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ON EXPONENTIAL FUNCTIONALS OF PROCESSES

WITH INDEPENDENT INCREMENTS

P. Salminen, Department of Natural Sciences Åbo
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Abstract. In this paper we study the exponential functionals of
the processes X with independent increments , namely

It =

∫ t

0

exp(−Xs)ds,, t ≥ 0,

and also

I∞ =

∫

∞

0

exp(−Xs)ds.

When X is a semi-martingale with absolutely continuous char-
acteristics, we derive necessary and sufficient conditions for the
existence of the Laplace exponent of It, and also the sufficient con-
ditions of finiteness of the Mellin transform E(Iαt ) with α ∈ R. We
give a recurrent integral equations for this Mellin transform. Then
we apply these recurrent formulas to calculate the moments. We
present also the corresponding results for the exponential function-
als of Levy processes, which hold under less restrictive conditions
then in [7]. In particular, we obtain an explicit formula for the
moments of It and I∞, and we precise the exact number of finite
moments of I∞.
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2 ON EXPONENTIAL FUNCTIONALS

1. Introduction

The exponential functionals arise in many areas : in the theory of self-
similar Markov processes, in the theory of random processes in ran-
dom environments, in the mathematical statistics, in the mathemati-
cal finance, in the insurance. In fact, self-similar Markov processes are
related with exponential functionals via Lamperti transform, namely
self-similar Markov process can be written as an exponential of Levy
process time changed by the inverse of exponential functional of the
same Levy process (see [21]). In the mathematical statistics the expo-
nential functionals appear, for exemple, in the study of Pitman esti-
mators (see [23]). In the mathematical finance the question is related
to the perpetuities containing the liabilities, the perpetuities subjected
to the influence of economical factors (see, for example, [18]), and also
with the prices of Asian options and related questions (see, for instance,
[16] and references therein). In the insurance, this connection is made
via the ruin problem, the problem in which the exponential functionals
appear very naturally (see, for exemple [25], [1], [17] and references
therein).

In the case of Levy processes, the asymptotic behaviour of exponential
functionals was studied in [9], in particular for α-stable Levy processes.
The authors also give an integro-differential equation for the density of
the law of exponential functionals, when this density w.r.t the Lebesgue
measure exists. In [7], for Levy subordinators, the authors give the for-
mulas for the positive and negative moments, the Mellin transform and
the Laplace transform. The questions related with the characterisation
of the law of exponential functionals by the moments was also stud-
ied. General information about Levy processes can be find in [29], [5],
[20].

In more general setting, related to the Lévy case, the following func-
tional

(1)

∫ ∞

0

exp(−Xs)dηs

was studied by many authors, where X = (Xt)t≥0 and η = (ηt)t≥0

are independent Lévy processes. The interest to this functional can
be explained by a very close relation between the distribution of this
functional and the stationary density of the corresponding generalized
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Ornshtein-Uhlenbeck process. We recall that the generalized Ornshtein-
Uhlenbeck process Y = (Yt)t≥0 verify the following differential equa-
tion

(2) dYt = Yt−dXt + dηt

When the jumps of the process η are strictly bigger than -1, andX0 = 0,
the solution of this equation is

(3) Yt = E(X)t

(

Y0 +

∫ t

0

dηs
E(X)s

)

where E(X) is Doléan-Dade exponential (see [15] for the details). Fi-

nally, if we introduce another Lévy process X̂ such that for all t > 0

E(X)t = exp(X̂t),

then the integral of the type (1) appear in (3).

The conditions for finiteness of the integral (1) was obtained in [13].
The continuity properties of the law of this integral was studied in [6],
where the authors give the condition for absence of the atoms and also
the conditions for absolute continuity of the laws of integral functionals
w.r.t. the Lebesgue measure. Under the assumptions which ensure
the existence of the density of these functionals, the equations for the
density are given in [3], [4], [19]. It should be noticed that taking the
process η being only drift, one can get I∞ as a special case of the Lévy
framework.

In the papers [24] and [22], again for Levy process, the properties of
the exponential functionals Iτq was studied where τq is independent
exponential random variable of the parameter q > 0. In the article [22]
the authors studied the existence of the density of the law of Iτq , they
give an integral equation for the density and the asymptotics of the
law of I∞ at zero and at infinity, when X is a positive subordinator.
The results given in [24] involve analytic Wiener-Hopf factorisation,
Bernstein functions and contain the conditions for regularity, semi-
explicite expression and asymptotics for the distribution function of
the exponential functional killed at the independent exponential time
τq. Despite numerous studies, the distribution properties of It and I∞
are known only in a limited number of cases. When X is Brownian
motion with drift, the distributions of It and I∞ was studied in [11]
and for a big number of specific processes X and η, like Brownian
motion with drift and compound Poisson process, the distributions of
I∞ was given in [14].
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Exponential functionals for diffusions was studied in [26]. The authors
considered exponential functionals stopped at first hitting time and
they derive the Laplace transform of these functionals. To find the
laws of such exponential functionals, the authors perform a numeri-
cal inversion of the corresponding Laplace transform. The relations
between the hitting times and the occupation times for the exponen-
tial functionals was considered in [28], where the versions of identities
in law such as Dufresne’s identity, Ciesielski-Taylor’s identity, Biane’s
identity, LeGall’s identity was considered.

Howerever, the exponential functionals involving non-homogeneous pro-
cesses with independent increments (PII in short) has not been studied
sufficiently up to now. Only a few results can be found in the litera-
ture. Some results about the moments of the exponential functional of
this type are given in [12]. At the same time PII models for logarithme
of the prices are quite natural in the mathematical finance, it is the
case of the non-homogeneous Poisson process, the Levy process with
deterministic time change, the integrals of Lévy processes with deter-
ministic integrands, the hitting times for diffusions and so on (see for
instance [30], [10], [2]).

The aim of this paper is to study the exponential functionals of the
processes X with independent increments, namely

(4) It =

∫ t

0

exp(−Xs)ds, t ≥ 0,

and also

I∞ =

∫ ∞

0

exp(−Xs)ds,

and give such important characteristics of these exponential functionals
as the moments and the Laplace transforms and the Mellin transforms
of mentioned functionals.

For that we consider a real valued process X = (Xt)t≥0 with indepen-
dent increments andX0 = 0, which is a semi-martingale with respect to
its natural filtration. We denote by (B,C, ν) a semi-martingale triplet
of this process, which can be chosen deterministic (see [15], Ch. II,
p.106). We suppose that B = (Bt)t≥0, C = (Ct)t≥0 and ν are abso-
lutely continuous with respect to the Lebesgue measure in t, i.e. that
X is an Ito process such that

Bt =

∫ t

0

bs ds, Ct =

∫ t

0

cs ds, ν(dt, dx) = dtKt(dx)
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with measurable functions b = (bs)s≥0, c = (cs)s≥0, and the kernel
K = (Kt(A))t≥0,A∈B(R\{0}). For more information about the semi-
martingales and the Ito processes see [15].

We assume that the compensator of the measure of the jumps ν verify
the usual condition: for each t ∈ R

+

(5)

∫ t

0

∫

R\{0}

(x2 ∧ 1)Ks(dx) ds < ∞.

We recall that the characteristic function of Xt

φt(λ) = E exp(iλXt)

is defined by the following expression: for λ ∈ R

φt(λ) = exp{iλBt−
1

2
λ2Ct+

∫ t

0

∫

R\{0}

(eiλx−1−iλx1{|x|≤1})Ks(dx) ds}

which can be easily obtained by the Ito formula for semimartingales.
We recall also thatX is a semi-martingale if and only if for all λ ∈ R the
characteristic function of Xt is of finite variation in t on finite intervals
(cf. [15], Ch.2, Th. 4.14, p.106 ). Moreover, the process X always can
be written as a sum of a semi-martingale and a deterministic function
which is not necessarily of finite variation on finite intervals.

From the formula for the characteristic function we can easily find the
Laplace transform of Xt, if it exists:

E(e−αXt) = e−Φ(t,α)

Putting λ = iα in the previous formula, we get that

Φ(t, α) = αBt −
1

2
α2Ct −

∫ t

0

∫

R\{0}

(e−αx − 1 + αx1{|x|≤1})Ks(dx) ds.

As known, in the case when X is a Levy process with parameters
(b0, c0, K0), it holds

E(e−αXt) = e−tΦ(α)

with

Φ(α) = αb0 −
1

2
α2c0 −

∫

R\{0}

(e−αx − 1 + αx1{|x|≤1})K0(dx).

In this article we establish necessary and sufficient conditions of the
existence of the Laplace exponent, and also the sufficient conditions
for finiteness of E(Iαt ) with fixed t > 0 (see Proposition 1). Next, we
use time reversal of the process X at fixed time t > 0 to introduce a
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new process Y (t) = (Y
(t)
s )0≤s≤t with Y

(t)
s = Xt −X(t−s)−. In Lemma 1

we show that

It = e−Y
(t)
t

∫ t

0

eY
(t)
s ds.

Then, we prove that Y (t) is a process with independent increments and
we identify its semi-martingale characteristics. This time reversal plays
an important role and permits to replace the process (It)t≥0 which is

not Markov, by a family of Markov processes V (t) = (V
(t)
s )0≤s≤t indexed

by t > 0, where V
(t)
s = e−Y

(t)
s
∫ s

0
eY

(t)
u du. In the sequel we omit (t) to

simplify the notations.

In Theorem 1 we consider the case of α ≥ 0 and we give a recurrent
integral equation for the Mellin transform of It. In the Corollaries
2 and 3 we consider the case when X is a Levy process. We give the
formulas for positive moments of It and I∞ and also the formula for the
Laplace transform. The results for I∞ coincide, of course, with the ones
given in [7] for Levy subordinators. But it holds under less restrictive
integrability conditions on I∞ and less restrictive condition on Levy
measure at zero. We can also precise the number of finite moments of
I∞ (cf. Corollary 3 and Corollary 5). In Theorem 2 and Corollaries 4
and 5 we present analogous result for the case α < 0.

2. Finiteness of E(Iαt ) for fixed t > 0.

Now, we fix t > 0. In the following proposition we give necessary and
sufficient conditions for the existence of the Laplace transform of Xt,
and also sufficient conditions for the existence of the Mellin transform
of It. In what follows we assume that K verify the following stronger
condition then (5): for t > 0

(6)

∫ t

0

∫

R\{0}

(x2 ∧ |x|)Ks(dx)ds < ∞.

This condition says, roughly speaking, that the ”big” jumps of the
process X are integrable, and it ensures that finite variation part of
semi-martingale decomposition of X remains deterministic. Moreover,
the truncation of the jumps is no more necessary. In addition, Kruglov
theorem can be applied to show that (6) is equivalent to E(|Xt|) < ∞
(cf. [29], Th. 25.3, p.159).
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Proposition 1. Let α ∈ R and t > 0. Under (6), the condition

(7)

∫ t

0

∫

R\{0}

(e−αx − 1 + αx)Ks(dx)ds < ∞,

is equivalent to

(8) E(e−αXt) < ∞.

Moreover, the condition (7) implies for α ≥ 1 and α ≤ 0 that

(9) E(Iαt ) < ∞.

In addition, if (7) is valid for α = 1, then for 0 ≤ α ≤ 1 we have (9).

Remark 1. Assume that X has only positive jumps, then for α > 0 the
condition (7) is always satisfied. In the same way, ifX has only negative
jumps, then, of course, for α < 0 the condition (7) is satisfied. If X
has bounded jumps, the condition (7) is also satisfied. In general case,
the condition (7) is equivalent to the one of the following conditions:
if α > 0, then

(10)

∫ t

0

∫

x<−1

e−αxKs(dx)ds < ∞,

and if α < 0, then

(11)

∫ t

0

∫

x>1

e−αxKs(dx)ds < ∞.

In the case of Levy processes these conditions coincide with the ones
given in [20], p. 79.

Remark 2. It should be noticed that if the condition (7) is verified
for α′ = α + δ with δ > 0 and α > 0, then it is verified also for α. To
see this, apply Hölder inequality to the integrals in (10) and (11) with
the parameters p = α+δ

α
and q = α+δ

δ
. In fact, since 1

p
+ 1

q
= 1 and

ν([0, t]×]−∞,−1[) < ∞ we have for (10):
∫ t

0

∫

x<−1

e−αxKs(dx)ds ≤

(
∫ t

0

∫

x<−1

e−αpxKs(dx)ds

)

1
p
(
∫ t

0

∫

x<−1

Ks(dx)ds

)

1
q

< ∞

The same can be made for α < 0. In this case we take δ < 0.
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Proof. Since X is assumed to be a process with independent increment
which is a semi-martingale, it can be written as the sum of deterministic
process B of finite variation on finite intervals and local martingale M :

Xt = Bt +Mt

with B0 = 0 and M0 = 0. Notice that, the local martingale property of
M follows from the independence of the increments and the fact that
PII is a strong Markov process. Moreover, the local martingale M with
independent increments will be a martingale (cf. [31], Th. 58, p.45).
Notice also that to prove (8) is equivalent proving

(12) E(e−αMt) < ∞
since Bt is deterministic.

We introduce for n ≥ 1 the stopping times

τn = inf{s ≥ 0 : |Ms| ≥ n}
with inf{∅} = +∞. By the Ito formula we have:

e−αMt∧τn = e−αM0 −α

∫ t∧τn

0

e−αMs−dMs+
1

2
α2

∫ t∧τn

0

e−αMs−d < M c >s

+

∫ t∧τn

0

∫

R\{0}

e−αMs−(e−αx−1+αx)µM(ds, dx),

where µM is the jump measure of M and M0 = 0. We remark that
on stochastic interval [[0, t ∧ τn[[, 0 ≤ e−αMs− ≤ e|α|n and then, by an
additional localization which we do not write explicitly, we get that

E

∫ t∧τn

0

e−αMs−dMs = 0.

We take the mathematical expectation in the previous decomposition
and we use the projection theorem (see [15], Ch. 2, Th. 1.8, p. 66)
together with the facts that d < M c >s= cs and ∆Ms = ∆Xs, to
obtain

(13) E(e−αMt∧τn) = 1 +
1

2
α2E

∫ t∧τn

0

e−αMs csds

+E

(
∫ t∧τn

0

∫

R\{0}

e−αMs−(e−αx − 1 + αx)Ks(dx)ds

)

We also remark that the both terms on the r.h.s. of the last equality
are positive since e−αx − 1 + αx ≥ 0 for all x ∈ R. Take n → +∞,
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then τn → +∞, and by the Fatou lemma and the Fubini theorem we
get that

(14) E(e−αMt) ≤ 1 +
1

2
α2

∫ t

0

E(e−αMs)csds

+

∫ t

0

E(e−αMs)

∫

R\{0}

(e−αx − 1 + αx)Ks(dx)ds

Then, by the Gronwall lemma

E(e−αMt) ≤ exp

(
∫ t

0

[

1

2
α2cs +

∫

R\{0}

(e−αx − 1 + αx)Ks(dx)

]

ds

)

= exp

(

1

2
α2Ct +

∫ t

0

∫

R\{0}

(e−αx − 1 + αx)Ks(dx) ds

)

and using (7), we get (8) via (12).

Assume next that (12) holds. From (13) we get

E(e−αMt∧τn ) ≥ 1 + E

(
∫ t∧τn

0

∫

R\{0}

e−αMs−(e−αx − 1 + αx)Ks(dx)ds

)

Again, the Fatou lemma applied to the r.h.s. of the previous in-
equality and the Jensen inequality applied to the l.h.s. with Mt∧τn =
E(Mt |Ft∧τn) gives us:

E(e−αMt) ≥ 1 +

∫ t

0

E(e−αMs)

∫

R\{0}

(e−αx − 1 + αx)Ks(dx) ds

Then, using the Gronwall lemma again

E(e−αMt) ≥ exp

(
∫ t

0

∫

R\{0}

(e−αx − 1 + αx)Ks(dx) ds

)

Then, we have the condition (7).

Let τ be uniformly distributed on [0, t] random variable independent
of X and α ≥ 1 or α < 0. Then,

E(e−Xτ ) = E(It/t)

and by the Jensen inequality

(It/t)
α ≤ 1

t

∫ t

0

e−αXsds

and

E(Iαt ) ≤ tα−1

∫ t

0

E(e−αXs)ds
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Then, since (e−αMs)0≤s≤t is a sub-martingale and (12) holds, we have
∫ t

0

E(e−αXs)ds =

∫ t

0

e−αBsE(e−αMs)ds

≤ E(e−αMt)

∫ t

0

e−αBsds < ∞

and this yields (9).

If 0 ≤ α ≤ 1, then by the Hölder inequality againE(Iαt ) ≤ (EIt)
α < ∞.

�

Let us give some examples useful in mathematical finance.

Example 1. Let X be non-homogeneous Poisson process with inten-
sity (λs)s≥0. Then, Ks(A) = λs · δ{1}(A) for all A ∈ B(R \ {0}), where
δ{1} is delta-function at 1, and the condition (7) is satisfied as soon

as
∫ t

0
λsds < ∞. Hence, under the last condition, E(Iαt ) < ∞ for all

α ≥ 1 and α < 0.

Example 2. Let L be Levy process with generating triplet (b0, c0, K0)
and X be the process L time changed by deterministic continuously
differentiable process (τ(t))t≥0, i.e. Xt = Lτ(t). Then, for t ≥ 0

Ee−αLτ(t) = e−Φ(α)τ(t)

where Φ(α) is Laplace exponent of L. We write

Φ(α)τ(t) = α τ(t) b0 −
1

2
α2 τ(t) c0 − τ(t)

∫

R\{0}

(e−αx − 1 + αx)K0(dx)

and also, the Laplace exponent of X

Φ(t, α) = αBt −
1

2
α2Ct −

∫ t

0

∫

R\{0}

(e−αx − 1 + αx)Ks(dx) ds

By the identification we get that that Bt = b0τ(t), Ct = c0τ(t), and for
all A ∈ B(R \ {0}), ν(A, dt) = K0(A)τ

′(t)dt. Hence, bt = b0τ
′(t), ct =

c0τ
′(t), and all A ∈ B(R \ {0}), Kt(A) = K0(A)τ

′(t). The condition
(7) is satisfied whenever

(15)

∫

R\{0}

(e−αx − 1 + αx)K0(dx) < ∞.

Under this condition E(Iαt ) < ∞.
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Example 3. Let L be Levy process with generating triplet (b0, c0, K0)
such that K0 has a density f0 w.r.t. a Lebesgue measure and

Xt =

∫ t

0

gsdLs

where g = (gs)s≥0 is a not vanishing square-integral measurable func-
tion. To find the characteristics ofX we take a canonical decomposition
of L, namely

Lt = b0t+
√
c0Wt +

∫ t

0

∫

R\{0}

x(µX(ds, dx)− ν(ds, dx))

where W is standard Brownian motion. We put this decomposition
into the integral which defines X . We get by the identification that
Bt = b0

∫ t

0
gsds, Ct = c0

∫ t

0
g2sds. Moreover, since ∆Xs = gs∆Ls for s >

0, we deduce by projection theorem that for any positive measurable
function h

E

∫ t

0

∫

R\{0}

h(x)µX(ds, dx) = E

∫ t

0

∫

R\{0}

h(x)Ks(dx)ds

and that the l.h.s. of the previous equality is equal to

E

∫ t

0

∫

R\{0}

h(xgs)µL(ds, dx) = E

∫ t

0

∫

R\{0}

h(xgs)K0(dx) ds

Changing the variables we get that Ks(dx) =
1

|gs|
f0(

x
gs
) dx and that the

condition (7) is satisfied whenever
∫ t

0

∫

R\{0}

(e−αxgs − 1 + αxgs)K0(dx)ds < ∞.

Under the last condition, E(Iαt ) < ∞.

3. Time reversal procedure

We introduce, for fixed t > 0, a new process Y (t) = (Y
(t)
s )0≤s≤t with

Y
(t)
s = Xt − X(t−s)−. To simplify the notations we anyway omit the

index (t) and write Ys instead of Y
(t)
s .

First of all we establish the relation between It and the process Y .

Lemma 1. For t > 0 the following equality holds:

It = e−Yt

∫ t

0

eYsds
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Proof. Using the definition of the process Y and the assumption that
X0 = 0 we have

e−Yt

∫ t

0

eYsds =

∫ t

0

e−Yt+Ysds =

∫ t

0

e−X(t−s)−+X0ds

=

∫ t

0

e−Xt−sds =

∫ t

0

e−Xsds = It,

since the integration of the both versions of the process w.r.t. the
Lebesgue measure gives the same result. �

We will show that the process Y is PII and we will give its semi-
martingale triplet with respect to its natural filtration. For that we
put

b̄u =

{

bt−u for 0 ≤ u < t,
bt foru = t,

which can be written also as

b̄u = 1{t}(u)(bt − b0) + bt−u,

where 1{t} is indicator function of the set {t}. We do the similar defi-
nitions for c̄ and K̄:

c̄u = 1{t}(u)(ct − c0) + ct−u,

K̄u(A) = 1{t}(u)(Kt(A)−K0(A)) +Kt−u(A)

for all A ∈ B(R \ {0}).
Lemma 2. The process Y is a process with independent increments,
it is a semi-martingale with respect to its natural filtration, and its
semi-martingale triplet (B̄, C̄, ν̄) is given by :

(16) B̄s =

∫ s

0

b̄udu, C̄s =

∫ s

0

c̄udu, ν̄(ds, dx) = K̄s(dx) ds ,

where 0 ≤ s ≤ t.

Proof Let us take 0 = s0 < s1 < s2 < · · · < sn = t with n ≥ 2.
Then the increments (Ysk − Ysk−1

)1≤k≤n of the process Y are equal to
(X(t−sk−1)−−X(t−sk)−)1≤k≤n and 0 = t−sn < t−sn−1 < · · · < t−s0 = t.
From the fact that X is the process with independent increments, the
characteristic function of the vector (Xt−sk−1−h − Xt−sk−h)1≤i≤n with
small h > 0, can be written as a product of the corresponding character-
istic functions. Namely, for any real constants (λk)0≤k≤n we get:

E exp(i
n
∑

k=1

λk(Xt−sk−1−h−Xt−sk−h)) =
n
∏

k=1

E exp(iλk(Xt−sk−1−h−Xt−sk−h))
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Then, passing to the limit as h → 0+,

E exp(i

n
∑

k=1

λk(X(t−sk−1)−−X(t−sk)−)) =

n
∏

k=1

E exp(iλk(X(t−sk−1)−−X(t−sk)−))

Hence, Y is a process with independent increments.

We know that we can identify the semi-martingale characteristics w.r.t.
the natural filtration of the process with independent increments from
the characteristic function of this process. We notice that Ys = Xt −
X(t−s)− and by the independence of Ys and X(t−s)−

E(eiλXt) = E(eiλYs)E(eiλX(t−s)−)

Then,
E exp(iλYs) = E exp(iλXt)/E exp(iλX(t−s)−) =

exp{iλ
∫ t

t−s

budu−
1

2
λ2

∫ t

t−s

cudu+

∫ t

t−s

∫

R\{0}

(eiλx−1−iλx)Ku(dx) du}

We substitute u by u′ = t− u in the integrals to obtain

E exp(iλYs) =

exp{iλ
∫ s

0

budu− 1

2
λ2

∫ s

0

cudu+

∫ s

0

∫

R\{0}

(eiλx − 1− iλx)Ku(dx) du}

Therefore, the characteristics of Y are as in (16) and the proof is
complete.2

4. Recurrent formulas for the Mellin transform of It
with α ≥ 0.

Let us consider two important processes related with the process Y ,
namely the process V = (Vs)0≤s≤t and J = (Js)0≤s≤t defined via

Vs = e−YsJs, Js =

∫ s

0

eYudu.

We underline that the both processes depend of the parameter t.

We remark that according to Lemma 1 , It = Vt for each t ≥ 0.
For α ≥ 0 and t ≥ 0 we introduce the Mellin transform of It of the
parameter α:

m
(α)
t = E(Iαt ) = E(e−αYtJα

t )

and the Mellin transform for shifted process:

m
(α)
s,t = E

[(
∫ t

s

e−(Xu−Xs−)du

)α]
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Notice that m
(α)
0,t = m

(α)
t . Notice also that

m
(α)
s,t = E

[(
∫ t

s

e−(Xu−Xs)du

)α]

In fact, Xu −Xs = Xu −Xs− −∆Xs and
∫ t

s

e−(Xu−Xs−)du = e−∆Xs

∫ t

s

e−(Xu−Xs)du

Since ∆Xs and (Xu −Xs)u≥s are independent, and E(e−α∆Xs) = 1, we

get the equality of two expressions for m
(α)
s,t .

We introduce also two functions: for 0 ≤ s ≤ t

(17) H(α)
s = αbs −

1

2
α2cs −

∫

R\{0}

(e−αx − 1 + αx)Ks(dx)

and

(18) H̄(α)
s = 1{t}(s)(H

(α)
t −H

(α)
0 ) +H

(α)
t−s

These functions represent the derivatives w.r.t. s, of the Laplace ex-
ponents Φ(s, α) and Φ̄(s, α). We recall that

Φ(s, α) = αBs −
α2

2
Cs −

∫ s

0

∫

R\{0}

(e−αx − 1 + αx) ν(du, dx)

and

Φ̄(s, α) = αB̄s −
α2

2
C̄s −

∫ s

0

∫

R\{0}

(e−αx − 1 + αx)ν̄(du, dx)

where ν and ν̄ are the compensators of the jump measure of X and
Y respectively. We notice, that these functions are well-defined under
condition (7). We also notice that

Φ̄(s, α) = Φ(t, α)− Φ(t− s, α)

Our aim now is to obtain a recurrent integral equation for the Mellin
transform of It. For condition (19) below see Remarks 1 and 2.

Theorem 1. Let α ≥ 1 be fixed and assume that for t > 0 there exists
δ > 0 such that

(19)

∫ t

0

∫

x<−1

e−(α+δ)xKs(dx) ds < ∞.

Then, m
(α)
t is well-defined and the following recurrent integral equation

holds

(20) m
(α)
t = α

∫ t

0

m
(α−1)
u,t e−Φ(u,α) du



ON EXPONENTIAL FUNCTIONALS 15

If X is Levy process, then for all t > 0

(21) m
(α)
t = αe−Φ(α) t

∫ t

0

m(α−1)
s eΦ(α) sds

Moreover,

(22)
d

dt

[

m
(α)
t

]

= −m
(α)
t Φ(α) + αm

(α−1)
t

Proof. From Lemma 2 we know that Y = (Ys)0≤s≤t is a process with
independent increments which is a semi-martingale, i.e. Ys = B̄s +
M̄s, where B̄ is a deterministic process of finite variation on finite
intervals and M̄ is a local martingale. But the local martingales with
independent increments are always the martingales (see [31]).

For n ≥ 1 we introduce the stopping times

τn = inf{0 ≤ s ≤ t : Vs ≥ n or exp(−Ys) ≥ n}
with inf{∅} = +∞. For fixed s, 0 < s < t, we write the Ito formula
for V α

s∧τn :

V α
s∧τn = α

∫ s∧τn

0

V α−1
u− dVu +

1

2
α(α− 1)

∫ s∧τn

0

V α−2
u− d < V c >u

(23) +

∫ s∧τn

0

∫

R\{0}

(

(Vu− + x)α − V α
u− − αV α−1

u− x
)

µV (du, dx)

where µV is the measure of the jumps of V . Using integration by part
formula, we have:

(24) dVu = du+ Jud(e
−Yu)

Now, again by the Ito formula, we get

(25) e−Yu = e−Y0 −
∫ u

0

e−Yv−dYv +
1

2

∫ u

0

e−Yv−d < Y c >v

+

∫ u

0

∫

R\{0}

e−Yv−(e−x − 1 + x)µY (dv, dx)

Then, putting (25) into (24), we obtain

(26) dV c
u = −e−Yu−Ju dY

c
u = −Vu− dY c

u ,

d < V c >u = V 2
u− d < Y c >u

and

(27) ∆Vu = e−Yu−Ju(e
−∆Yu − 1) = Vu−(e

−∆Yu − 1),
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where ∆Vu = Vu − Vu− and ∆Yu = Yu − Yu−. The previous relations
imply that

(28) V α
s∧τn = α

∫ s∧τn

0

V α−1
u− du

+α

∫ s∧τn

0

Ju V
α−1
u− d(e−Yu) +

1

2
α(α− 1)

∫ s∧τn

0

V α
u−d < Y c >u

+

∫ s∧τn

0

∫

R\{0}

V α
u−

(

e−αx − 1− α(e−x − 1)
)

µY (du, dx)

To use in efficient way the Ito formula for e−Yu given before, we intro-
duce the processes A = (Au)0≤u≤t and N = (Nu)0≤u≤t via

Au =

∫ u

0

e−Yv−[−dB̄v +
1

2
dC̄v] +

∫ u

0

∫

R\{0}

e−Yv−(e−x − 1 + x)ν̄(dv, dx)

Nu = −
∫ u

0

e−Yv−dM̄v+

∫ u

0

∫

R\{0}

e−Yv−(e−x−1+x)[µY (dv, dx)−ν̄(dv, dx)]

We notice that A is a process of locally bounded variation and N is
a local martingale with localizing sequence (τn)n≥1, since B̄, C̄ are of
bounded variation on bounded intervals and

∫ u

0

∫

R\{0}

(e−x − 1 + x)K̄s(dx)ds < ∞.

From (25) we get that

(29) e−Yu = e−Y0 + Au +Nu.

We incorporate this semi-martingale decomposition into (28) and we
consider its martingale part. This martingale part is represented by
the term

α

∫ s∧τn

0

V α−1
u JudNu =

α

∫ s∧τn

0

V α
u [dM̄u +

∫

R\{0}

(e−x − 1 + x)(µY (dv, dx)− ν̄(dv, dx))]

which is a local martingale. Let (τ ′n)n≥0 be a localizing sequence for this
local martingale and let τ̄n = τn ∧ τ ′n. Then we do additional stopping
with τ ′n in previous expressions, and we take mathematical expectation.
Using the fact that the expectations of martingales starting from zero
are equal to zero and also applying the projection theorem, we obtain:

(30) E(V α
s∧τ̄n) = αE

(
∫ s∧τ̄n

0

V α−1
u du

)
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+αE

(
∫ s∧τ̄n

0

V α−1
u− Ju dAu

)

+
1

2
α(α− 1)E

(
∫ s∧τ̄n

0

V α
u dC̄u

)

+E

(
∫ s∧τ̄n

0

∫

R\{0}

V α
u−

[

e−αx − 1− α(e−x − 1)
]

ν̄(du, dx)

)

and, hence,

(31) E(V α
s∧τ̄n) = αE

(
∫ s∧τ̄n

0

V α−1
u du

)

−E

(
∫ s∧τn

0

V α
u− dΦ̄(u, α)

)

We remark that τ̄n → +∞ (P − a.s.) as n → +∞. To pass to the
limit as n → ∞ in r.h.s. of the above equality, we use the Lebesgue
monotone convergence theorem for the first term and the Lebesgue
dominated convergence theorem for the second term. In fact, for the
second term we have using (17) and (18) :

∣

∣

∣

∣

∫ s∧τ̄n

0

V α
u− dΦ̄(u, α)

∣

∣

∣

∣

≤
∫ t

0

V α
u− |H̄(α)

u |du

In addition,

E

(
∫ t

0

V α
u− |H̄(α)

u |du
)

≤ sup
0≤u≤t

E(V α
u )

∫ t

0

|H̄(α)
u |du

The function (H̄
(α)
u )0≤u≤t is deterministic function, integrable on finite

intervals. Hence, it remains to show that

(32) sup
0≤s≤t

E(V α
s ) < ∞.

By the Jensen inequality

V α
s ≤ sα−1

∫ s

0

eα(Yu−Ys)du

We remark that Yu − Ys = X(t−s)− −X(t−u)−, and then

(33) E(V α
s ) ≤ sα−1

∫ s

0

E(eα(Xt−s−Xt−u)) du

Since the process X is a process with independent increments, we have
for 0 ≤ u ≤ s ≤ t

E(eα(Xt−s−Xt−u)) = E(e−αXt−u)/E(e−αXt−s) =

exp{−
∫ t−u

0

H(α)
r dr +

∫ t−s

0

H(α)
r dr} ≤ exp{

∫ t

0

|H(α)
r |dr}
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Due to the Remark 1 and the condition (19), H(α) is integrable function
on finite intervals, and hence,

sup
0≤s≤t

E(V α
s ) ≤ tα exp{

∫ t

0

|H(α)
r |dr} < ∞

To pass to the limit in the l.h.s. of (31), we show that the family of
(V α

s∧τn)n≥1 is uniformly integrable, uniformly in 0 ≤ s ≤ t. For that we
recall that Ys = B̄s+ M̄s where B̄ is a drift part and M̄ is a martingale
part of Y , and we introduce

V̄s = e−M̄s

∫ s

0

eM̄udu

Then,

Vs = e−Ys

∫ s

0

eYudu = e−M̄s−B̄s

∫ s

0

eM̄u+B̄udu

≤ sup
0≤u≤s

(eB̄u−B̄s) V̄s ≤ eV ar(B̄)t V̄s

where V ar(B̄)t is the variation of B̄ on the interval [0, t]. This quantity
is deterministic and bounded, hence, it is sufficient to prove uniform
integrability of (V̄ α

s∧τn)n≥1.

Next, we show that (V̄s)0≤s≤t is a submartingale w.r.t. a natural filtra-
tion of Y . Let s′ > s, then

E(V̄s′ | Fs) = E(e−M̄s′

∫ s′

0

eM̄udu | Fs) =

E(e−(M̄s′−M̄s) [V̄s + eM̄s

∫ s′

s

eM̄udu] | Fs) ≥

E(e−(M̄s′−M̄s)V̄s | Fs) = V̄s E(e
−(M̄s′−M̄s))

The expression for E(e−(M̄s′−M̄s)) can be find from the expression of
the characteristic exponent of Y without its drift part:

E(e−(M̄s′−M̄s) =

exp

(

1

2

∫ s′

s

cudu+

∫ s′

s

∫

R\{0}

(e−x − 1 + x)ν̄(du, dx)

)

≥ 1.

Then, (V̄ α
s )0≤s≤t is a submartingale, and by Doob stopping theorem

(P -a.s.)
E(V̄ α

s | Fs∧τn) ≥ V̄ α
s∧τn .

Hence, for all n ≥ 1, c > 0 and I(·) indicator function
E(V̄ α

s∧τnI{V̄s∧τn>c}) ≤ E(E(V̄ α
s | Fs∧τn)I{E(V̄ α

s | Fs∧τn )>c}) ≤
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c−
δ
αE(E(V̄ α

s | Fs∧τn)
α+δ
α ) ≤ c−

δ
αE(V̄ α+δ

s )

It remains to show that sup0≤s≤tE(V̄
α+δ
s ) < ∞. The last inequality

can be proved in the same way as (32).

After limit passage, we get that

(34) E(V α
s ) = −

∫ s

0

E(V α
u ) dΦ̄(u, α) + α

∫ s

0

E(V α−1
u )du

We see that each term of this equation is differentiable w.r.t. s for
s < t. In fact, the family (V α

s )0≤s≤t is uniformly integrable and the
function (E(V α

s ))0≤s≤t is continuous in s as well as (Φ̄(s, α))0≤s<t. We
calculate the derivatives in s of both sides of the above equation and
we solve the corresponding linear equation to obtain:

E(V α
s ) = αe−Φ̄(s,α)

∫ s

0

E(V α−1
u ) eΦ̄(u,α) du

Now, we write that Φ̄(u, α)− Φ̄(s, α) = −Φ(t− u, α) + Φ(t− s, α) and
we let s → t− to get

E(V α
t ) = α

∫ t

0

E(V α−1
u ) e−Φ(t−u,α) du

Notice that It = Vt and, hence, E(V
α
t ) = m

(α)
t . Since

Vu =

∫ u

0

eYv−Yudv =

∫ u

0

e−(X(t−v)−−X(t−u)−)dv =

∫ t

t−u

e−(Xv−X(t−u)−)dv

we also have E(V α−1
u ) = m

(α−1)
t−u,t . Then, we obtain (20) after the change

of variables in integrals replacing t− u by u.

In particular case of Levy process, we use (20) and we take into account

that m
(α−1)
u,t = m

(α−1)
t−u and that Φ(u, α) = Φ(α) u. Then, after the

change of variables, the formula (21) follows as well as (22). �

Remark 3. It should be noticed that the relation (20) can be obtained
with another technique (see [27]), based on the approach of [7].

Now we will apply our results to calculate the moments.

Example 4. We consider Levy process L = (Lt)t≥0 with generating
triplet (b0, c0, K0) starting from 0, and time changed by deterministic
process (τt)t≥0 with τt = r ln(1 + t) with r > 0, i.e. Xt = Lτt for t ≥ 0.
Then, by change of variables u = r ln(1 + s) we get

It =

∫ t

0

e−Lr ln(1+s)ds =
1

r

∫ r ln(1+t)

0

e−(Lu−u/r)du =
1

r

∫ r ln(1+t)

0

e−L̃udu
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where L̃ is Levy process with generating triplet (b0 − 1
r
, c0, K0). We

denote by Φ̃ the Laplace exponent of L̃. Then for k ≥ 0, Φ̃(k) =
Φ(k)− k

r
and

E(It) =
1

r

∫ r ln(1+t)

0

e−Φ̃(1)udu =







1−(1+t)−rΦ(1)+1

rΦ(1)−1
if rΦ(1)− 1 6= 0,

ln(1 + t) otherwise.

For shifted process X
(s)
u = Lτu −Lτs , u ≥ s the corresponding moments

m
(n)
s,t = E

[(
∫ t

s

e−(Lτu−Lτs)du

)n ]

= E

[(
∫ t

s

e−L(τu−τs)du

)n ]

since L is homogeneous process and (Lτu − Lτs)u≥s
L
= (Lτu−τs)u≥s.

We change the variable putting τu−τs = r ln(1+u)−r ln(1+s) = v−s
where v is new variable. We denote v(s, t) = r ln( 1+t

1+s
) and we remark

that 1 + u = (1 + s) exp((v − s)/r). Then,

E

[(
∫ t

s

e−(Lτu−τs )du

)n ]

= E

[(

1 + s

r

∫ s+v(s,t)

s

e−L̃v−sdv

)n ]

=
(1 + s)n

rn
E

[(

∫ v(s,t)

0

e−L̃udu

)n ]

Finally, we get for n ≥ 0:

m
(n)
s,t =

(1 + s)n

rn
m̃

(n)
v(s,t)

where m̃
(n)
v(s,t) is n-th moment of the exponential functional of L̃ on

[0, v(s, t)]. We suppose for simplicity that Φ̃ is strictly monotone on
the interval [0, n+ 1]. Then, using the integral equation of Theorem 1
and the expression for the moments of Levy processes given in Corollary
1 below, and the fact that

e−Φ(s,n+1) = e−Φ(n+1)τs = (1 + s)−rΦ(n+1)

we get for n ≥ 1:

m
(n+1)
t =

(n+ 1)!

rn

n−1
∑

k=0

∫ t

0

(1 + s)q(n)
e−Φ̃(k)v(s,t) − e−Φ̃(n)v(s,t)

∏

0≤i≤n, i 6=k

(Φ̃(i)− Φ̃(k))
ds



ON EXPONENTIAL FUNCTIONALS 21

where q(n) = n− rΦ(n+ 1) and Φ̃(k) is the Laplace exponent of Levy

process L̃, Φ̃(k) = Φ(k)− k
r
, 1 ≤ k ≤ n. To express the final result we

put

ρ(k) = rΦ(k)− k, γ(n, k) = n− k − r(Φ(n + 1)− Φ(k))

and

Qt(n, k) =
(1 + t)γ(n,k)+1 − 1

(γ(n, k) + 1)(1 + t)ρ(k)

Then, after the integration we find that for n ≥ 1

E(In+1
t ) = m

(n+1)
t = (n+ 1)!

n−1
∑

k=0

Qt(n, k)−Qt(n, n)
∏

0≤i≤n, i 6=k

(ρ(i)− ρ(k))

Remark 4. It is clear that the explicit formulas for the moments in
non-homogeneous case will be rather exceptional. For numerical cal-
culus the following formula could be useful: for all 0 ≤ s ≤ t

m
(α)
s,t = α

∫ t

s

m
(α−1)
u,t eΦ(u,α)−Φ(s,α) du

To obtain this formula it is sufficient to find the Laplace exponent of

shifted process (X
(s)
u )s≤u≤t with X

(s)
u = Xu −Xs. Since X is a PII, the

variables Xs and Xu −Xs are independent, and

E(e−αXu) = E(e−αXs)E(e−α(Xu−Xs))

and then, the Laplace exponent of shifted process X(s) is given by:

Φ(s)(u, α) = Φ(u, α)− Φ(s, α).

5. Positive moments of It and I∞ for Levy processes

Now we suppose thatX is Levy process with the parameters (b0, c0, K0).
In this case the condition (6) become:

(35)

∫

R\{0}

(x2 ∧ |x|)K0(dx) < ∞.

It should be noticed that in [7] the condition on Levy measure was
∫

R\{0}

(|x| ∧ 1)K0(dx) < ∞
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and this condition is stronger at zero and weaker at infinity then (35).
When X is Levy process, the condition (19) become: there exists
δ > 0

(36)

∫

x<−1

e−(α+δ)xK0(dx) < ∞.

Corollary 1. Let n ≥ 1 and suppose that Φ is bijective on [0, n] ∩ N.
Then,

E(Int ) = n!
n−1
∑

k=0

e−Φ(k)t − e−Φ(n)t

∏

0≤i≤n, i 6=k

(Φ(i)− Φ(k))

Proof. The formula follows from (21) by induction. �

We present here two examples, one of them is related with Brownian
motion, and second one with compound Poisson process.

Example 5. Let X be a Brownian motion with drift µ > 0 and dif-
fusion coefficient σ > 0, i.e. Xt = µt + σWt where W = (Wt)t≥0 is

standard Brownian motion. Then, Φ(α) = αµ − α2 σ2

2
and if 2µ

σ2 is not
an integer, we get:

E(Int ) = n!
n−1
∑

k=0

e−(kµ−k2σ2/2)t − e−(nµ−n2σ2/2)t

∏

0≤i≤n, i 6=k

(i− k)(µ− (i+ k)σ2/2)

Example 6. Let X be compound Poisson process such that Xt =
∑Nt

k=1Uk where (Uk)k≥0 is a sequence of independent random variables
with distribution function F and N is a homogeneous Poisson process
with intensity λ > 0. Then, Φ(α) = λ

∫

R\{0}
(1 − e−αx)F (dx). In

particular, if the Uk’s are standard normal variables, we get that Φ(α) =

λ(1− eα
2 /2) and

E(Int ) = n!
n−1
∑

k=0

exp(λt(1− ek
2/2))− exp(λt(1− en

2/2))

λn
∏

0≤i≤n, i 6=k

(ek
2/2 − ei

2/2)

We introduce the Laplace-Carson transform m̂
(α)
q of m

(α)
t of the param-

eter q > 0:

m̂(α)
q =

∫ ∞

0

qe−qtm
(α)
t dt

This integral is always well-defined in general sense, since the integrand
is positive.
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Corollary 2. (cf. [7]) Let X be a Levy process which verifies (35) and

(36), and such that for fixed α ≥ 1, m
(α)
∞ < ∞. Then the Laplace-

Carson transforms m̂
(α)
q and m̂

(α−1)
q of m

(α)
t and m

(α−1)
t respectively,

are well-defined and we have a recurrent formula:

(37) m̂(α)
q (q + Φ(α)) = αm̂(α−1)

q

In particular, for integer n ≥ 1 such that m
(n)
∞ < ∞ we get:

(38) m̂(n)
q =

n!
∏n

k=1(q + Φ(k))

As a consequence,

E(In∞) =
n!

∏n
k=1Φ(k)

Moreover, if all positive moments of I∞ exist and the series below con-
verges, then the Laplace transform of I∞ of parameter β > 0 is given
by:

(39) E(e−β I∞) =
∞
∑

n=0

(−1)nβn

∏n
k=1Φ(k)

Proof. The first equality for the Laplace-Carson transforms follows di-
rectly from (22). The second equality can be obtained as particular
case from the first one, by recurrence.

For the third one we prove that m̂
(n)
q → m

(n)
∞ as q → 0. In fact,

m
(n)
t → m

(n)
∞ as t → +∞ and

lim
t→+∞

1

t

∫ t

0

m(n)
s ds = m(n)

∞ .

Let us denote M
(n)
t =

∫ t

0

m(n)
s ds. By integration by part formula we

have for each t > 0 :
∫ t

0

qe−qsm(n)
s ds = [q e−qtM

(n)
t ]t0 +

∫ t

0

q2e−qsM (n)
s ds

Then, since M
(n)
0 = 0 and M

(n)
t /t → m

(n)
∞ as t → +∞,

m̂(n)
q =

∫ ∞

0

qe−qsm(n)
s ds = q2

∫ ∞

0

e−qsM (n)
s ds

Since q2
∫∞

0
s e−qsds = 1, we get

m̂(n)
q −m(n)

∞ = q2
∫ ∞

0

e−qs(M (n)
s − sm(n)

∞ )ds
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For each ǫ > 0 there exists tǫ such that for s ≥ tǫ, |M
(n)
s

s
−m

(n)
∞ | ≤ ǫ.

Then,

| m̂(n)
q −m(n)

∞ | ≤ q2
∫ tǫ

0

e−qs|M (n)
s − sm(n)

∞ |ds+

q2
∫ ∞

tǫ

s e−qs

∣

∣

∣

∣

∣

M
(n)
s

s
−m(n)

∞

∣

∣

∣

∣

∣

ds ≤ q2
∫ tǫ

0

e−qs|M (n)
s − sm(n)

∞ |ds+ ǫ

We notice that

lim
q→0

q2
∫ tǫ

0

e−qs |M (n)
s − sm(n)

∞ | ds = 0

Then, taking limǫ→0 limq→0 in the previous inequality we get that

m̂(n)
q → m(n)

∞

as q → 0. Finally, we take the limit as q → 0 in second equality, to
obtain the third one. The formula for the Laplace transform of I∞
can be proved by using Taylor expansion with remainder in Lagrange
form. �

Example 7. Let X be homogeneous Poisson process of intensity λ.
Then all positive moments of I∞ exist, and we have for 0 ≤ β < λ

E(e−β I∞) =

∞
∑

n=0

(−1)nβn

λn
∏n

k=1(1− e−k)
.

Corollary 3. Let α0 = inf{α > 0 |Φ(α) ≤ 0} with inf{∅} = +∞.
Then, E(In∞) < ∞ if and only if 1 ≤ n < α0. In particular, for Brow-
nian motion with drift coefficient b0 and diffusion coefficient c0 6= 0,

Φ(n) = nb0 −
1

2
n2c0

and the moment of I∞ of order n ≥ 1 will exist if n < 2b0
c0
.

If X is a subordinator with non-zero Levy measure K0 such that (35)
holds, then

Φ(n) = n[b0 −
∫

R+\{0}

xK0(dx) ]−
∫

R+\{0}

(e−nx − 1)K0(dx),

and under the condition

b0 −
∫

R+\{0}

xK0(dx) ≥ 0,

all moments of I∞ exist.
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Proof. Let n = sup{k ≥ 1 : E(Ik∞) < ∞}. If n = +∞, then Φ(k) > 0
for all k ≥ 1 and α0 = +∞. If 1 ≤ n < +∞, from Corollary 2 we get
that Φ(n) > 0. Since Φ(α) is concave function such that Φ(0) = 0, we
conclude that n < α0. Conversely, substituting t − s by s in (21) of
Theorem 1 we get:

E(Int ) ≤ nE(In−1
∞ )

∫ t

0

e−Φ(n)s ds

If 1 ≤ n < α0, Φ(n) > 0, and the integral on the r.h.s. of this inequality
converge as t → ∞. By induction, it gives that E(In∞) < ∞. Moreover,
the results for continuous case and the case when X is a subordinator,
follow immediately from the expression of Φ(k). �

Example 8. Let X be time changed Brownian motion, namely Xt =
µτt + σWτt where W = (Wt)t≥0 is standard Brownian motion, µ ∈ R,
σ > 0 and τt is first hitting time of the level t of the independent (from
W ) standard Brownian motion B = (Bt)t≥0 with the drift coefficient
b > 0. Then, as known, Φ(α) = (b2+2αµ−α2σ2)1/2−b with b2+2αµ−
α2σ2 > 0 (see for instance [8], formula 2.0.1,p.295). Then, E(In∞) < ∞
if and only if 2µ− nσ > 0.

Example 9. Let X be pure discontinuous Levy process with Levy
measure

K0(dx) =
c exp(−Mx)

x1+β
I]0,+∞[(x)dx

where c > 0,M > 0, 0 < β < 1. Then,

Φ(α) =
cΓ(1− β)

β
((M + α)β −Mβ − αMβ−1β).

Then, Φ(α) > 0 for α ≥ 1, and all moments of I∞ exist.

6. Recurrent formulas for the Mellin transform of It
with α < 0.

In the following Theorem 2, we derive the integro-differential equation

for the Mellin transform m
(α)
t of It with α < 0.

Theorem 2. Let α < 0 be fixed and

(40)

∫ t

0

∫

x>1

e(|α|+1)xKs(dx) ds < ∞.
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Then, for s > 0, m
(α)
s,t is well-defined as well as m

(α−1)
s,t and we get the

following recurrent differential equation:

(41) m
(α−1)
s,t =

1

α

(

m
(α)
s,t H

(α)
s − d

ds
m

(α)
s,t

)

In the case of Levy process X we have:

(42) m(α−1)
s =

1

α

(

m(α)
s Φ(α) +

d

ds
m(α)

s

)

Proof. The proof of this result is similar to the proof of Theorem 1.
For n ≥ 1 we introduce the stopping times

τn = inf{u ≥ s : Vu ≤ 1

n
or exp(−Yu) ≥ n}

with inf{∅} = +∞. Then from the Ito formula similarly to (23) we
get: for 0 < s < t

V α
t∧τn = V α

s + α

∫ t∧τn

s

V α−1
u− dVu +

1

2
α(α− 1)

∫ t∧τn

s

V α−2
u− d < V c >u

(43) +

∫ t∧τn

s

∫

R\{0}

(

(Vu− + x)α − V α
u− − αV α−1

u− x
)

µV (du, dx)

where µV is the measure of the jumps of V . Using (24), (26), (27) we
have

(44) V α
t∧τn = V α

s + α

∫ t∧τn

s

V α−1
u− du

+α

∫ t∧τn

s

Ju V
α−1
u− d(e−Yu) +

1

2
α(α− 1)

∫ t∧τn

s

V α
u−d < Y c >u

+

∫ t∧τn

s

∫

R\{0}

V α
u−

(

e−αx − 1− α(e−x − 1)
)

µY (du, dx)

where µY the measure of the jumps of Y . Taking in account (29) we,
finally, find that
(45)

E(V α
t∧τn) = E(V α

s ) + αE

(
∫ t∧τn

s

V α−1
u− du

)

− E

(
∫ t∧τn

s

V α
u− dΦ̄(u, α)

)

We remark that τn → +∞ (P− a.s.) as n → +∞. To pass to the limit
as n → ∞ in the r.h.s. of the above equality, we use the Lebesgue
monotone convergence theorem for the first term and the Lebesgue
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dominated convergence theorem for the second term. In fact, for second
term we have:

∣

∣

∣

∣

∫ t∧τn

s

V α
u− dΦ̄(u, α)

∣

∣

∣

∣

≤
∫ t

s

V α
u− |H̄(α)

u |du

In addition,

E

(
∫ t

s

V α
u− |H̄(α)

u |du
)

≤ sup
s≤u≤t

E(V α
u )

∫ t

s

|H̄(α)
u |du

The function (H̄
(α)
u )0≤u≤t is deterministic function, integrable on finite

intervals. Hence, it remains to show that

(46) sup
s≤u≤t

E(V α
u ) < ∞.

By the Jensen inequality

V α
u ≤ uα−1

∫ u

0

eα(Yv−Yu)dv

Then, in the same way as in Theorem 1 we get that

sup
s≤u≤t

E(V α
u ) ≤ sα exp{

∫ t

0

|H(α)
r |dr}

To pass to the limit in the l.h.s. of (45), we prove that the family
of (V α

u∧τn)n≥1 is uniformly integrable, uniformly in u ∈ [s, t] in the
same way as in Theorem 1. For that we introduce a submartingale

(V̄
(α)
u )s≤u≤t with

V̄ (α)
u = e−αM̄u

∫ u

0

eαM̄vdv

such that
V α
u ≤ e|α| V ar(B̄)t V̄ (α)

u .

On the set {V̄ (α)
u∧τn > c} we get that 1 ≤ (

V̄
(α)
u∧τn

c
)

1
|α| . Then

V̄
(α)
u∧τnI{V̄ (α)

u∧τn
>c}

≤ (V̄
(α)
u∧τn)

1+ 1
|α| c−

1
|α| = (V̄

(α)
u∧τn)

α−1
α

By Jensen inequality we get that

(V̄
(α)
u∧τn)

α−1
α ≤ V̄

(α−1)
u∧τn u

1
|α|

Hence, we proved that for all n ≥ 1, c > 0 and s ≤ u ≤ t

E(V̄
(α)
u∧τnI{V̄ (α)

u∧τn
>c}

) ≤ c−
1
|α| max(s

1
|α| , t

1
|α| )E(V̄ (α−1)

u )

To prove uniform integrability it remains to prove

sup
s≤u≤t

E(V̄ (α−1)
u ) < ∞
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in the same manner as before.

After limit passage we get that

(47) E(V α
t ) = E(V α

s )−
∫ t

s

E(V α
u ) dΦ̄(u, α) + α

∫ t

s

E(V α−1
u )du

We differentiate each term of this equality w.r.t. s to obtain that

d

ds
E(V α

s ) + E(V α
s ) H̄

(α)
s − αE(V α−1

s ) = 0

We take in account that E(V α
s ) = m

(α)
t−s,t, E(V

α−1
s ) = m

(α−1)
t−s,t and that

H̄
(α)
s = H

(α)
t−s. This gives us that

d

ds
m

(α)
t−s,t +m

(α)
t−s,tH

(α)
t−s − αm

(α−1)
t−s,t = 0

Finally, replacing t− s by s we get (41). In the case of Levy processes

m
(α)
t−s,t = m

(α)
s due to homogeneity, and H

(α)
t−s = Φ(α), and this gives

(42). �

To present the results about negative moments of Levy process X with
the parameters (b0, c0, K0), we introduce the condition:

(48)

∫

x>1

e(|α|+1)xK0(dx) < ∞.

Corollary 4. (cf. [7])Let X be Levy process verifying (35) and (48),

and let α ≤ −1 be fixed. Suppose that m
(α−1)
∞ < ∞. Then the Laplace-

Carson transforms of m
(α)
∞ and m

(α−1)
∞ are well-defined and we have a

recurrent formula:

(49) m̂(α−1)
q =

1

α

(

m̂(α)
q Φ(α) + q m̂(α)

q

)

and, hence,

m̂(α−1)
q =

1

α
m̂(α)

q (q + Φ(α))

In particular, under above conditions, for integer n ≥ 2 and α = −n
we get:

(50) m̂(−n)
q = m̂(−1)

q · (−1)n−1

(n− 1)!

n−1
∏

k=1

(q + Φ(−k))

As a consequence,

(51) E(I−n
∞ ) = E(I−1

∞ ) · (−1)n−1

(n− 1)!

n−1
∏

k=1

Φ(−k)
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Proof. Two first equalities given above follow directly from Theorem
2. The third one can be proved in the same way as in Corollary 2 by
letting q → 0. �

Example 10. For compound Poisson process presented in Example 5
with Uk’s which follows standard normal distribution, we get for n ≥ 1

E(I−n
∞ ) =

E( I−1
∞ )

(n− 1)!

n−1
∏

k=1

(e
k2

2 − 1).

Corollary 5. Let β = sup{k ≥ 1 | − ∞ < Φ(−l) < 0 for 1 ≤ l ≤ k}
with sup{∅} = 1. Then E(I

−(n+1)
∞ ) < ∞ if and only if n ≤ β and

E(I−1
∞ ) < ∞.

In particular, for Brownian motion with the drift coefficient b0 and the

diffusion coefficient c0 6= 0, E(I
−(n+1)
∞ ) < ∞ if and only if 2b0

c0
> −1.

If X is a subordinator with
∫

R+\{0}
xK0(dx) < ∞, then

Φ(−k) = −k[b0 −
∫

R+\{0}

xK0(dx)]−
∫

R+\{0}

(ekx − 1)K0(dx),

and under the condition

(52) b0 −
∫

R+\{0}

xK0(dx) ≥ 0

E(I
−(n+1)
∞ ) < ∞ if and only if

∫

R+\{0}
(enx − 1)K0(dx) < ∞.

Proof. Suppose that E(I
−(n+1)
∞ ) < ∞ for some n > 0. Then by Cauchy-

Schwartz inequality we get that for all k, 1 ≤ k ≤ n, E(I−k
∞ ) < ∞.

Then the formula (51) yields that and E(I−1
∞ ) < ∞ and −∞ <

Φ(−k) < 0 for 1 ≤ k ≤ n. Hence, n ≤ β and E(I−1
∞ ) < ∞.

Conversely, if n ≤ β and E(I−1
∞ ) < ∞, then −∞ < Φ(−k) < 0 for

1 ≤ k ≤ n. Then from (41)

m−(k+1)
s =

Φ(−k)

−k
m(−k)

s − 1

k

d

ds
m(−k)

s ≤ Φ(−k)

−k
m(−k)

s ≤ |Φ(−k)|
k

m(k)
∞

since d
ds
m

(−k)
s ≥ 0. Hence,

E(I−(n+1)
∞ ) = m−(n+1)

∞ ≤
n
∏

k=1

|Φ(−k)|
k

E(I−1
∞ ) < ∞.

In the case of Brownian motion we conclude that Φ(−k) = −kb0 −
1
2
k2c0 > −∞ for all k ≥ 1. Since Φ is concave function with Φ(0) = 0,

the condition Φ(−1) < 0 ensures the existence of all negative moments.
In the case when X is a subordinator, and under mentioned condition
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(52), all Φ(−k) < 0 and only the condition of finiteness of Φ(−k) play
a role in the existence of the negative moments. �

Example 11. Let us apply the Corollary 5 to time changed Brownian
motion considered in Example 8. We get that Φ(α) < 0 whenever
−b2 ≤ 2αµ − α2σ2 < 0. Hence, all negative moments of I∞ exists if
E(I−1

∞ ) < ∞ and 2µ+ σ2 > 0.
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