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ON EXPONENTIAL FUNCTIONALS OF PROCESSES

WITH INDEPENDENT INCREMENTS
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and
L. Vostrikova 1 , LAREMA, Département de
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Abstract. In this paper we study the exponential functionals of
the processes X with independent increments , namely

It =

∫ t

0

exp(−Xs)ds,, t ≥ 0,

and also

I∞ =

∫

∞

0

exp(−Xs)ds.

When X is a semi-martingale with absolutely continuous char-
acteristics, we derive necessary and sufficient conditions for the
existence of the Laplace exponent of It, and also the sufficient con-
ditions of finiteness of the Mellin transform E(Iαt ) with α ∈ R. We
give a recurrent integral equations for this Mellin transform. Then
we apply these recurrent formulas to calculate the moments. We
present also the corresponding results for the exponentials of Levy
processes, which hold under less restrictive conditions then in [4].
In particular, we obtain an explicit formula for the moments of It
and I∞, and we precise the exact number of finite moments of I∞.

MSC 2010 subject classifications: 60G51, 91G80

1. Introduction

The exponential functionals arise in many areas, in particular in the
theory of self-similar Markov processes, mathematical finance, random
processes in random environment and so on, as mentioned in [4]. More

11This work is supported in part by DEFIMATHS project of the Reseach Federation
of ”Mathématiques de Pays de la Loire” and PANORisk project of Pays de la Loire
region.
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2 ON EXPONENTIAL FUNCTIONALS

precisely, see [13], self-similar Markov processes are related with expo-
nential functionals by Lamperti transform, namely self-similar Markov
process can be written as an exponential of Levy process time changed
by the inverse of exponential functional of the same Levy process. In
mathematical finance the question is related to the perpetuities con-
taining the liabilities, the perpetuities subjected to the influence of
economical factors (see, for example, [11]), and also with the price of
Asian options and related questions (see, for instance, [8], [10] and
references therein).

In the case of Levy processes, asymptotic behaviour of exponential
functionals was studied in [6], in particular for α-stable Levy processes.
The authors also give an integro-differential equation for the density of
the law of exponential functionals, when this density w.r.t the Lebesgue
measure exists. For Levy subordinators they give the formulas for the
positive and negative moments, the Mellin transform and the Laplace
transform. The questions related with the characterisation of the law
of exponential functionals by the moments was studied in [4]. In [3]
the authors study continuity properties of exponential functionals, in
particular they give sufficient conditions for the existence of the density
of the law of I∞ w.r.t. the Lebesgue measure. For Levy processes see
also [17], [2], [12].

Exponential functionals for diffusions was studied in [14]. The authors
considered exponential functionals stopped at first hitting time and
they derive the Laplace transform of these functionals. To find laws
of such exponential functionals, the authors perform numerical inver-
sion of the Laplace transform. The relations between hitting times
and occupation times for exponential functionals was considered in
[16], where the versions of identities in law such as Dufresne’s iden-
tity, Ciesielski-Taylor’s identity, Biane’s identity, LeGall’s identity was
considered.

The case when X is a non-homogeneous process with independent in-
crements (PII in short) has not been considered up to now. At the
same time PII models for logarithme of the prices are quite natural in
mathematical finance, it is the case of non-homogeneous Poisson pro-
cess, Levy process with deterministic time change, the integrals of Lévy
processes with deterministic integrands, hitting times for diffusions and
so on (see for instance [18], [7], [1]).
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The aim of this paper is to study the exponential functionals of the
processes X with independent increments , namely

(1) It =

∫ t

0

exp(−Xs)ds, t ≥ 0,

and also

I∞ =

∫ ∞

0

exp(−Xs)ds,

and give such important characteristics of these exponential functionals
as the moments and the Laplace transforms and the Mellin transforms
of mentioned functionals.

We consider a real valued process X = (Xt)t≥0 with independent in-
crements and X0 = 0, which is a semi-martingale with respect to its
natural filtration. We denote by (B,C, ν) a semi-martingale triplet of
this process, which can be chosen deterministic (see [9], Ch. II, p.106).
We suppose that B = (Bt)t≥0, C = (Ct)t≥0 and ν are absolutely con-
tinuous with respect to the Lebesgue measure in t, i.e. that X is an
Ito process such that

Bt =

∫ t

0

bs ds, Ct =

∫ t

0

cs ds, ν(dt, dx) = dtKt(dx)

with measurable functions b = (bs)s≥0, c = (cs)s≥0, and the kernel
K = (Kt(A))t≥0,A∈B(R\{0}). For more information about the semi-
martingales and the Ito processes see [9].

We assume that the compensator of the measure of the jumps ν verify
the usual condition: for each t ∈ R

+

(2)

∫ t

0

∫

R\{0}

(x2 ∧ 1)Ks(dx) ds < ∞.

We recall that the characteristic function of Xt

φt(λ) = E exp(iλXt)

is defined by the following expression: for λ ∈ R

φt(λ) = exp{iλBt−
1

2
λ2Ct+

∫ t

0

∫

R\{0}

(eiλx−1−iλx1{|x|<1})Ks(dx) ds}

which can be easily obtained by the Ito formula for semimartingales.
We recall also thatX is a semi-martingale if and only if for all λ ∈ R the
characteristic function of Xt is of finite variation in t on finite intervals
(cf. [9], Ch.2, Th. 4.14, p.106 ). Moreover, the process X always can
be written as a sum of a semi-martingale and a deterministic function
which is not necessarily of finite variation on finite intervals.
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From the formula for the characteristic function we can easily find the
Laplace transform of Xt, if it exists:

E(e−αXt) = e−Φ(t,α)

Putting λ = iα in the previous formula, we get that

Φ(t, α) = αBt −
1

2
α2Ct −

∫ t

0

∫

R\{0}

(e−αx − 1 + αx1{|x|<1})Ks(dx) ds.

As known, in the case when X is a Levy process with parameters
(b0, c0, K0), it holds

E(e−αXt) = e−tΦ(α)

with

Φ(α) = αb0 −
1

2
α2c0 −

∫

R\{0}

(e−αx − 1 + αx1{|x|<1})K0(dx).

In this article we establish necessary and sufficient conditions of the
existence of the Laplace exponent, and also the sufficient conditions
for finiteness of E(Iαt ) with fixed t > 0 (see Proposition 1). Next, we
use time reversal of the process X at fixed time t > 0 to introduce a
new process Y = (Ys)0≤s≤t with Ys = Xt − X(t−s)−. In Lemma 1 we
show that

It = e−Yt

∫ t

0

eYsds.

Then, we prove that Y is a process with independent increments and
we identify its semi-martingale characteristics. This time reversal plays
an important role and permits to replace the process (It)t≥0 which is
not Markov, by a family of Markov processes V = (Vs)0≤s≤t with t > 0,
where Vs = e−Ys

∫ s

0
eYudu.

In Theorem 1 we consider the case of α ≥ 0 and we give a recurrent
integral equation for the Mellin transform of It. In the Corollaries
2 and 3 we consider the case when X is a Levy process. We give the
formulas for positive moments of It and I∞ and also the formula for the
Laplace transform. The results for I∞ coincide, of course, with the ones
given in [4] for Levy subordinators. But it holds under less restrictive
integrability conditions on I∞ and less restrictive condition on Levy
measure at zero. We can also precise the number of finite moments of
I∞ (cf. Corollary 3 and Corollary 5). In Theorem 2 and Corollaries 4
and 5 we present analogous result for the case α < 0.
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2. Finiteness of E(Iαt ) for fixed t > 0.

Now, we fix t > 0. In the following proposition we give necessary and
sufficient conditions for the existence of the Laplace transform of Xt,
and also sufficient conditions for the existence of the Mellin transform
of It. In what follows we assume that K verify the following stronger
condition then (2): for t > 0

(3)

∫ t

0

∫

R\{0}

(x2 ∧ |x|)Ks(dx)ds < ∞.

This condition says, roughly speaking, that the ”big” jumps of the
process X are integrable, and it ensure that finite variation part of
semi-martingale decomposition of X remains deterministic. Moreover,
the truncation of the jumps is no more necessary.

Proposition 1. Let α ∈ R and t > 0. IfX is integrable, i.e. E(|Xt|) < ∞
for ∀t > 0, then under (3), the condition

(4)

∫ t

0

∫

R\{0}

(e−αx − 1 + αx)Ks(dx)ds < ∞,

is equivalent to

(5) E(e−αXt) < ∞.

Otherwise, (3) and (4) implies (5). Moreover, the condition (4) implies
for α ≥ 1 and α ≤ 0 that

(6) E(Iαt ) < ∞.

In addition, if (4) is valid for α = 1, then for 0 ≤ α ≤ 1 we have (6).

Remark 1. Assume that X has only positive jumps, then for α > 0
the condition (4) is always satisfied. In the same way, if X has only
negative jumps, then, of course, for α < 0 the condition (4) is satis-
fied. If X has bounded jumps, the condition (4) is also satisfied. In
general case, the condition (4) is equivalent to the one of the following
conditions: if α > 0, then

(7)

∫ t

0

∫

x<−1

e−αxKs(dx)ds < ∞,

and if α < 0, then

(8)

∫ t

0

∫

x>1

e−αxKs(dx)ds < ∞.
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In the case of Levy processes these conditions coincide with the ones
given in [12], p. 79.

Remark 2. It should be noticed that if the condition (4) is verified for
α′ = α + δ with δ > 0 and α > 0, then it is verified also for α. To
see this, apply Hölder inequality to the integrals in (7) and (8) with
the parameters p = α+δ

α
and q = α+δ

δ
. In fact, since 1

p
+ 1

q
= 1 and

ν([0, t]×]−∞,−1[) < ∞ we have for (7):
∫ t

0

∫

x<−1

e−αxKs(dx)ds ≤

(
∫ t

0

∫

x<−1

e−αpxKs(dx)ds

)

1
p
(
∫ t

0

∫

x<−1

Ks(dx)ds

)

1
q

< ∞

The same can be made for α < 0. In this case we take δ < 0.

Proof. Since X is assumed to be a process with independent increment
which is a semi-martingale, it can be written as the sum of deterministic
process B of finite variation on finite intervals and local martingale M :

Xt = Bt +Mt

with B0 = 0 and M0 = 0. Notice that, the local martingale property of
M follows from the independence of the increments and the fact that
PII is a strong Markov process. Moreover, local martingale M will be
a martingale when X is integrable. Notice also that to prove (5) is
equivalent proving

(9) E(e−αMt) < ∞

since Bt is deterministic.

For local martingale M we take a localizing sequence(sn)n≥1, and we
introduce for n ≥ 1 the stopping times

τn = inf{s ≥ 0 : |Ms| ≥ n} ∧ sn

with inf{∅} = +∞. By the Ito formula we have:

e−αMt∧τn = e−αM0 − α

∫ t∧τn

0

e−αMs−dMs

+
1

2
α2

∫ t∧τn

0

e−αMs−d < M c >s +

∫ t∧τn

0

∫

R\{0}

e−αMs−(e−αx−1+αx)µM(ds, dx),
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where µM is the jump measure of M and M0 = 0. We remark that on
stochastic interval [[0, t ∧ τn[[, 0 ≤ e−αMs− ≤ e|α|n and then,

E

∫ t∧τn

0

e−αMs−dMs = 0.

We take the mathematical expectation in the previous decomposition
and we use the projection theorem (see [9], Ch. 2, Th. 1.8, p.66)
together with the facts that d < M c >s= cs and ∆Ms = ∆Xs, to
obtain

(10) E(e−αMt∧τn) = 1 +
1

2
α2E

∫ t∧τn

0

e−αMs csds

+E

(
∫ t∧τn

0

∫

R\{0}

e−αMs−(e−αx − 1 + αx)Ks(dx)ds

)

We also remark that the both terms on the r.h.s. of the last equality
are positive since e−αx − 1 + αx ≥ 0 for all x ∈ R. Take n → +∞,
then τn → +∞, and by the Fatou lemma and the Fubini theorem we
get that

(11) E(e−αMt) ≤ 1 +
1

2
α2

∫ t

0

E(e−αMs)csds

+

∫ t

0

E(e−αMs)

∫

R\{0}

(e−αx − 1 + αx)Ks(dx)ds

Then, by the Gronwall lemma

E(e−αMt) ≤ exp

(
∫ t

0

[

1

2
α2cs +

∫

R\{0}

(e−αx − 1 + αx)Ks(dx)

]

ds

)

= exp

(

1

2
α2Ct +

∫ t

0

∫

R\{0}

(e−αx − 1 + αx)Ks(dx) ds

)

and using (4), we get (5) via (9).

Assume next that (9) holds and X is integrable. From (10) we get

E(e−αMt∧τn ) ≥ 1 + E

(
∫ t∧τn

0

∫

R\{0}

e−αMs−(e−αx − 1 + αx)Ks(dx)ds

)

Again, the Fatou lemma applied to the r.h.s. of the previous in-
equality and the Jensen inequality applied to the l.h.s. with Mt∧τn =
E(Mt |Ft∧τn) gives us:

E(e−αMt) ≥ 1 +

∫ t

0

E(e−αMs)

∫

R\{0}

(e−αx − 1 + αx)Ks(dx) ds
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Then, using the Gronwall lemma again

E(e−αMt) ≥ exp

(
∫ t

0

∫

R\{0}

(e−αx − 1 + αx)Ks(dx) ds

)

Then, we have the condition (4).

Let τ be uniformly distributed on [0, t] random variable independent
of X and α ≥ 1 or α < 0. Then,

E(e−Xτ ) = E(It/t)

and by the Jensen inequality

(It/t)
α ≤

1

t

∫ t

0

e−αXsds

and

E(Iαt ) ≤ tα−1

∫ t

0

E(e−αXs)ds

Then, since (e−αMs)0≤s≤t is a sub-martingale and (9) holds, we have
∫ t

0

E(e−αXs)ds =

∫ t

0

e−αBsE(e−αMs)ds

≤ E(e−αMt)

∫ t

0

e−αBsds < ∞

and this yields (6).

If 0 ≤ α ≤ 1, then by the Jensen inequality again E(Iαt ) ≤ (EIt)
α <

∞. �

Let us give some examples useful in mathematical finance.

Example 1. Let X be non-homogeneous Poisson process with inten-
sity (λs)s≥0. Then, Ks(A) = λs · δ{1}(A) for all A ∈ B(R \ {0}), where
δ{1} is delta-function at 1, and the condition (4) is satisfied as soon

as
∫ t

0
λsds < ∞. Hence, under the last condition, E(Iαt ) < ∞ for all

α ≥ 1 and α < 0.

Example 2. Let L be Levy process with generating triplet (b0, c0, K0)
and X be L time changed by deterministic continuously differentiable
process (τ(t))t≥0, i.e. Xt = Lτ(t). Then, for t ≥ 0

Ee−αLτ(t) = e−Φ(α)τ(t)
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and bt = b0τ(t), ct = c0τ(t), and for all A ∈ B(R \ {0}), Kt(A) =
K0(A)τ

′(t). The condition (4) is satisfied whenever

(12)

∫

R\{0}

(e−αx − 1− αx)K0(dx) < ∞.

Under this condition E(Iαt ) < ∞ for α ≥ 1 and α < 0.

Example 3. Let L be Levy process with generating triplet (b0, c0, K0)
and

Xt =

∫ t

0

gsdLs

where g = (gs)s≥0 is a measurable positive function. Then, bt =

b0
∫ t

0
gsds, ct = c0

∫ t

0
g2sds and since ∆Xs = gs∆Ls for s > 0, we get

that Ks(dx) = gsK0(dx). The condition (4) is satisfied whenever we

have (12) and
∫ t

0
g2sds < ∞ in case c0 6= 0 and

∫ t

0
|gs|ds < ∞ in case

c0 = 0. Under these conditions, E(Iαt ) < ∞ for all α ≥ 1 and α < 0.

3. Time reversal procedure

We introduce, for fixed t > 0, a new process Y (t) = (Y
(t)
s )0≤s≤t with

Y
(t)
s = Xt − X(t−s)−. To simplify the notations we anyway omit the

index (t) and write Ys instead of Y
(t)
s .

First of all we establish the relation between It and the process Y .

Lemma 1. For t > 0 the following equality holds:

It = e−Yt

∫ t

0

eYsds

Proof. Using the definition of the process Y and the assumption that
X0 = 0 we have

e−Yt

∫ t

0

eYsds =

∫ t

0

e−Yt+Ysds =

∫ t

0

e−X(t−s)−
+X0ds

=

∫ t

0

e−Xt−sds =

∫ t

0

e−Xsds = It,

since we are integrating with respect to the Lebesgue measure. �

We will show that the process Y is PII and we will give its semi-
martingale triplet with respect to its natural filtration. For that we
put

b̄u =

{

bt−u for 0 ≤ u < t,
bt foru = t.
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which can be written also as

b̄u = 1{t}(u)(bt − b0) + bt−u,

where 1{t} is indicator function of the set {t}. We do the similar defi-
nitions for c̄ and K̄:

c̄u = 1{t}(u)(ct − c0) + ct−u,

K̄u(A) = 1{t}(u)(Kt(A)−K0(A)) +Kt−u(A)

for all A ∈ B(R \ {0}).

Lemma 2. The process Y is a process with independent increments,
it is a semi-martingale with respect to its natural filtration, and its
semi-martingale triplet (B̄, C̄, ν̄) is given by :

(13) B̄s =

∫ s

0

b̄udu, C̄s =

∫ s

0

c̄udu, ν̄(ds, dx) = K̄s(dx) ds ,

where 0 ≤ s ≤ t.

Proof Let us take 0 = s0 < s1 < s2 < · · · < sn = t with n ≥ 2.
Then the increments (Ysk − Ysk−1

)1≤k≤n of the process Y are equal to
(X(t−sk−1)−−X(t−sk)−)1≤k≤n and 0 = t−sn < t−sn−1 < · · · < t−s0 = t.
From the fact that X is the process with independent increments, the
characteristic function of the vector (Xt−sk−1−h − Xt−sk−h)1≤i≤n with
small h > 0, can be written as a product of the corresponding character-
istic functions. Namely, for any real constants (λk)0≤k≤n we get:

E exp(i

n
∑

k=1

λk(Xt−sk−1−h−Xt−sk−h)) =

n
∏

k=1

E exp(iλk(Xt−sk−1−h−Xt−sk−h))

Then, passing to the limit as h → 0+,

E exp(i

n
∑

k=1

λk(X(t−sk−1)−−X(t−sk)−)) =

n
∏

k=1

E exp(iλk(X(t−sk−1)−−X(t−sk)−))

Hence, Y is a process with independent increments.

We know that we can identify the semi-martingale characteristics w.r.t.
the natural filtration of the process with independent increments from
characteristic function of this process. We notice that Ys = Xt−X(t−s)−

and by the independence of Ys and X(t−s)−

E(eiλXt) = E(eiλYs)E(eiλX(t−s)−)

Then,

E exp(iλYs) = E exp(iλXt)/E exp(iλX(t−s)−) =
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exp{iλ

∫ t

t−s

budu−
1

2
λ2

∫ t

t−s

cudu+

∫ t

t−s

∫

R\{0}

(eiλx−1−iλx)Ku(dx) du}

We substitute u by u′ = t− u in the integrals to obtain

E exp(iλYs) =

exp{iλ

∫ s

0

budu−
1

2
λ2

∫ s

0

cudu+

∫ s

0

∫

R\{0}

(eiλx − 1− iλx)Ku(dx) du}

Therefore, the characteristics of Y are in (13) and the proof is complete.2

4. Recurrent formulas for the Mellin transform of It
with α ≥ 0.

Let us consider two important processes related with the process Y ,
namely the process V = (Vs)0≤s≤t and J = (Js)0≤s≤t defined via

Vs = e−YsJs, Js =

∫ s

0

eYudu.

We underline that the both processes depend of the parameter t.

We remark that according to Lemma 1 , It = Vt for each t ≥ 0.
For α ≥ 0 and t ≥ 0 we introduce the Mellin transform of It of the
parameter α:

m
(α)
t = E(Iαt ) = E(e−αYtJα

t )

and the Mellin transform for shifted process:

m
(α)
s,t = E

[(
∫ t

s

e−(Xu−Xs−)du

)α]

Notice that m
(α)
0,t = m

(α)
t . Notice also that

m
(α)
s,t = E

[(
∫ t

s

e−(Xu−Xs)du

)α]

In fact, Xu −Xs = Xu −Xs− −∆Xs and
∫ t

s

e−(Xu−Xs−)du = e−∆Xs

∫ t

s

e−(Xu−Xs)du

Since ∆Xs and (Xu −Xs)u≥s are independent, and E(e−α∆Xs) = 1, we

get the equality of two expressions for m
(α)
s,t .

We introduce also two functions: for 0 ≤ s ≤ t

(14) H(α)
s = αbs −

1

2
α2cs −

∫

R\{0}

(e−αx − 1 + αx)Ks(dx)
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and

(15) H̄(α)
s = 1{t}(s)(H

(α)
t −H

(α)
0 ) +H

(α)
t−s

These functions represent the derivatives w.r.t. s, of the Laplace ex-
ponents Φ(s, α) and Φ̄(s, α). We recall that

Φ(s, α) = αBs −
α2

2
Cs −

∫ s

0

∫

R\{0}

(e−αx − 1 + αx) ν(du, dx)

and

Φ̄(s, α) = αB̄s −
α2

2
C̄s −

∫ s

0

∫

R\{0}

(e−αx − 1 + αx)ν̄(du, dx)

where ν and ν̄ are the compensators of the jump measure of X and
Y respectively. We notice, that these functions are well-defined under
condition (4). We also notice that

Φ̄(s, α) = Φ(t, α)− Φ(t− s, α)

Our aim now is to obtain a recurrent integral equation for the Mellin
transform of It. For condition (16) below see Remark 1.

Theorem 1. Let α ≥ 1 be fixed and assume that for t > 0 there exists
δ > 0 such that

(16)

∫ t

0

∫

x<−1

e−(α+δ)xKs(dx) ds < ∞.

Then, m
(α)
t is well-defined and the following recurrent integral equation

holds

(17) m
(α)
t = α

∫ t

0

m
(α−1)
u,t e−Φ(u,α) du

If X is Levy process, then for all t > 0

(18) m
(α)
t = αe−Φ(α) t

∫ t

0

m(α−1)
s eΦ(α) sds

Moreover,

(19)
d

dt

[

m
(α)
t

]

= −m
(α)
t Φ(α) + αm

(α−1)
t

Proof. From Lemma 2 we know that Y = (Ys)0≤s≤t is a process with
independent increments which is a semi-martingale, i.e. Ys = B̄s+ M̄s,
where B̄ is a deterministic process of finite variation on finite intervals
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and M̄ is a local martingale. Let (s̄n)n≥1 be localizing sequence for M̄ .
For n ≥ 1 we introduce the stopping times

τn = inf{0 ≤ s ≤ t : Vs ≥ n or exp(−Ys) ≥ n} ∧ s̄n

with inf{∅} = +∞. For fixed s, 0 < s < t, we write the Ito formula
for V α

s∧τn :

V α
s∧τn = α

∫ s∧τn

0

V α−1
u− dVu +

1

2
α(α− 1)

∫ s∧τn

0

V α−2
u− d < V c >u

(20) +

∫ s∧τn

0

∫

R\{0}

(

(Vu− + x)α − V α
u− − αV α−1

u− x
)

µV (du, dx)

where µV is the measure of the jumps of V . Using integration by part
formula, we have:

(21) dVu = du+ Jud(e
−Yu)

Now, again by the Ito formula, we get

(22) e−Yu = e−Y0 −

∫ u

0

e−Yv−dYv +
1

2

∫ u

0

e−Yv−d < Y c >v

+

∫ u

0

∫

R\{0}

e−Yv−(e−x − 1 + x)µY (dv, dx)

Then, putting (22) into (21), we obtain

(23) dV c
u = −e−Yu−Ju dY

c
u = −Vu− dY c

u ,

d < V c >u = V 2
u− d < Y c >u

and

(24) ∆Vu = e−Yu−Ju(e
−∆Yu − 1) = Vu−(e

−∆Yu − 1),

where ∆Vu = Vu − Vu− and ∆Yu = Yu − Yu−. The previous relations
imply that

(25) V α
s∧τn = α

∫ s∧τn

0

V α−1
u− du

+α

∫ s∧τn

0

Ju V
α−1
u− d(e−Yu) +

1

2
α(α− 1)

∫ s∧τn

0

V α
u−d < Y c >u

+

∫ s∧τn

0

∫

R\{0}

V α
u−

(

e−αx − 1− α(e−x − 1)
)

µY (du, dx)

To use in efficient way the Ito formula for e−Yu given before, we intro-
duce the processes A = (Au)0≤u≤t and N = (Nu)0≤u≤t via

Au =

∫ u

0

e−Yv−[−dB̄v +
1

2
dC̄v] +

∫ u

0

∫

R\{0}

e−Yv−(e−x − 1 + x)ν̄(dv, dx)
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Nu = −

∫ u

0

e−Yv−dM̄v+

∫ u

0

∫

R\{0}

e−Yv−(e−x−1+x)[µY (dv, dx)−ν̄(dv, dx)]

We notice that A is a process of locally bounded variation and N is
a local martingale with localizing sequence (τn)n≥1, since B̄, C̄ are of
bounded variation and

∫ u

0

∫

R\{0}

(e−x − 1 + x)K̄s(dx)ds < ∞.

From (22) we get that

(26) e−Yu = e−Y0 + Au +Nu.

We incorporate this semi-martingale decomposition into (25) and we
take mathematical expectation. Using the fact that the expectations
of martingales starting from zero are equal to zero and also applying
the projection theorem, we obtain:

(27) E(V α
s∧τn) =

αE

(
∫ s∧τn

0

V α−1
u du

)

+αE

(
∫ s∧τn

0

V α−1
u− Ju dAu

)

+
1

2
α(α−1)E

(
∫ s∧τn

0

V α
u dC̄u

)

+E

(
∫ s∧τn

0

∫

R\{0}

V α
u−

[

e−αx − 1− α(e−x − 1)
]

ν̄(du, dx)

)

and, hence,

(28) E(V α
s∧τn) = αE

(
∫ s∧τn

0

V α−1
u du

)

−E

(
∫ s∧τn

0

V α
u− dΦ̄(u, α)

)

We remark that τn → +∞ (P − a.s.) as n → +∞. To pass to the
limit as n → ∞ in r.h.s. of the above equality, we use the Lebesgue
monotone convergence theorem for the first term and the Lebesgue
dominated convergence theorem for the second term. In fact, for the
second term we have using (14) and (15) :

∣

∣

∣

∣

∫ s∧τn

0

V α
u− dΦ̄(u, α)

∣

∣

∣

∣

≤

∫ t

0

V α
u− |H̄(α)

u |du

In addition,

E

(
∫ t

0

V α
u− |H̄(α)

u |du

)

≤ sup
0≤u≤t

E(V α
u )

∫ t

0

|H̄(α)
u |du

The function (H̄
(α)
u )0≤u≤t is deterministic function, integrable on finite

intervals. Hence, it remains to show that

(29) sup
0≤s≤t

E(V α
s ) < ∞.
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By the Jensen inequality

V α
s ≤ sα−1

∫ s

0

eα(Yu−Ys)du

We remark that Yu − Ys = X(t−s)− −X(t−u)−, and then

(30) E(V α
s ) ≤ sα−1

∫ s

0

E(eα(Xt−s−Xt−u)) du

Since the process X is a process with independent increments, we have
for 0 ≤ u ≤ s < t

E(eα(Xt−s−Xt−u)) = E(e−αXt−u)/E(e−αXt−s) =

exp{−

∫ t−u

0

H(α)
r dr +

∫ t−s

0

H(α)
r dr} ≤ exp{

∫ t

0

|H(α)
r |dr}

Due to the Remark 1 and the condition (16), H(α) is integrable function
on finite intervals, and hence,

sup
0≤s≤t

E(V α
s ) ≤ tα exp{

∫ t

0

|H(α)
r |dr} < ∞

To pass to the limit in l.h.s. of (28), we show that the family of
(Vs∧τn)n≥1 is uniformly integrable, uniformly in 0 ≤ s ≤ t. For that we
can prove in the same way as before for (43) that

sup
0≤s≤t

E(V α+δ
s ) < ∞.

As is well known, this condition implies uniform integrability of the

family. In fact, take g(x) = x
α+δ
α and verify that sup0≤s≤tE(g(V

α
s )) < ∞.

After limit passage, we get that

(31) E(V α
s ) = −

∫ s

0

E(V α
u ) dΦ̄(u, α) + α

∫ s

0

E(V α−1
u )du

We see that each term of this equation is differentiable w.r.t. s for
s < t. In fact, the family (V α

s )0≤s≤t is uniformly integrable, the function
(E(V α

s ))0≤s≤t is continuous in s as well as (Φ̄(s, α))0≤s<t. We calculate
the derivatives in s of both sides of the above equation and we solve
the corresponding linear equation to obtain:

E(V α
s ) = αe−Φ̄(s,α)

∫ s

0

E(V α−1
u ) eΦ̄(u,α) du
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Now, we write that Φ̄(u, α)− Φ̄(s, α) = −Φ(t− u, α) + Φ(t− s, α) and
we let s → t− to get

E(V α
t ) = α

∫ t

0

E(V α−1
u ) e−Φ(t−u,α) du

Notice that It = Vt and, hence, E(V
α
t ) = m

(α)
t . Since

Vu =

∫ u

0

eYv−Yudv =

∫ u

0

e−(X(t−v)−−X(t−u)−)dv =

∫ t

t−u

e−(Xv−X(t−u)−)dv

we also have E(V α−1
u ) = m

(α−1)
t−u,t . Then, we obtain (17) after the change

of variables in integrals replacing t− u by u.

In particular case of Levy process, we use (17) and take into account

that m
(α−1)
u,t = m

(α−1)
t−u and that Φ(u, α) = Φ(α) u. Then, after the

change of variables, the formula (18) follows as well as (19). �

Remark 3. It should be noticed that the relation (17) can be obtained
with another technique (see [15]), based on the approach of [4].

Now we will apply our results to calculate the moments.

Example 4. We consider Levy process L = (Lt)t≥0 with generating
triplet (b0, c0, K0) starting from 0, and time changed by deterministic
process (τt)t≥0 with τt = r ln(1 + t) with r > 0, i.e. Xt = Lτt for t ≥ 0.
Then, by change of variables u = r ln(1 + s) we get

It =

∫ t

0

e−Lr ln(1+s)ds =
1

r

∫ r ln(1+t)

0

e−(Lu−u/r)du =
1

r

∫ r ln(1+t)

0

e−L̃udu

where L̃ is Levy process with generating triplet (b0 −
1
r
, c0, K0). We

denote by Φ̃ the Laplace exponent of L̃. Then for k ≥ 0, Φ̃(k) =
Φ(k)− k

r
and

E(It) =
1

r

∫ r ln(1+t)

0

e−Φ̃(1)udu =
1− (1 + t)−Φ(1)+ 1

r

rΦ(1)− 1

For shifted process X
(s)
u = Lτu −Lτs , u ≥ s the corresponding moments

m
(n)
s,t = E

[(
∫ t

s

e−(Lτu−Lτs)du

)n ]

= E

[(
∫ t

s

e−L(τu−τs)du

)n ]

since L is homogeneous process and (Lτu − Lτs)u≥s
L
= (Lτu−τs)u≥s.
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We change the variable putting τu−τs = r ln(1+u)−r ln(1+s) = v−s
where v is new variable. We denote v(s, t) = r ln( 1+t

1+s
) and we remark

that 1 + u = (1 + s) exp((v − s)/r). Then,

E

[(
∫ t

s

e−(Lτu−τs )du

)n ]

= E

[(

1 + s

r

∫ s+v(s,t)

s

e−L̃v−sdv

)n ]

=
(1 + s)n

rn
E

[(

∫ v(s,t)

0

e−L̃udu

)n ]

Finally, we get for n ≥ 0:

m
(n)
s,t =

(1 + s)n

rn
m̃

(n)
v(s,t)

where m̃
(n)
v(s,t) is n-th moment of exponential functional of L̃ on [0, v(s, t)].

We suppose for simplicity that Φ̃ is strictly monotone on the interval
[0, n+ 1]. Then, using the integral equation of Theorem 1 and the ex-
pression for the moments of Levy processes given in Corollary 1 below,
we get for n ≥ 1:

m
(n+1)
t =

(n + 1)!

rn

n
∑

k=0

∫ t

0

(1 + s)qn
e−Φ̃(k)v(s,t) − e−Φ̃(n)v(s,t)

∏

0≤i≤n, i 6=k

(Φ̃(i)− Φ̃(k))
ds

where qn = n − rΦ(n + 1) and Φ̃(k) is the Laplace exponent of Levy
process L̃, Φ̃(k) = Φ(k)− k

r
, 1 ≤ k ≤ n. To express final result we put

ρ(k) = rΦ(k)− k,

γ(n, k) = n− k − r(Φ(n + 1)− Φ(k)), β(n, k) = rΦ(k)− k

and

Qt(n, k) =
(1 + t)γ(n,k)+1 − 1

(γ(n, k) + 1)(1 + t)β(n,k)

Then, after integration we find that for n ≥ 1

E(In+1
t ) = m

(n+1)
t = (n+ 1)!

n
∑

k=0

Qt(n, k)−Qt(n, n)
∏

0≤i≤n, i 6=k

(ρ(i)− ρ(k))

Remark 4. It is clear that the explicit formulas for the moments in
non-homogeneous case will be rather exceptional. For numerical calcu-
lus the following formula could be useful: for all 0 ≤ s ≤ t

m
(α)
s,t = α

∫ t

s

m
(α−1)
u,t eΦ(u,α)−Φ(s,α) du
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To obtain this formula it is sufficient to find the Laplace exponent of

shifted process (X
(s)
u )s≤u≤t with X

(s)
u = Xu −Xs. Since X is a PII, the

variables Xs and Xu −Xs are independent, and

E(e−αXu) = E(e−αXs)E(e−α(Xu−Xs))

and then, the Laplace exponent of shifted process X(s) is given by:

Φ(s)(u, α) = Φ(u, α)− Φ(s, α).

5. Positive moments of It and I∞ for Levy processes

Now we suppose thatX is Levy process with the parameters (b0, c0, K0).
In this case the condition (3) become:

(32)

∫

R\{0}

(x2 ∧ |x|)K0(dx) < ∞.

It should be noticed that in [4] the condition on Levy measure was
∫

R\{0}

(|x| ∧ 1)K0(dx) < ∞

and this condition is stronger at zero and weaker at infinity then (32).
When X is Levy process, the condition (16) become: for δ > 0

(33)

∫

x<−1

e−(α+δ)xK0(dx) < ∞.

Corollary 1. Let n ≥ 1 and suppose that Φ is bijective on [0, n] ∩ N.
Then,

E(Int ) = n!

n
∑

k=0

e−Φ(k)t − e−Φ(n)t

∏

0≤i≤n, i 6=k

(Φ(i)− Φ(k))

Proof. The formula follows from (18) by induction. �

We present here two examples, one of them is related with Brownian
motion, and second one with compound Poisson process.

Example 5. Let us consider as X Brownian motion with drift µ > 0
and diffusion coefficient σ > 0, i.e. Xt = µt+ σWt where W = (Wt)t≥0

is standard Brownian motion. Then, Φ(α) = αµ− α2 σ2

2
and if 2µ

σ2 is not
an integer, we get:

E(Int ) = n!

n
∑

k=0

e−(kµ−k2σ2/2)t − e−(nµ−n2σ2/2)t

∏

0≤i≤n, i 6=k

(i− k)(µ− (i+ k)σ2/2)
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Example 6. Let X be compound Poisson process such that Xt =
∑Nt

k=1Uk where (Uk)k≥0 is a sequence of independent random vari-
ables with distribution function F and N is homogeneous Poisson pro-
cess with intensity λ > 0. Then, Φ(α) = λ

∫

R\{0}
(1 − e−αx)F (dx)

and the moments can be calculated by the formula of Corollary 1.
In particular, if the Uk’s are standard normal variables, we get that
Φ(α) = λ(1− eα

2 /2) and

E(Int ) = n!

n
∑

k=0

exp(λt(1− ek
2/2))− exp(λt(1− en

2/2))

λn
∏

0≤i≤n, i 6=k

(ek
2/2 − ei

2/2)

For m
(α)
t we introduce the Laplace-Carson transform of the parameter

q > 0:

m̂(α)
q =

∫ ∞

0

qe−qtm
(α)
t dt

This integral is always well-defined in general sense, since the integrand
is positive.

Corollary 2. (cf. [4]) Let X be a Levy process which verifies (32) and

(33), and such that for fixed α ≥ 1, m
(α)
∞ < ∞. Then the Laplace-

Carson transforms m̂
(α)
q and m̂

(α−1)
∞ of m

(α)
∞ and m

(α−1)
∞ respectively,

are well-defined and we have a recurrent formula:

(34) m̂(α)
q (q + Φ(α)) = αm̂(α−1)

q

In particular, for integer n ≥ 1 such that m
(n)
∞ < ∞ we get:

(35) m̂(n)
q =

n!
∏n

k=1(q + Φ(k))

As a consequence,

E(In∞) =
n!

∏n
k=1Φ(k)

Moreover, if all positive moments of I∞ exist, then the Laplace trans-
form of I∞ of parameter β > 0 is given by:

(36) E(e−β I∞) =
∞
∑

n=0

(−1)nβn

∏n
k=1Φ(k)

Proof. The first equality for the Laplace-Carson transforms follows di-
rectly from (19). The second equality can be obtained as particular
case from the first one, by recurrence.
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For the third one we prove that m̂
(n)
q → m

(n)
∞ as q → 0. In fact,

m
(n)
t → m

(n)
∞ as t → +∞ and

lim
t→+∞

1

t

∫ t

0

m(n)
s ds = m(n)

∞ .

Let us denote M
(n)
t =

∫ t

0

m(n)
s ds. We have for each t > 0 by integra-

tion by part formula:
∫ t

0

qe−qsm(n)
s ds = q e−qtM

(n)
t +

∫ t

0

q2e−qsM (n)
s ds

Then, since M
(n)
t /t → m

(n)
∞ as t → +∞,

m̂(n)
q =

∫ ∞

0

qe−qsm(n)
s ds = q2

∫ ∞

0

e−qsM (n)
s ds

Since q2
∫∞

0
s e−qsds = 1, we get

m̂(n)
q −m(n)

∞ = q2
∫ ∞

0

e−qs(M (n)
s − sm(n)

∞ )ds

For each ǫ > 0 there exists tǫ such that for s ≥ tǫ, |
M

(n)
s

s
−m

(n)
∞ | ≤ ǫ.

Then,

| m̂(n)
q −m(n)

∞ | ≤ q2
∫ tǫ

0

e−qs|M (n)
s −sm(n)

∞ |ds+q2
∫ ∞

tǫ

s e−qs

∣

∣

∣

∣

∣

M
(n)
s

s
−m(n)

∞

∣

∣

∣

∣

∣

ds ≤

q2
∫ tǫ

0

e−qs|M (n)
s − sm(n)

∞ |ds+ ǫ

We notice that

lim
q→0

q2
∫ tǫ

0

e−qs |M (n)
s − sm(n)

∞ | ds = 0

Then, taking limǫ→0 limq→0 in the previous inequality we get that m̂
(n)
q → m

(n)
∞

as q → 0. Finally, we take the limit as q → 0 in second equality, to
obtain the third one. The formula for the Laplace transform of I∞
can be proved by using Taylor expansion with remainder in Lagrange
form. �

Example 7. Let X be homogeneous Poisson process of intensity λ.
Then all positive moments of I∞ exist, and we have:

E(e−β I∞) =
∞
∑

n=0

(−1)nβn

λn
∏n

k=1(1− e−k)
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The Laplace transform can be extended for β = −iγ, γ ∈ R, since the
series in the right-hand side is absolutely converging. As a conclusion,
the law of I∞ is entirely characterised by its moments.

Corollary 3. Let α0 = inf{α > 0 |Φ(α) ≤ 0} with inf{∅} = +∞.
Then, E(In∞) < ∞ if and only if 1 ≤ n < α0. In particular, for Brow-
nian motion with drift coefficient b0 and diffusion coefficient c0 6= 0,

Φ(n) = nb0 −
1

2
n2c0

and the moment of I∞ of order n ≥ 1 will exist if n < 2b0
c0
.

If X is a subordinator with Levy measure K0 such that (32) holds, then

Φ(n) = n[b0 −

∫

R+\{0}

xK0(dx) ]−

∫

R+\{0}

(e−nx − 1)K0(dx),

and under the condition

b0 −

∫

R+\{0}

xK0(dx) ≥ 0,

all moments of I∞ exist.

Proof. Let n = sup{k ≥ 1 : E(Ik) < ∞}. If n = +∞, then Φ(k) > 0
for all k ≥ 1 and α0 = +∞. If n < +∞, from Corollary 2 we get that
Φ(n) > 0. Since Φ(α) is concave function such that Φ(0) = 0, n < α0.
Conversely, substituting t− s by s in (18) of Theorem 1 we get:

E(Int ) ≤ nE(In−1
∞ )

∫ t

0

e−Φ(n)s ds

If n < α0, Φ(n) > 0, and the integral on the r.h.s. of this inequality
converge as t → ∞. By induction, it gives that E(In∞) < ∞. Moreover,
the results for continuous case and the case when X is a subordinator,
follow immediately from the expression of Φ(k). �

Example 8. Let X be time changed Brownian motion, namely Xt =
µτt + σWτt where W = (Wt)t≥0 is standard Brownian motion, µ ∈ R,
σ > 0 and τt is first hitting time of the level t of the independent (from
W ) standard Brownian motion B = (Bt)t≥0 with the drift coefficient
b > 0. Then, as known, Φ(α) = (b2 + 2αµ − α2σ2)1/2 − b with b2 +
2αµ− α2σ2 > 0 (see for instance [18]). Then, E(In∞) < ∞ if and only
if 2µ− nσ > 0.

Example 9. Let X be pure discontinuous Levy process with Levy
measure

K0(dx) =
c exp(−Mx)

x1+β
I]0,+∞[(x)dx
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where c > 0,M > 0, 0 < β < 1. Then, Φ(α) = cΓ(1−β)
β

((M+α)β−Mβ)

(see for instance [18]). Then, Φ(α) > 0 for α ≥ 1, and all moments of
I∞ exist.

6. Recurrent formulas for the Mellin transform of It
with α < 0.

In the following Theorem 2, we derive the integro-differential equation

for the Mellin transform m
(α)
t of It with α < 0.

Theorem 2. Let α < 0 be fixed and

(37)

∫ t

0

∫

x>1

e(|α|+1)xKs(dx) ds < ∞.

Then, for s > 0, m
(α)
s,t is well-defined as well as m

(α−1)
s,t and we get the

following recurrent differential equation:

(38) m
(α−1)
s,t =

1

α

(

m
(α)
s,t H

α
s −

d

ds
m

(α)
s,t

)

In the case of Levy process X we have:

(39) m(α−1)
s =

1

α

(

m(α)
s Φ(α) +

d

ds
m(α)

s

)

Proof. The proof of this result is similar to the proof of Theorem 1.
Let (s̄n)n≥1 be localizing sequence for M̄ . For n ≥ 1 we introduce the
stopping times

τn = inf{u ≥ s : Vu ≤
1

n
or exp(−Yu) ≥ n} ∧ s̄n

with inf{∅} = +∞. Then from the Ito formula similarly to (20) we
get: for 0 < s < t

V α
t∧τn = V α

s + α

∫ t∧τn

s

V α−1
u− dVu +

1

2
α(α− 1)

∫ t∧τn

s

V α−2
u− d < V c >u

(40) +

∫ t∧τn

s

∫

R\{0}

(

(Vu− + x)α − V α
u− − αV α−1

u− x
)

µV (du, dx)

where µV is the measure of the jumps of V . Using (21), (23), (24) we
have

(41) V α
t∧τn = V α

s + α

∫ t∧τn

s

V α−1
u− du
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+α

∫ t∧τn

s

Ju V
α−1
u− d(e−Yu) +

1

2
α(α− 1)

∫ t∧τn

s

V α
u−d < Y c >u

+

∫ t∧τn

s

∫

R\{0}

V α
u−

(

e−αx − 1− α(e−x − 1)
)

µY (du, dx)

where µY the measure of the jumps of Y . Taking in account (26) we,
finally, find that
(42)

E(V α
t∧τn) = E(V α

s ) + αE

(
∫ t∧τn

s

V α−1
u− du

)

− E

(
∫ t∧τn

s

V α
u− dΦ̄(u, α)

)

We remark that τn → +∞ (P− a.s.) as n → +∞. To pass to the limit
as n → ∞ in r.h.s. of the above equality, we use the Lebesgue monotone
convergence theorem for the first term and the Lebesgue dominated
convergence theorem for the second term. In fact, for second term we
have:

∣

∣

∣

∣

∫ t∧τn

s

V α
u− dΦ̄(u, α)

∣

∣

∣

∣

≤

∫ t

s

V α
u− |H̄(α)

u |du

In addition,

E

(
∫ t

s

V α
u− |H̄(α)

u |du

)

≤ sup
s≤u≤t

E(V α
u )

∫ t

s

|H̄(α)
u |du

The function (H̄
(α)
u )0≤u≤t is deterministic function, integrable on finite

intervals. Hence, it remains to show that

(43) sup
s≤u≤t

E(V α
u ) < ∞.

By the Jensen inequality

V α
u ≤ uα−1

∫ u

0

eα(Yv−Yu)dv

Then, in the same way as in Theorem 1 we get that

sup
s≤u≤t

E(V α
u ) ≤ sα exp{

∫ t

s

|H(α)
r |dr}

To pass to the limit in l.h.s. of (42), we prove that the family of
(V α

u∧τn)n≥1 is uniformly integrable, uniformly in u ∈ [s, t]. For that we
can prove in the same way as for (43) that

sup
s≤u≤t

E(V α−1
u ) < ∞.

As well known, this condition implies uniform integrability of the fam-
ily. In fact, take g(x) = x

α−1
α and verify that sups≤u≤tE(g(V

α
u )) < ∞.
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After limit passage we get that

(44) E(V α
t ) = E(V α

s )−

∫ t

s

E(V α
u ) dΦ̄(u, α) + α

∫ t

s

E(V α−1
u )du

We differentiate each term of this equality to obtain that

d

ds
E(V α

s ) + E(V α
s ) H̄

(α)
s − αE(V α−1

s ) = 0

We take in account that E(V α
s ) = m

(α)
t−s,t, E(V

α−1
s ) = m

(α−1)
t−s,t and that

H̄
(α)
s = H

(α)
t−s. This gives us that

d

ds
m

(α)
t−s,t +m

(α)
t−s,tH

(α)
t−s − αm

(α−1)
t−s,t = 0

Finally, replacing t− s by s we get (38). In the case of Levy processes

m
(α)
t−s,t = m

(α)
s due to homogeneity, and H

(α)
t−s = Φ(α), and this gives

(39). �

To present the results about negative moments of Levy process X with
the parameters (b0, c0, K0), we introduce the condition: for δ > 0

(45)

∫

x>1

e(|α|+1)xK0(dx) < ∞.

Corollary 4. (cf. [4])Let X be Levy process verifying (32) and (45),

and let α ≤ −1 be fixed. Suppose that m
(α−1)
∞ < ∞. Then the Laplace-

Carson transforms of m
(α)
∞ and m

(α−1)
∞ are well-defined and we have a

recurrent formula:

(46) m̂(α−1)
q =

1

α

(

m̂(α)
q Φ(α) + q m̂(α)

q

)

and, hence,

m̂(α−1)
q =

1

α
m̂(α)

q (q + Φ(α))

In particular, under above conditions, for integer n ≥ 2 and α = −n
we get:

(47) m̂(−n)
q = m̂(−1)

q ·
(−1)n−1

(n− 1)!

n−1
∏

k=1

(q + Φ(−k))

As a consequence,

(48) E(I−n
∞ ) = E(I−1

∞ ) ·
(−1)n−1

(n− 1)!

n−1
∏

k=1

Φ(−k)
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Proof. Two first equalities given above follow directly from Theorem
2. The third one can be proved in the same way as in Corollary 2 by
letting q → 0. �

Example 10. For compound Poisson process presented in Example 5
with Uk’s which follows standard normal distribution, we get for n ≥ 1

E(I−n
∞ ) =

E( I−1
∞ )

(n− 1)!

n−1
∏

k=1

(e
k2

2 − 1)

Corollary 5. Let us suppose that E(I−1
∞ ) < ∞ and n > 1. Then,

E(I−n
∞ ) < ∞ if and only if Φ(−1) < 0. In particular, for Brownian

motion with drift coefficient b0 and diffusion coefficient c0 6= 0, it is the
case when b0

c0
> 1. If X is a subordinator with

∫

R+\{0}
xK0(dx) < ∞,

then

Φ(−1) = −[b0 −

∫

R+\{0}

xK0(dx)]−

∫

R+\{0}

(ex − 1)K0(dx),

and under the condition b0−
∫

R+\{0}
xK0(dx) ≥ 0 all negative moments

of I∞ exist.

Proof. From E(I−n
∞ ) < ∞ by Cauchy-Schwartz inequality we get that

for all k, 1 ≤ k ≤ n, E(I−k
∞ ) < ∞. Then the formula (48) yields that

Φ(−k) < 0 for 1 ≤ k ≤ n. In particular, Φ(−1) < 0. If Φ(−1) < 0,
then from convexity of the function Φ and Φ(0) = 0, for 1 ≤ k ≤ n
Φ(−k) < 0. Then by recurrence, the formula (46) gives the existence
of Laplace-Carson transform of E(I−n

∞ ). Then by (48) we get that
E(I−n

∞ ) < ∞. �

Example 11. For time changed Brownian motion considered in Ex-
ample 8 we get that Φ(α) ≤ 0 whenever −b2 ≤ 2αµ − α2σ2 < 0.
Hence, the h-th negative moments of I∞ exists if E(I−1

∞ ) < ∞ and
2µ + nσ2 > 0. For pure discontinuous Levy process considered in
Example 9, if E(I−1

∞ ) < ∞, then all negative moments exist, since
Φ(α) ≤ 0 for all α < 0.
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