t) to simplify the notations.

In Theorem 1 we consider the case of α ≥ 0 and we give a recurrent integral equation for the Mellin transform of I t . In the Corollaries 2 and 3 we consider the case when X is a Levy process. We give the formulas for positive moments of I t and I ∞ and also the formula for the Laplace transform. The results for I ∞ coincide, of course, with the ones given in [START_REF] Bertoin | Exponential functionals of Levy processes[END_REF] for Levy subordinators. But it holds under less restrictive integrability conditions on I ∞ and less restrictive condition on Levy measure at zero. We can also precise the number of finite moments of I ∞ (cf. Corollary 3 and Corollary 5). In Theorem 2 and Corollaries 4 and 5 we present analogous result for the case α < 0.

2.

Finiteness of E(I α t ) for fixed t > 0. Now, we fix t > 0. In the following proposition we give necessary and sufficient conditions for the existence of the Laplace transform of X t , and also sufficient conditions for the existence of the Mellin transform of I t . In what follows we assume that K verify the following stronger condition then (5): for t > 0 (6)

t 0 R\{0} (x 2 ∧ |x|)K s (dx)ds < ∞.
This condition says, roughly speaking, that the "big" jumps of the process X are integrable, and it ensures that finite variation part of semi-martingale decomposition of X remains deterministic. Moreover, the truncation of the jumps is no more necessary. In addition, Kruglov theorem can be applied to show that (6) is equivalent to E(|X t |) < ∞ (cf. [START_REF] Sato | Lévy Processes and Infinitely Divisible Distributions[END_REF], Th. 25.3, p.159).

Proposition 1. Let α ∈ R and t > 0. Under (6), the condition

(7) t 0 R\{0} (e -αx -1 + αx)K s (dx)ds < ∞, is equivalent to (8) E(e -αXt ) < ∞.
Moreover, the condition (7) implies for α ≥ 1 and α ≤ 0 that (9) E(I α t ) < ∞. In addition, if [START_REF] Bertoin | Exponential functionals of Levy processes[END_REF] is valid for α = 1, then for 0 ≤ α ≤ 1 we have [START_REF] Carmona | On the distribution and asymptotic results for exponential functionals of Levy processes[END_REF]. Remark 1. Assume that X has only positive jumps, then for α > 0 the condition ( 7) is always satisfied. In the same way, if X has only negative jumps, then, of course, for α < 0 the condition ( 7) is satisfied. If X has bounded jumps, the condition ( 7) is also satisfied. In general case, the condition ( 7) is equivalent to the one of the following conditions: if α > 0, then [START_REF] Carr | Time-changed Lévy processes and option pricing[END_REF] 

t 0 x<-1 e -αx K s (dx)ds < ∞,
and if α < 0, then (11) 
t 0 x>1

e -αx K s (dx)ds < ∞.

In the case of Levy processes these conditions coincide with the ones given in [START_REF] Kyprianou | Fluctuations of Lévy processes with applications[END_REF], p. 79.

Remark 2. It should be noticed that if the condition ( 7) is verified for α ′ = α + δ with δ > 0 and α > 0, then it is verified also for α. To see this, apply Hölder inequality to the integrals in [START_REF] Carr | Time-changed Lévy processes and option pricing[END_REF] and [START_REF] Dufresne | The distribution of a perpetuity, with applications to risk theory and pension funding[END_REF] with the parameters p = α+δ α and q = α+δ δ . In fact, since

1 p + 1 q = 1 and ν([0, t]×] -∞, -1[) < ∞ we have for (10): t 0 x<-1 e -αx K s (dx)ds ≤ t 0 x<-1 e -αpx K s (dx)ds 1 p t 0 x<-1 K s (dx)ds 1 q < ∞
The same can be made for α < 0. In this case we take δ < 0.

Proof. Since X is assumed to be a process with independent increment which is a semi-martingale, it can be written as the sum of deterministic process B of finite variation on finite intervals and local martingale M:

X t = B t + M t
with B 0 = 0 and M 0 = 0. Notice that, the local martingale property of M follows from the independence of the increments and the fact that PII is a strong Markov process. Moreover, the local martingale M with independent increments will be a martingale (cf. [START_REF] Shiryaev | Vector Stochastic Integrals and the Fundamental Theorems of Asset Pricing[END_REF], Th. 58, p.45).

Notice also that to prove ( 8) is equivalent proving

(12) E(e -αMt ) < ∞ since B t is deterministic.
We introduce for n ≥ 1 the stopping times

τ n = inf{s ≥ 0 : |M s | ≥ n}
with inf{∅} = +∞. By the Ito formula we have:

e -αMt∧τ n = e -αM 0 -α t∧τn 0 e -αM s-dM s + 1 2 α 2 t∧τn 0 e -αM s-d < M c > s + t∧τn 0 R\{0} e -αM s-(e -αx -1 + αx)µ M (ds, dx),
where µ M is the jump measure of M and M 0 = 0. We remark that on stochastic interval [[0, t ∧ τ n [[, 0 ≤ e -αM s-≤ e |α|n and then, by an additional localization which we do not write explicitly, we get that

E t∧τn 0 e -αM s-dM s = 0.
We take the mathematical expectation in the previous decomposition and we use the projection theorem (see [START_REF] Jacod | Limit theorems for Stochastic Processes[END_REF], Ch. 2, Th. 1.8, p. 66) together with the facts that d < M c > s = c s and ∆M s = ∆X s , to obtain

(13) E(e -αMt∧τ n ) = 1 + 1 2 α 2 E t∧τn 0 e -αMs c s ds +E t∧τn 0 R\{0} e -αM s-(e -αx -1 + αx)K s (dx)ds
We also remark that the both terms on the r.h.s. of the last equality are positive since e -αx -1 + αx ≥ 0 for all x ∈ R. Take n → +∞, then τ n → +∞, and by the Fatou lemma and the Fubini theorem we get that ( 14)

E(e -αMt ) ≤ 1 + 1 2 α 2 t 0
E(e -αMs )c s ds

+ t 0 E(e -αMs ) R\{0} (e -αx -1 + αx)K s (dx)ds
Then, by the Gronwall lemma

E(e -αMt ) ≤ exp t 0 1 2 α 2 c s + R\{0} (e -αx -1 + αx)K s (dx) ds = exp 1 2 α 2 C t + t 0 R\{0}
(e -αx -1 + αx)K s (dx) ds and using ( 7), we get ( 8) via [START_REF] Epifani | Exponential functionals and mean of neutral-to-the-right priors[END_REF].

Assume next that ( 12) holds. From [START_REF] Erickson | Generalised Ornstein-Uhlenbeck processes and the convergence of Lévy integrals[END_REF] we get

E(e -αMt∧τ n ) ≥ 1 + E t∧τn 0 R\{0} e -αM s-(e -αx -1 + αx)K s (dx)ds
Again, the Fatou lemma applied to the r.h.s. of the previous inequality and the Jensen inequality applied to the l.h.s. with M t∧τn = E(M t |F t∧τn ) gives us:

E(e -αMt ) ≥ 1 + t 0 E(e -αMs ) R\{0} (e -αx -1 + αx)K s (dx) ds
Then, using the Gronwall lemma again

E(e -αMt ) ≥ exp t 0 R\{0} (e -αx -1 + αx)K s (dx) ds
Then, we have the condition [START_REF] Bertoin | Exponential functionals of Levy processes[END_REF].

Let τ be uniformly distributed on [0, t] random variable independent of X and α ≥ 1 or α < 0. Then,

E(e -Xτ ) = E(I t /t)
and by the Jensen inequality

(I t /t) α ≤ 1 t t 0 e -αXs ds and 
E(I α t ) ≤ t α-1 t 0 E(e -αXs )ds
Then, since (e -αMs ) 0≤s≤t is a sub-martingale and ( 12) holds, we have If 0 ≤ α ≤ 1, then by the Hölder inequality again

E(I α t ) ≤ (EI t ) α < ∞.
Let us give some examples useful in mathematical finance.

Example 1. Let X be non-homogeneous Poisson process with intensity (λ s ) s≥0 . Then,

K s (A) = λ s • δ {1} (A) for all A ∈ B(R \ {0})
, where δ {1} is delta-function at 1, and the condition ( 7) is satisfied as soon as t 0 λ s ds < ∞. Hence, under the last condition, E(I α t ) < ∞ for all α ≥ 1 and α < 0.

Example 2. Let L be Levy process with generating triplet (b 0 , c 0 , K 0 ) and X be the process L time changed by deterministic continuously differentiable process (τ (t)) t≥0 , i.e. X t = L τ (t) . Then, for t ≥ 0

Ee -αL τ (t) = e -Φ(α)τ (t)
where Φ(α) is Laplace exponent of L. We write

Φ(α)τ (t) = α τ (t) b 0 - 1 2 α 2 τ (t) c 0 -τ (t) R\{0} (e -αx -1 + αx) K 0 (dx)
and also, the Laplace exponent of X

Φ(t, α) = αB t - 1 2 α 2 C t - t 0 R\{0} (e -αx -1 + αx) K s (dx) ds
By the identification we get that that

B t = b 0 τ (t), C t = c 0 τ (t), and for all A ∈ B(R \ {0}), ν(A, dt) = K 0 (A)τ ′ (t)dt. Hence, b t = b 0 τ ′ (t), c t = c 0 τ ′ (t), and all A ∈ B(R \ {0}), K t (A) = K 0 (A)τ ′ (t). The condition (7) is satisfied whenever (15) R\{0} (e -αx -1 + αx)K 0 (dx) < ∞.
Under this condition E(I α t ) < ∞.

Example 3. Let L be Levy process with generating triplet (b 0 , c 0 , K 0 ) such that K 0 has a density f 0 w.r.t. a Lebesgue measure and

X t = t 0 g s dL s
where g = (g s ) s≥0 is a not vanishing square-integral measurable function. To find the characteristics of X we take a canonical decomposition of L, namely

L t = b 0 t + √ c 0 W t + t 0 R\{0}
x(µ X (ds, dx)ν(ds, dx))

where W is standard Brownian motion. We put this decomposition into the integral which defines X. We get by the identification that

B t = b 0 t 0 g s ds, C t = c 0 t 0 g 2 s ds.
Moreover, since ∆X s = g s ∆L s for s > 0, we deduce by projection theorem that for any positive measurable function h

E t 0 R\{0} h(x)µ X (ds, dx) = E t 0 R\{0} h(x)K s (dx)ds
and that the l.h.s. of the previous equality is equal to

E t 0 R\{0} h(xg s )µ L (ds, dx) = E t 0 R\{0} h(xg s )K 0 (dx) ds
Changing the variables we get that K s (dx) = 1 |gs| f 0 ( x gs ) dx and that the condition ( 7) is satisfied whenever

t 0 R\{0} (e -αxgs -1 + αxg s ) K 0 (dx)ds < ∞.
Under the last condition, E(I α t ) < ∞.

Time reversal procedure

We introduce, for fixed t > 0, a new process

Y (t) = (Y (t) s ) 0≤s≤t with Y (t) s = X t -X (t-s)-.
To simplify the notations we anyway omit the index (t) and write Y s instead of

Y (t) s .
First of all we establish the relation between I t and the process Y . Lemma 1. For t > 0 the following equality holds: We will show that the process Y is PII and we will give its semimartingale triplet with respect to its natural filtration. For that we put bu = b t-u for 0 ≤ u < t, b t for u = t, which can be written also as bu =

I t = e -Yt
1 {t} (u)(b t -b 0 ) + b t-u ,
where 1 {t} is indicator function of the set {t}. We do the similar definitions for c and K:

cu = 1 {t} (u)(c t -c 0 ) + c t-u , Ku (A) = 1 {t} (u)(K t (A) -K 0 (A)) + K t-u (A) for all A ∈ B(R \ {0}).
Lemma 2. The process Y is a process with independent increments, it is a semi-martingale with respect to its natural filtration, and its semi-martingale triplet ( B, C, ν) is given by : Proof Let us take 0 = s

0 < s 1 < s 2 < • • • < s n = t with n ≥ 2. Then the increments (Y s k -Y s k-1 ) 1≤k≤n of the process Y are equal to (X (t-s k-1 )--X (t-s k )-) 1≤k≤n and 0 = t-s n < t-s n-1 < • • • < t-s 0 = t.
From the fact that X is the process with independent increments, the characteristic function of the vector (X t-s k-1 -h -X t-s k -h ) 1≤i≤n with small h > 0, can be written as a product of the corresponding characteristic functions. Namely, for any real constants (λ k ) 0≤k≤n we get:

E exp(i n k=1 λ k (X t-s k-1 -h -X t-s k -h )) = n k=1 E exp(iλ k (X t-s k-1 -h -X t-s k -h ))
Then, passing to the limit as h → 0+,

E exp(i n k=1 λ k (X (t-s k-1 )--X (t-s k )-)) = n k=1 E exp(iλ k (X (t-s k-1 )--X (t-s k )-))
Hence, Y is a process with independent increments.

We know that we can identify the semi-martingale characteristics w.r.t. the natural filtration of the process with independent increments from the characteristic function of this process. We notice that Y s = X t -X (t-s)-and by the independence of Y s and X (t-s)-

E(e iλXt ) = E(e iλYs )E(e iλX (t-s)-)

Then,

E exp(iλY s ) = E exp(iλX t )/E exp(iλX (t-s)-) = exp{iλ t t-s b u du- 1 2 λ 2 t t-s c u du+ t t-s R\{0} (e iλx -1-iλx) K u (dx) du}
We substitute u by u ′ = tu in the integrals to obtain

E exp(iλY s ) = exp{iλ s 0 b u du - 1 2 λ 2 s 0 c u du + s 0 R\{0} (e iλx -1 -iλx) K u (dx) du}
Therefore, the characteristics of Y are as in ( 16) and the proof is complete.2 4. Recurrent formulas for the Mellin transform of I t with α ≥ 0.

Let us consider two important processes related with the process Y , namely the process V = (V s ) 0≤s≤t and J = (J s ) 0≤s≤t defined via

V s = e -Ys J s , J s = s 0 e Yu du.
We underline that the both processes depend of the parameter t.

We remark that according to Lemma 1 , I t = V t for each t ≥ 0. For α ≥ 0 and t ≥ 0 we introduce the Mellin transform of I t of the parameter α: m

(α) t = E(I α t ) = E(e -αYt J α t
) and the Mellin transform for shifted process:

m (α) s,t = E t s e -(Xu-X s-) du α Notice that m (α) 0,t = m (α) t . Notice also that m (α) s,t = E t s e -(Xu-Xs) du α In fact, X u -X s = X u -X s--∆X s and t s e -(Xu-X s-) du = e -∆Xs t s e -(Xu-Xs) du
Since ∆X s and (X u -X s ) u≥s are independent, and E(e -α∆Xs ) = 1, we get the equality of two expressions for m (α) s,t . We introduce also two functions: for 0 ≤ s ≤ t

(17) H (α) s = αb s - 1 2 α 2 c s - R\{0} (e -αx -1 + αx)K s (dx)
and ( 18)

H(α) s = 1 {t} (s)(H (α) t -H (α) 0 ) + H (α) t-s
These functions represent the derivatives w.r.t. s, of the Laplace exponents Φ(s, α) and Φ(s, α). We recall that

Φ(s, α) = αB s - α 2 2 C s - s 0 R\{0} (e -αx -1 + αx) ν(du, dx) and Φ(s, α) = α Bs - α 2 2 Cs - s 0 R\{0}
(e -αx -1 + αx)ν(du, dx)

where ν and ν are the compensators of the jump measure of X and Y respectively. We notice, that these functions are well-defined under condition [START_REF] Bertoin | Exponential functionals of Levy processes[END_REF]. We also notice that Φ(s, α) = Φ(t, α) -Φ(ts, α)

Our aim now is to obtain a recurrent integral equation for the Mellin transform of I t . For condition [START_REF] Kuznetsov | Distributional properties of exponential functionals of Levy processes[END_REF] below see Remarks 1 and 2.

Theorem 1. Let α ≥ 1 be fixed and assume that for t > 0 there exists δ > 0 such that

(19) t 0 x<-1 e -(α+δ)x K s (dx) ds < ∞.
Then, m (α) t is well-defined and the following recurrent integral equation holds [START_REF] Kyprianou | Fluctuations of Lévy processes with applications[END_REF] m

(α) t = α t 0 m (α-1) u,t e -Φ(u,α) du
If X is Levy process, then for all t > 0 ( 21)

m (α) t = αe -Φ(α) t t 0 m (α-1) s e Φ(α) s ds Moreover, (22) 
d dt m (α) t = -m (α) t Φ(α) + αm (α-1) t
Proof. From Lemma 2 we know that Y = (Y s ) 0≤s≤t is a process with independent increments which is a semi-martingale, i.e. Y s = Bs + Ms , where B is a deterministic process of finite variation on finite intervals and M is a local martingale. But the local martingales with independent increments are always the martingales (see [START_REF] Shiryaev | Vector Stochastic Integrals and the Fundamental Theorems of Asset Pricing[END_REF]).

For n ≥ 1 we introduce the stopping times

τ n = inf{0 ≤ s ≤ t : V s ≥ n or exp(-Y s ) ≥ n}
with inf{∅} = +∞. For fixed s, 0 < s < t, we write the Ito formula for V α s∧τn :

V α s∧τn = α s∧τn 0 V α-1 u-dV u + 1 2 α(α -1) s∧τn 0 V α-2 u-d < V c > u (23) + s∧τn 0 R\{0} (V u-+ x) α -V α u--αV α-1 u-x µ V (du, dx)
where µ V is the measure of the jumps of V . Using integration by part formula, we have:

(24)

dV u = du + J u d(e -Yu )
Now, again by the Ito formula, we get

(25) e -Yu = e -Y 0 - u 0 e -Y v-dY v + 1 2 u 0 e -Y v-d < Y c > v + u 0 R\{0} e -Y v-(e -x -1 + x)µ Y (dv, dx)
Then, putting (25) into [START_REF] Patie | Bernstein-Gamma functions and exponential functionals of Lévy processes[END_REF], we obtain ( 26)

dV c u = -e -Y u-J u dY c u = -V u-dY c u , d < V c > u = V 2 u-d < Y c > u and (27) ∆V u = e -Y u-J u (e -∆Yu -1) = V u-(e -∆Yu -1),
where ∆V u = V u -V u-and ∆Y u = Y u -Y u-. The previous relations imply that (28)

V α s∧τn = α s∧τn 0 V α-1 u-du +α s∧τn 0 J u V α-1 u-d(e -Yu ) + 1 2 α(α -1) s∧τn 0 V α u-d < Y c > u + s∧τn 0 R\{0} V α u-e -αx -1 -α(e -x -1) µ Y (du, dx)
To use in efficient way the Ito formula for e -Yu given before, we introduce the processes A = (A u ) 0≤u≤t and N = (N u ) 0≤u≤t via

A u = u 0 e -Y v-[-d Bv + 1 2 d Cv ] + u 0 R\{0} e -Y v-(e -x -1 + x)ν(dv, dx) N u = - u 0 e -Y v-d Mv + u 0 R\{0} e -Y v-(e -x -1+x)[µ Y (dv, dx)-ν(dv, dx)]
We notice that A is a process of locally bounded variation and N is a local martingale with localizing sequence (τ n ) n≥1 , since B, C are of bounded variation on bounded intervals and

u 0 R\{0} (e -x -1 + x) Ks (dx)ds < ∞.
From [START_REF] Paulsen | Ruin models with investment income[END_REF] we get that (29) e -Yu = e -Y 0 + A u + N u .

We incorporate this semi-martingale decomposition into (28) and we consider its martingale part. This martingale part is represented by the term

α s∧τn 0 V α-1 u J u dN u = α s∧τn 0 V α u [d Mu + R\{0} (e -x -1 + x)(µ Y (dv, dx) -ν(dv, dx))]
which is a local martingale. Let (τ ′ n ) n≥0 be a localizing sequence for this local martingale and let τn = τ n ∧ τ ′ n . Then we do additional stopping with τ ′ n in previous expressions, and we take mathematical expectation. Using the fact that the expectations of martingales starting from zero are equal to zero and also applying the projection theorem, we obtain:

(30) E(V α s∧τn ) = αE s∧τn 0 V α-1 u du +αE s∧τn 0 V α-1 u-J u dA u + 1 2 α(α -1)E s∧τn 0 V α u d Cu +E s∧τn 0 R\{0} V α u-e -αx -1 -α(e -x -1) ν(du, dx)
and, hence,

(31) E(V α s∧τn ) = αE s∧τn 0 V α-1 u du -E s∧τn 0 V α u-d Φ(u, α)
We remark that τn → +∞ (Pa.s.) as n → +∞. To pass to the limit as n → ∞ in r.h.s. of the above equality, we use the Lebesgue monotone convergence theorem for the first term and the Lebesgue dominated convergence theorem for the second term. In fact, for the second term we have using ( 17) and ( 18) :

s∧τn 0 V α u-d Φ(u, α) ≤ t 0 V α u-| H(α) u |du
In addition,

E t 0 V α u-| H(α) u |du ≤ sup 0≤u≤t E(V α u ) t 0 | H(α) u |du
The function ( H(α) u ) 0≤u≤t is deterministic function, integrable on finite intervals. Hence, it remains to show that

(32) sup 0≤s≤t E(V α s ) < ∞.
By the Jensen inequality

V α s ≤ s α-1 s 0 e α(Yu-Ys) du
We remark that Y u -Y s = X (t-s)--X (t-u)-, and then

(33) E(V α s ) ≤ s α-1 s 0 E(e α(X t-s -X t-u ) ) du
Since the process X is a process with independent increments, we have for 0

≤ u ≤ s ≤ t E(e α(X t-s -X t-u ) ) = E(e -αX t-u )/E(e -αX t-s ) = exp{- t-u 0 H (α) r dr + t-s 0 H (α) r dr} ≤ exp{ t 0 |H (α) r |dr}
Due to the Remark 1 and the condition [START_REF] Kuznetsov | Distributional properties of exponential functionals of Levy processes[END_REF], H (α) is integrable function on finite intervals, and hence,

sup 0≤s≤t E(V α s ) ≤ t α exp{ t 0 |H (α) r |dr} < ∞
To pass to the limit in the l.h.s. of ( 31), we show that the family of (V α s∧τn ) n≥1 is uniformly integrable, uniformly in 0 ≤ s ≤ t. Vs where V ar( B) t is the variation of B on the interval [0, t]. This quantity is deterministic and bounded, hence, it is sufficient to prove uniform integrability of ( V α s∧τn ) n≥1 . Next, we show that ( Vs ) 0≤s≤t is a submartingale w.r.t. a natural filtration of Y . Let s ′ > s, then

E( Vs ′ | F s ) = E(e -Ms ′ s ′ 0 e Mu du | F s ) = E(e -( Ms ′ -Ms) [ Vs + e Ms s ′ s e Mu du] | F s ) ≥ E(e -( Ms ′ -Ms) Vs | F s ) = Vs E(e -( Ms ′ -Ms) )
The expression for E(e -( Ms ′ -Ms) ) can be find from the expression of the characteristic exponent of Y without its drift part:

E(e -( Ms ′ -Ms) = exp 1 2 s ′ s c u du + s ′ s R\{0} (e -x -1 + x)ν(du, dx) ≥ 1.
Then, ( V α s ) 0≤s≤t is a submartingale, and by Doob stopping theorem (P -a.s.)

E( V α s | F s∧τn ) ≥ V α s∧τn .
Hence, for all n ≥ 1, c > 0 and I(•) indicator function

E( V α s∧τn I { Vs∧τn >c} ) ≤ E(E( V α s | F s∧τn )I {E( V α s | Fs∧τ n )>c} ) ≤ c -δ α E(E( V α s | F s∧τn ) α+δ α ) ≤ c -δ α E( V α+δ s ) It remains to show that sup 0≤s≤t E( V α+δ s ) < ∞.
The last inequality can be proved in the same way as (32).

After limit passage, we get that

(34) E(V α s ) = - s 0 E(V α u ) d Φ(u, α) + α s 0 E(V α-1 u )du
We see that each term of this equation is differentiable w.r.t. s for s < t. In fact, the family (V α s ) 0≤s≤t is uniformly integrable and the function (E(V α s )) 0≤s≤t is continuous in s as well as ( Φ(s, α)) 0≤s<t . We calculate the derivatives in s of both sides of the above equation and we solve the corresponding linear equation to obtain:

E(V α s ) = αe -Φ(s,α) s 0 E(V α-1 u ) e Φ(u,α) du
Now, we write that Φ(u, α) -Φ(s, α) = -Φ(tu, α) + Φ(ts, α) and we let s → t-to get

E(V α t ) = α t 0 E(V α-1 u ) e -Φ(t-u,α) du Notice that I t = V t and, hence, E(V α t ) = m (α) t . Since V u = u 0 e Yv-Yu dv = u 0 e -(X (t-v)--X (t-u)-) dv = t t-u e -(Xv -X (t-u)-) dv we also have E(V α-1 u ) = m (α-1)
t-u,t . Then, we obtain [START_REF] Kyprianou | Fluctuations of Lévy processes with applications[END_REF] after the change of variables in integrals replacing tu by u.

In particular case of Levy process, we use [START_REF] Kyprianou | Fluctuations of Lévy processes with applications[END_REF] and we take into account that m

(α-1) u,t = m (α-1) t-u
and that Φ(u, α) = Φ(α) u. Then, after the change of variables, the formula (21) follows as well as [START_REF] Pardo | On the density of exponential functionals of Lévy processes[END_REF]. Remark 3. It should be noticed that the relation ( 20) can be obtained with another technique (see [START_REF] Salminen | On moments of exponential functionals of additive processes[END_REF]), based on the approach of [START_REF] Bertoin | Exponential functionals of Levy processes[END_REF]. Now we will apply our results to calculate the moments.

Example 4. We consider Levy process L = (L t ) t≥0 with generating triplet (b 0 , c 0 , K 0 ) starting from 0, and time changed by deterministic process (τ t ) t≥0 with τ t = r ln(1 + t) with r > 0, i.e. X t = L τt for t ≥ 0. Then, by change of variables u = r ln(1 + s) we get

I t = t 0 e -L r ln(1+s) ds = 1 r r ln(1+t) 0 e -(Lu-u/r) du = 1 r r ln(1+t) 0 e -Lu du
where L is Levy process with generating triplet (b 0 -1 r , c 0 , K 0 ). We denote by Φ the Laplace exponent of L. Then for k ≥ 0, Φ(k) = Φ(k) -k r and

E(I t ) = 1 r r ln(1+t) 0 e -Φ(1)u du =    1-(1+t) -rΦ(1)+1 rΦ(1)-1 if rΦ(1) -1 = 0, ln(1 + t) otherwise.
For shifted process X (s)

u = L τu -L τs , u ≥ s the corresponding moments m (n) s,t = E t s e -(Lτ u -Lτ s ) du n = E t s e -L (τu-τs) du n since L is homogeneous process and (L τu -L τs ) u≥s L = (L τu-τs ) u≥s .
We change the variable putting τ u -τ s = r ln(1 + u) -r ln(1 + s) = v -s where v is new variable. denote v(s, t) = r ln( 1+t 1+s ) and we remark that 1 + u = (1 + s) exp((vs)/r). Then,

E t s e -(L τu-τs ) du n = E 1 + s r s+v(s,t) s e -Lv-s dv n = (1 + s) n r n E v(s,t) 0 e -Lu du n
Finally, we get for n ≥ 0:

m (n) s,t = (1 + s) n r n m(n) v(s,t)
where m(n) v(s,t) is n-th moment of the exponential functional of L on [0, v(s, t)]. We suppose for simplicity that Φ is strictly monotone on the interval [0, n + 1]. Then, using the integral equation of Theorem 1 and the expression for the moments of Levy processes given in Corollary 1 below, and the fact that

e -Φ(s,n+1) = e -Φ(n+1)τs = (1 + s) -rΦ(n+1)
we get for n ≥ 1:

m (n+1) t = (n + 1)! r n n-1 k=0 t 0 (1 + s) q(n) e -Φ(k)v(s,t) -e -Φ(n)v(s,t) 0≤i≤n, i =k ( Φ(i) -Φ(k)) ds where q(n) = n -rΦ(n + 1) and Φ(k) is the Laplace exponent of Levy process L, Φ(k) = Φ(k) -k r , 1 ≤ k ≤ n.
To express the final result we put

ρ(k) = rΦ(k) -k, γ(n, k) = n -k -r(Φ(n + 1) -Φ(k)) and Q t (n, k) = (1 + t) γ(n,k)+1 -1 (γ(n, k) + 1)(1 + t) ρ(k)
Then, after the integration we find that for n ≥ 1

E(I n+1 t ) = m (n+1) t = (n + 1)! n-1 k=0 Q t (n, k) -Q t (n, n) 0≤i≤n, i =k (ρ(i) -ρ(k))
Remark 4. It is clear that the explicit formulas for the moments in non-homogeneous case will be rather exceptional. For numerical calculus the following formula could be useful: for all 0 ≤ s ≤ t m (α)

s,t = α t s m (α-1) u,t e Φ(u,α)-Φ(s,α) du
To obtain this formula it is sufficient to find the Laplace exponent of shifted process (X

(s) u ) s≤u≤t with X (s) u = X u -X s .
Since X is a PII, the variables X s and X u -X s are independent, and E(e -αXu ) = E(e -αXs ) E(e -α(Xu-Xs) ) and then, the Laplace exponent of shifted process X (s) is given by:

Φ (s) (u, α) = Φ(u, α) -Φ(s, α).

Positive moments of I t and I ∞ for Levy processes

Now we suppose that X is Levy process with the parameters (b 0 , c 0 , K 0 ). In this case the condition (6) become:

(35) R\{0} (x 2 ∧ |x|)K 0 (dx) < ∞.
It should be noticed that in [START_REF] Bertoin | Exponential functionals of Levy processes[END_REF] the condition on Levy measure was

R\{0} (|x| ∧ 1)K 0 (dx) < ∞
and this condition is stronger at zero and weaker at infinity then (35). When X is Levy process, the condition [START_REF] Kuznetsov | Distributional properties of exponential functionals of Levy processes[END_REF] become: there exists δ > 0 (36)

x<-1 e -(α+δ)x K 0 (dx) < ∞. Corollary 1. Let n ≥ 1 and suppose that Φ is bijective on [0, n] ∩ N.
Then,

E(I n t ) = n! n-1 k=0 e -Φ(k)t -e -Φ(n)t 0≤i≤n, i =k (Φ(i) -Φ(k))
Proof. The formula follows from ( 21) by induction.

We present here two examples, one of them is related with Brownian motion, and second one with compound Poisson process.

Example 5. Let X be a Brownian motion with drift µ > 0 and diffusion coefficient σ > 0, i.e.

X t = µt + σW t where W = (W t ) t≥0 is standard Brownian motion. Then, Φ(α) = αµ -α 2 σ 2 2
and if 2µ σ 2 is not an integer, we get:

E(I n t ) = n! n-1 k=0 e -(kµ-k 2 σ 2 /2)t -e -(nµ-n 2 σ 2 /2)t 0≤i≤n, i =k (i -k)(µ -(i + k)σ 2 /2)
Example 6. Let X be compound Poisson process such that X t = Nt k=1 U k where (U k ) k≥0 is a sequence of independent random variables with distribution function F and N is a homogeneous Poisson process with intensity λ > 0. Then, Φ(α) = λ R\{0} (1e -αx )F (dx). In particular, if the U k 's are standard normal variables, we get that Φ(α) = λ(1e α 2 /2 ) and

E(I n t ) = n! n-1 k=0 exp(λt(1 -e k 2 /2 )) -exp(λt(1 -e n 2 /2 )) λ n 0≤i≤n, i =k (e k 2 /2 -e i 2 /2 )
We introduce the Laplace-Carson transform m(α) q of m (α) t of the parameter q > 0:

m(α) q = ∞ 0 qe -qt m (α)
t dt This integral is always well-defined in general sense, since the integrand is positive. respectively, are well-defined and we have a recurrent formula:

(37) m(α) q (q + Φ(α)) = α m(α-1)

q
In particular, for integer n ≥ 1 such that m

(n)

∞ < ∞ we get:

(38) m(n) q = n! n k=1 (q + Φ(k)) As a consequence, E(I n ∞ ) = n! n k=1 Φ(k)
Moreover, if all positive moments of I ∞ exist and the series below converges, then the Laplace transform of I ∞ of parameter β > 0 is given by:

(39) E(e -β I∞ ) = ∞ n=0 (-1) n β n n k=1 Φ(k)
Proof. The first equality for the Laplace-Carson transforms follows directly from [START_REF] Pardo | On the density of exponential functionals of Lévy processes[END_REF]. The second equality can be obtained as particular case from the first one, by recurrence.

For the third one we prove that m(n)

q → m (n)
∞ as q → 0. In fact, m

(n) t → m (n) ∞ as t → +∞ and lim t→+∞ 1 t t 0 m (n) s ds = m (n) ∞ .
Let us denote M

(n) t = t 0 m (n)
s ds. By integration by part formula we have for each t > 0 :

t 0 qe -qs m (n) s ds = [q e -qt M (n) t ] t 0 + t 0 q 2 e -qs M (n) s ds
Then, since M

(n) 0 = 0 and M (n) t /t → m (n) ∞ as t → +∞, m(n) q = ∞ 0 qe -qs m (n) s ds = q 2 ∞ 0 e -qs M (n) s ds
Since q 2 ∞ 0 s e -qs ds = 1, we get

m(n) q -m (n) ∞ = q 2 ∞ 0 e -qs (M (n) s -s m (n) ∞ )ds
For each ǫ > 0 there exists t ǫ such that for

s ≥ t ǫ , | M (n) s s -m (n) ∞ | ≤ ǫ. Then, | m(n) q -m (n) ∞ | ≤ q 2 tǫ 0 e -qs |M (n) s -s m (n) ∞ |ds+ q 2 ∞ tǫ s e -qs M (n) s s -m (n) ∞ ds ≤ q 2 tǫ 0 e -qs |M (n) s -s m (n) ∞ |ds + ǫ We notice that lim q→0 q 2 tǫ 0 e -qs | M (n) s -s m (n) ∞ | ds = 0
Then, taking lim ǫ→0 lim q→0 in the previous inequality we get that

m(n) q → m (n) ∞
as q → 0. Finally, we take the limit as q → 0 in second equality, to obtain the third one. The formula for the Laplace transform of I ∞ can be proved by using Taylor expansion with remainder in Lagrange form. Then, E(I n ∞ ) < ∞ if and only if 1 ≤ n < α 0 . In particular, for Brownian motion with drift coefficient b 0 and diffusion coefficient c 0 = 0,

Φ(n) = nb 0 - 1 2 n 2 c 0
and the moment of I ∞ of order n ≥ 1 will exist if n < 2b 0 c 0 . If X is a subordinator with non-zero Levy measure K 0 such that (35) holds, then

Φ(n) = n[b 0 - R + \{0} xK 0 (dx) ] - R + \{0}
(e -nx -1)K 0 (dx), and under the condition

b 0 - R + \{0} xK 0 (dx) ≥ 0, all moments of I ∞ exist. Proof. Let n = sup{k ≥ 1 : E(I k ∞ ) < ∞}.
If n = +∞, then Φ(k) > 0 for all k ≥ 1 and α 0 = +∞. If 1 ≤ n < +∞, from Corollary 2 we get that Φ(n) > 0. Since Φ(α) is concave function such that Φ(0) = 0, we conclude that n < α 0 . Conversely, substituting ts by s in [START_REF] Lamperti | Semi-stable Markov Processes[END_REF] of Theorem 1 we get:

E(I n t ) ≤ n E(I n-1 ∞ ) t 0 e -Φ(n)s ds If 1 ≤ n < α 0 , Φ(n) > 0,
and the integral on the r.h.s. of this inequality converge as t → ∞. By induction, it gives that E(I n ∞ ) < ∞. Moreover, the results for continuous case and the case when X is a subordinator, follow immediately from the expression of Φ(k).

Example 8. Let X be time changed Brownian motion, namely X t = µτ t + σW τt where W = (W t ) t≥0 is standard Brownian motion, µ ∈ R, σ > 0 and τ t is first hitting time of the level t of the independent (from W ) standard Brownian motion B = (B t ) t≥0 with the drift coefficient b > 0. Then, as known, Φ

(α) = (b 2 +2αµ-α 2 σ 2 ) 1/2 -b with b 2 +2αµ- α 2 σ 2 > 0 (see for instance [8], formula 2.0.1,p.295). Then, E(I n ∞ ) < ∞ if and only if 2µ -nσ > 0.
Example 9. Let X be pure discontinuous Levy process with Levy measure

K 0 (dx) = c exp(-Mx) x 1+β I ]0,+∞[ (x)dx
where c > 0, M > 0, 0 < β < 1. Then,

Φ(α) = c Γ(1 -β) β ((M + α) β -M β -αM β-1 β).
Then, Φ(α) > 0 for α ≥ 1, and all moments of I ∞ exist.

6. Recurrent formulas for the Mellin transform of I t with α < 0.

In the following Theorem 2, we derive the integro-differential equation for the Mellin transform m (α) t of I t with α < 0.

Theorem 2. Let α < 0 be fixed and

(40) t 0 x>1 e (|α|+1)x K s (dx) ds < ∞.
Then, for s > 0, m

s,t is well-defined as well as m (α-1) s,t and we get the following recurrent differential equation:

(41) m (α-1) s,t = 1 α m (α) s,t H (α) s - d ds m (α) s,t
In the case of Levy process X we have:

(42) m (α-1) s = 1 α m (α) s Φ(α) + d ds m (α) s
Proof. The proof of this result is similar to the proof of Theorem 1.

For n ≥ 1 we introduce the stopping times

τ n = inf{u ≥ s : V u ≤ 1 n or exp(-Y u ) ≥ n}
with inf{∅} = +∞. Then from the Ito formula similarly to [START_REF] Novikov | Pitman estimators: an asymptotic variance revisited[END_REF] we get: for 0 < s < t

V α t∧τn = V α s + α t∧τn s V α-1 u-dV u + 1 2 α(α -1) t∧τn s V α-2 u-d < V c > u (43) + t∧τn s R\{0} (V u-+ x) α -V α u--αV α-1 u-x µ V (du, dx)
where µ V is the measure of the jumps of V . Using ( 24), ( 26), [START_REF] Salminen | On moments of exponential functionals of additive processes[END_REF] we have

(44) V α t∧τn = V α s + α t∧τn s V α-1 u-du +α t∧τn s J u V α-1 u-d(e -Yu ) + 1 2 α(α -1) t∧τn s V α u-d < Y c > u + t∧τn s R\{0} V α u-e -αx -1 -α(e -x -1) µ Y (du, dx)
where µ Y the measure of the jumps of Y . Taking in account (29) we, finally, find that (45)

E(V α t∧τn ) = E(V α s ) + αE t∧τn s V α-1 u-du -E t∧τn s V α u-d Φ(u, α)
We remark that τ n → +∞ (Pa.s.) as n → +∞. To pass to the limit as n → ∞ in the r.h.s. of the above equality, we use the Lebesgue monotone convergence theorem for the first term and the Lebesgue dominated convergence theorem for the second term. In fact, for second term we have:

t∧τn s V α u-d Φ(u, α) ≤ t s V α u-| H(α) u |du
In addition,

E t s V α u-| H(α) u |du ≤ sup s≤u≤t E(V α u ) t s | H(α) u |du
The function ( H(α) u ) 0≤u≤t is deterministic function, integrable on finite intervals. Hence, it remains to show that (46) sup

s≤u≤t E(V α u ) < ∞.
By the Jensen inequality

V α u ≤ u α-1 u 0 e α(Yv -Yu) dv
Then, in the same way as in Theorem 1 we get that

sup s≤u≤t E(V α u ) ≤ s α exp{ t 0 |H (α) r |dr}
To pass to the limit in the l.h.s. of (45), we prove that the family of (V α u∧τn ) n≥1 is uniformly integrable, uniformly in u ∈ [s, t] in the same way as in Theorem 1. For that we introduce a submartingale (

V (α) u ) s≤u≤t with V (α) u = e -α Mu u 0 e α Mv dv such that V α u ≤ e |α| V ar( B)t V (α) u . On the set { V (α) u∧τn > c} we get that 1 ≤ ( V (α) u∧τn c ) 1 |α| . Then V (α) u∧τn I { V (α) u∧τn >c} ≤ ( V (α) u∧τn ) 1+ 1 |α| c -1 |α| = ( V (α) u∧τn ) α-1 α
By Jensen inequality we get that

( V (α) u∧τn ) α-1 α ≤ V (α-1) u∧τn u 1 |α|
Hence, we proved that for all n ≥ 1, c > 0 and s ≤ u ≤ t ) < ∞ in the same manner as before.

E( V (α) u∧τn I { V (α) u∧τn >c} ) ≤ c -1 |α| max(s 1 |α| , t 1 
After limit passage we get that (47) E(V α t ) = E(V t-s = Φ(α), and this gives (42).

To present the results about negative moments of Levy process X with the parameters (b 0 , c 0 , K 0 ), we introduce the condition: (49) m(α-1) q = 1 α m(α) q Φ(α) + q m(α) q and, hence, m(α-1) q = 1 α m(α) q (q + Φ(α)) In particular, under above conditions, for integer n ≥ 2 and α = -n we get:

(50) m(-n) q = m(-1) q • (-1) n-1 (n -1)! n-1 k=1 (q + Φ(-k))
As a consequence, (51)

E(I -n ∞ ) = E(I -1 ∞ ) • (-1) n-1 (n -1)! n-1 k=1 Φ(-k)
Proof. Two first equalities given above follow directly from Theorem 2. The third one can be proved in the same way as in Corollary 2 by letting q → 0. 

E(I -(n+1) ∞ ) = m -(n+1) ∞ ≤ n k=1 |Φ(-k)| k E(I -1 ∞ ) < ∞.
In the case of Brownian motion we conclude that Φ(-k) = -kb 0 -1 2 k 2 c 0 > -∞ for all k ≥ 1. Since Φ is concave function with Φ(0) = 0, the condition Φ(-1) < 0 ensures the existence of all negative moments. In the case when X is a subordinator, and under mentioned condition (52), all Φ(-k) < 0 and only the condition of finiteness of Φ(-k) play a role in the existence of the negative moments.

Example 11. Let us apply the Corollary 5 to time changed Brownian motion considered in Example 8. We get that Φ(α) < 0 whenever -b 2 ≤ 2αµα 2 σ 2 < 0. Hence, all negative moments of I ∞ exists if E(I -1 ∞ ) < ∞ and 2µ + σ 2 > 0.

t 0 E

 0 (e -αXs )ds = t 0 e -αBs E(e -αMs )ds ≤ E(e -αMt ) t 0 e -αBs ds < ∞ and this yields (9).

t 0 e 0 e

 00 Ys ds Proof. Using the definition of the process Y and the assumption that X 0 = 0 we have e -Yt t Ys ds = t 0 e -Yt+Ys ds = t 0 e -X (t-s)-+X 0 ds = t 0 e -X t-s ds = t 0 e -Xs ds = I t , since the integration of the both versions of the process w.r.t. the Lebesgue measure gives the same result.

  du, ν(ds, dx) = Ks (dx) ds , where 0 ≤ s ≤ t.

0 e 0 e 0 e

 000 For that we recall that Y s = Bs + Ms where B is a drift part and M is a martingale part of Y , and we introduce Vs = e -Ms s Mu du Then, V s = e -Ys s Yu du = e -Ms-Bs s Mu+ Bu du ≤ sup 0≤u≤s (e Bu-Bs ) Vs ≤ e V ar( B)t

Corollary 2 .

 2 (cf.[START_REF] Bertoin | Exponential functionals of Levy processes[END_REF]) Let X be a Levy process which verifies (35) and (36), and such that for fixed α ≥ 1, m

Example 7 .(- 1 )Corollary 3 .

 713 Let X be homogeneous Poisson process of intensity λ. Then all positive moments of I ∞ exist, and we have for 0 ≤ β < λE(e -β I∞ ) = ∞ n=0 n β n λ n n k=1 (1e -k ). Let α 0 = inf{α > 0 | Φ(α) ≤ 0} with inf{∅} = +∞.

e

  (|α|+1)x K 0 (dx) < ∞. Corollary 4. (cf. [7])Let X be Levy process verifying (35) and (48), and let α ≤ -1 be fixed. Suppose that m (α-1) ∞ < ∞. Then the Laplace-Carson transforms of m (α) ∞ and m (α-1) ∞ are well-defined and we have a recurrent formula:

Example 10 . 1 ECorollary 5 .)

 1015 For compound Poisson process presented in Example 5 with U k 's which follows standard normal distribution, we get for n≥ Let β = sup{k ≥ 1 | -∞ < Φ(-l) < 0 for 1 ≤ l ≤ k} with sup{∅} = 1. Then E(I -(n+1) ∞ ) < ∞ if and only if n ≤ β and E(I -1 ∞ ) < ∞.In particular, for Brownian motion with the drift coefficient b 0 and the diffusion coefficientc 0 = 0, E(I -(n+1) ∞ ) < ∞ if and only if 2b 0 c 0 > -1. If X is a subordinator with R + \{0} xK 0 (dx) < ∞, then Φ(-k) = -k[b 0 -R + \{0} xK 0 (dx)] -R + \{0}(e kx -1)K 0 (dx), < ∞ if and only if R + \{0} (e nx -1)K 0 (dx) < ∞.Proof. Suppose that E(I -(n+1) ∞) < ∞ for some n > 0. Then by Cauchy-Schwartz inequality we get that for all k, 1 ≤ k ≤ n, E(I -k ∞ ) < ∞. Then the formula (51) yields that andE(I -1 ∞ ) < ∞ and -∞ < Φ(-k) < 0 for 1 ≤ k ≤ n. Hence, n ≤ β and E(I -1 ∞ ) < ∞. Conversely, if n ≤ β and E(I -1 ∞ ) < ∞, then -∞ < Φ(-k) < 0 for 1 ≤ k ≤ n. Then from (41) m -(k+1)

  Finally, replacing ts by s we get (41). In the case of Levy processes m

						α s ) -	s	t	E(V α u ) d Φ(u, α) + α	s	t	E(V α-1 u	)du
	We differentiate each term of this equality w.r.t. s to obtain that
				d ds	E(V α s ) + E(V α s ) H(α) s	-αE(V α-1 s	) = 0
	We take in account that E(V α s ) = m (α) t-s,t , E(V α-1 s	) = m (α-1) t-s,t and that
	H(α) s	= H	(α) t-s . This gives us that
				d ds	m (α) t-s,t + m (α) t-s,t H	(α) t-s -α m (α-1) t-s,t = 0
	(α) t-s,t = m (α) s	due to homogeneity, and H	(α)
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