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We study pseudo-abelian integrals associated with polynomial perturbations of Darboux integrable system with a triple point. Under some assumptions we prove the local boundedness of the number of their zeros. Assuming that this is the only non-genericity, we prove that the number of zeros of the corresponding pseudo-abelian integrals is bounded uniformly for nearby Darboux integrable foliations.

INTRODUCTION

Abelian integrals are integrals I(h) = γ(h) η of polynomial or rational one-forms along cycles γ(h) ∈ H 1 (H -1 (h)), H ∈ C[x, y]. Abelian integrals appear as principal part of Poincaré displacement function of the perturbation dH + εη along γ(h). Their zeros are related to limit cycles born in the perturbation. In [START_REF] Varchenko | Estimation of the number of zeros of an abelian integral depending on a parameter, and limit cycles[END_REF][START_REF] Khovanskii | Real analytic manifolds with property of finitness, and complex abelian integrals[END_REF], Varchenko and Khovanskiii prove the following result Theorem 1.1. There exist a uniform bound, depending only on the degree of H and η, for the number of real zeros of Abelian integrals.

Arnold posed with insistence the analogous problem for more general polynomial perturbation of integrable systems. In particular, for perturbation of systems having a Darboux first integrals H = P α i i , P i ∈ C[x, y]. Then instead of Abelian integrals, one encounters pseudo-Abelian integrals. Pseudo-Abelian integrals naturally appear in generalizations to classes bigger than the Hamiltonian class. The simplest case is the case of Darboux integrable planar foliations F = {M dH H = 0}, where H = P α i i is a product of real powers of bivariate polynomials and M = P i is the so-called integrating factor, so the form ω = M dH H is a polynomial one-form. Poincaré-Pontryagin criterium claims that in the regular part the limit cycles of the perturbed foliations F = {ω + η = 0} can be born only from those cycles δ of foliation F for which the integral δ η M vanishes. This integral is called the pseudo-Abelian integral, and currently the main open question is the existence of a uniform bound on the number of its zeros.

FORMULATION AND MAIN RESULT

This paper is a part of program of Bobieński, Mardešić and Novikov to extend the Varchenko-Khovanskii theorem from Abelian integrals to pseudo-Abelian integrals. After studying the generic cases [START_REF] Bobieński | Pavao Pseudo-Abelian integrals along Darboux cycles[END_REF][START_REF] Novikov | On limit cycles appearing by polynomial perturbation of Darbouxian integrable systems[END_REF] and some nongeneric cases [START_REF] Bobieński | Marcin Pseudo-Abelian integrals along Darboux cycles a codimension one case[END_REF][START_REF] Bobieński | Dmitry Pseudo-Abelian integrals: unfolding generic exponential[END_REF][START_REF] Bobieński | Dmitry Pseudo-Abelian integrals on slow-fast Darboux systems[END_REF], in this work we study a nongeneric case. Let F = {M dH H = 0} denote a foliation with a triple point (assume it to be at the origin), where

H = P 0 k i=1 P i i , M = P 0 k i=1 P i , P i ∈ R[x, y],
, i > 0, so that the level curves {P 0 = 0}, {P 1 = 0} and {P 2 = 0} intersect transversally two by two at the origin which is the only triple point. Let F λ = {M λ dH λ H λ = 0} be a foliation unfolding F, M λ an integrating factor, where

H λ = P λ k i=1 P i i , M λ = P λ k i=1 P i . (1) 
Generically, a triple point unfolds into three saddles-type singular points p λ 0 , p λ 1 and p λ 2 correspond to the transversal intersections of level curves {P 1 = 0} and {P λ = 0}, {P 1 = 0} and {P 2 = 0}, and {P 2 = 0} and {P λ = 0}. Here also appears a center p c λ in the triangular region bounded by these levels curves-see Figure 1.
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Consider a polynomial perturbation of the system M λ dH λ

H λ . M λ dH λ H λ + κη, η = Rdx + Sdy, R, S ∈ R[x, y], κ > 0.
The linear part in perturbation parameter κ of the Poincaré first return map is given by the pseudo-Abelian integral

I(λ, h) = γ(λ,h) η M λ . (2) 
We prove the existence of a local bound for the number of zeros of pseudo-Abelian integrals. Let Ω k (λ, n 0 , n 1 , • • • , n k ; n) be the following, finite dimensional space of polynomial system with Darboux type first integral:

Ω k (λ, n 0 , n 1 , • • • , n k ; n) := {M λ dH λ H λ + κη : H λ = P λ k i=1 P i i , deg P λ ≤ n 0 , deg P i ≤ n i , deg(R, S) ≤ n},
where

M λ = P λ k i=1 P i . The parameters of the space Ω k (λ, n 0 , n 1 , • • • , n k ; n) are positive ex- ponents ( , 1 , • • • , k )
, coefficients of polynomials P λ , P i and coefficients of the polynomials perturbation (R, S). We distinguish an open subset

Ω k 0 (λ, n 0 , n 1 , • • • , n k ; n)
defined by the condition that the unperturbed system (with κ = 0) admits a period annulus D and the following genericity assumptions are satisfied

• A 1 . The Darboux first integral H λ is regular at infinity.

• A 2 . ∂P λ ∂λ | (0,0,0) = 0. • A 3 . The level curves {P i = 0}, i = 3, • • • , k
are smooth and intersect transversally two by two. Morever, there are not triple intersection points, for i = 3, . . . , k. • A 4 . η vanishes to the order ≥ 4 at (x, y) = (0, 0) (technical condition)

Theorem 2.1. Let Ω 0 ∈ Ω k 0 (λ, n 0 , n 1 , • • • , n k ; n).
Assume that the pseudo-Abelian integral I Ω 0 associated to Ω 0 in (2) is not identically zero. Consider the pseudo-Abelian integrals associated to

Ω ∈ Ω k 0 (λ, n 0 , n 1 , • • • , n k ; n) in a neighborhood of Ω 0 .
Then, there exists an upper bound

Z(Ω 0 ; k, n 0 , • • • , n k ; n) for the number of zeros of the pseudo-Abelian integrals associated to Ω ∈ Ω k 0 (λ, n 0 , n 1 , • • • , n k ; n) close to Ω 0 .
The main problem is that the Darboux integrable systems M λ dH λ H λ have a small nest of cycles which shrinks to the origine (0, 0) as λ → 0, i.e. the center p λ c generates a possible ramification points of I(λ, h) located on a circle whose radius is of order |λ| + 1 + 2 . Thus, we can no directly repeat the argument from [START_REF] Bobieński | Pavao Pseudo-Abelian integrals along Darboux cycles[END_REF] to get an λ-independent estimate.

CONNECTION WITH BOBIE ŃSKI'S RESULT

In [START_REF] Bobieński | Marcin Pseudo-Abelian integrals along Darboux cycles a codimension one case[END_REF], the author considers a polynomial one-form ω = M dH H having a Darboux first integral:

H = (x -) a P k i=1 P a i i , M = (x -)P k i=1 P i (integrating factor),
where P, P i ∈ R[x, y], a, a i ∈ R + and is a sufficiently small parameter. He imposes the following genericity assumptions (1) The Darboux first integral H is regular at infinity.

(2) For = 0, the polycycle γ(0, 0) consists of the edges γ i (0, 0) contained in a smooth part of the level curve P -1 i (0). Any vertex p ij , except (0, 0), corresponds to the transversal inetrsection of level curves P -1 i (0) and P -1 j (0). (3) The polynomial P has a critical point of Morse type (0, 0), i.e. P (x, y) = y 2 -x 2 + h.o.t.

Other polynomials P j satisfy P j (0, 0) = 0, j = 1, . . . , k. He considers a small polynomial perturbation

ω = M dH H ω ,ε = ω + εη, η = Rdx + Sdy, R, S ∈ R[x, y].
The linear part in perturbation parameter ε of the Poincaré first return map is given by the pseudo-Abelian integrals

I( , h) = γ( ,h) η M , γ( , h) ⊂ H -1 (h).
Under the above genericity assumptions, Bobieński proves the existence of a local upper bound for the number of zeros of corresponding pseudo-Abelian integrals I( , h). However, his study does not give the existence of a uniform bound in a full neighborhood of the parameter space ( , h). The precise sense is clear after blow-up. Bobieński's argument works well when one is studying the integral along cycles contained in a neighborhood of the big polycycle

δ = δ 01 δ 02 δ 03 δ - δ + δ 3 • • • δ k , see Figure 2.
It corresponds to a sector in the ( , h)-space. However, in order to have a study in a full neighborhood of (0,0) in the product space ( , h), one must study also cycles landing on the exceptional level on a polycycle made of the same polycyle in the equatorial plane, but completed by any one of the continuous family of curves t = a+2 h joining two saddles p + and p -, see Figure 2. The study of the cycles in this sector is not done in Bobieński's paper.

To complete the proof, which is the main result of this present paper, we assume that the perturbative one-form η vanishes to the order ≥ 4 at (x, y) = (0, 0) (technical condition), but our study covers a full neighborhood of the polycycle in the product space with space of parameters. Also, in this paper Darboux first integral is more general, i.e. 1 = 2 . We prove the main result in full generality by blowing-up the whole family F λ and subsequently carefully piece-wise investigating the result combining Petrov's technique [START_REF] Petrov | On the nonoscillation of elliptic integrals[END_REF], general Gabrielov type results and topological methods.

RECTIFYING OF DARBOUX FIRST INTEGRAL

Let us a establish a local normal form near the triple point (0, 0, 0) for the unfolding of the degenerate polycycle P 0 ....P k = 0. Proposition 4.1. Under the above assumptions A 2 , A 3 , there exists a local analytic coordinate system (x, y, λ) at (0, 0, 0) such that H λ takes the form

H λ = (x -λ) (y -x) + (y + x) -∆, ( 3 
)
where ∆ is an analytic unity function ∆(0, 0, 0) = 0.

Proof. There exists an analytic coordinate system (x, y) at (0, 0) such that P 1 (x, y) = y∆ 1 , P 2 (x, y) = x∆ 2 and k i=3 P i i = ∆ 3 , where ∆ 1 , ∆ 2 , ∆ 3 are unities. In these coordinate and by Weierstrass preparation theorem we have P λ = (x -f (y, λ))∆ 4 where ∆ 4 is a unit, ∂f ∂λ (0, 0) = 0 and ∂f ∂y (0, 0) = 0. A second application of Weierstrass preparation theorem allows us to write f (y, λ) = (y + g 0 (λ))∆ 5 , where ∆ 5 is a unity function and ∂g 0 ∂λ (0) = 0. Now we put x = x ∆ 5 . Then

x∆ 5 + (y + g 0 (λ))∆ 5 = (x -y -g 0 (λ))∆ 5 .
Finally, P λ = (x -y -λ)∆ 4 ∆ 5 , where λ = g 0 (λ). The normal form (3) can be obtained by a linear rotation on (x, y).

DARBOUX INTEGRABLE FOLIATION

Consider two Darboux integrable foliations of dimension two in dimension three space with coordinates (x, y, λ)

F 1 = {M λ dH λ H λ = 0}, F 2 = {dλ = 0}. Let F = {M λ dH λ
H λ ∧ dλ = 0} be the foliation of dimension one in a space of dimension three with coordinates (x, y, λ) which is given by the intersection of the leaves of F 1 and F 2 . This foliation has a non-elementary singularity at the origin (0, 0, 0) which is the triple point. To reduce this singularity, we make the blowing-up of the triple point of the family in the product space (x, y, λ) of phase and parameter spaces. The family blowing-ups were introduced by Denkowska and Roussarie in [START_REF] Denkowska | A method of desingularization for analytic two-dimensional vector field families[END_REF].

5.1. Blowing-up the triple point. The blowing up σ with center at the origin (the triple point) is the projection onto C 3 of a space W that is obtained by replacing the origin by the projective space CP 2 of all lines throught the origin:

W = {(p, q) ∈ C 3 × CP 2 : p ∈ q}
and σ : W → C 3 is defined by σ(p, q) = p. Outside the origin, a point p belongs to a unique line q, but σ -1 (0) = CP 2 which is called the exceptional divisor. If we write p in terms of the affine ccordinates p = (p 1 , p 2 , p 3 ), and q in the corresponding homogeneous coordinates q = [q 1 , q 2 , q 3 ], then the relation p ∈ q translates into the system of equations p i q j = p j q i , for i, j = 1, 2, 3.

The projective space CP 2 is covered by three canonical charts:

W 1 = {x = 0} with coordinates (Y 1 , E 1 ), W 2 = {y = 0} with coordinates (X 2 , E 2 ) and W 3 = {λ = 0} with coordinates (X 3 , Y 3 ). W 1 , W 2 and W 3 define canonical charts on W , with coordinates (X 1 , Y 1 , E 1 ), (X 2 , Y 2 , E 2 ) and (X 3 , Y 3 , E 3
) respectively. In these coordinates, σ is given by the formulas:

σ 1 = σ| W 1 : x = X 1 y = X 1 Y 1 λ = E 1 X 1 , (4) 
σ 2 = σ| W 2 : x = X 2 Y 2 y = Y 2 λ = E 2 Y 2 , (5) 
σ 3 = σ| W 3 : x = X 3 E 3 y = Y 3 E 3 λ = E 3 . (6) 
We apply the blowing-up σ to the one-dimensional foliation F on the three-dimensional space with coordinates (x, y, λ) given by intersection of M λ dH λ H λ = 0 and dλ = 0. Let σ -1 F be the lift of the foliation F to the complement of the exceptional divisor CP 2 . Proposition 5.1. This foliation σ -1 F extends in a unique way to a holomorphic singular foliation σ * F on W which we call the blow-up of the original dimension-one foliation F by the map σ. The foliation σ * F is regular outside of the preimage of the hypersurface {H(x, y, λ) = 0, λ = 0}. 5.1.1. Singularities of σ * F. The strict transform of the period annulus D lies completely within the chart W 1 . Then, we concentrate our study uniquely on this chart. Let σ * 1 F be the restriction of the blown-up foliation σ * F to the chart W 1 . We have σ is a biholomorphism outside CP 2 (exceptional divisor), all singularities of σ * 1 F on W 1 \ {X 1 = 0} correspond to singularities of F. Thus, it suffices to compute the singularities of σ * 1 F on the exceptional divisor {X 1 = 0}. Explicitly, near the exceptional divisor {X 1 = 0}, the blown-up foliation σ * 1 F is given by two first integrals λ = X 1 E 1 and λ a h = G, where

G = E a 1 (1 -E 1 ) -(Y 1 -1) -+ (Y 1 + 1) --∆-1 , ∆ is unit of the form ∆ = c + X 1 f, f is a holomorphic function and a = + + + -. Consider the two-dimensional square Q ⊂ CP 2 with vertices p + , p -, q + and q -. All levels curves {G = λ a h } inside Q correspond to values of λ a h ∈ [0, +∞]. Proposition 5.2.
The singularities of σ * 1 F on the exceptional divisor CP 2 are located at the points p + = (0, 1, 0), p -= (0, -1, 0), q + = (0, 1, 1) and q -= (0, -1, 1). All these singular points are linearisable saddles, with eigenvalues µ + = ( + , -a, --), µ -= (--, a, -), ν + = (0, -, + ) and ν -= (0, -, -) respectively.

Proof. Let us compute the eigenvalues at p + , p -, q + and q -. Near p + the foliation σ * 1 F is given by the two first integrals h = X a Y + and λ = XE (we make a convenient variables change). By Hartman-Grobman theorem the vector field generating the foliation σ * 1 F is given by

X(X, Y, E) = µ + 1 X ∂ ∂X + µ + 2 Y ∂ ∂Y + µ + 3 E ∂ ∂E ,
such that the vector < (µ + 1 , µ + 2 , µ + 3 ), (a, + , 0) >= 0 and < (µ + 1 , µ + 2 , µ + 3 ), (1, 0, 1) >= 0. By short computation, we obtain

X(X, Y, E) = + X ∂ ∂X -aY ∂ ∂Y -+ E ∂ ∂E .
Similar computation shows that there are local coordinates near q + in which the vector field generating the foliation is given by

Y(X, Y, E) = -Y ∂ ∂Y + + E ∂ ∂E .

PROOF OF THEOREM 2.1

Let us fix some useful notations. Let t = λ a h , where a = + -+ + and Q ⊂ CP 2 is the twodimensional square with vertices p + , p -, q + and q -. All levels curves {G = t} inside Q correspond to values of t ∈ [0, +∞], where

G = E a 1 (1 -E 1 ) -(Y 1 -1) -+ (Y 1 + 1) --∆-1 . 6.1.
Polycycles, relative cycles and normal form. The important advantage of making the blowingup σ is to obtain a family of hyperbolic polycycles, i.e. at each intersection of two consecutive curves we have a saddle point. We consider the family of hyperbolic polycycles δ

δ = σ -1 1 (γ(0, 0) \ (0, 0, 0)) ∪ (Q ∩ {G = t}) R , t ∈ [0, +∞], (7) 
where (. . .) R denotes the real part of a complex analytic set. Polycycles. Let δ 0 (edge) be the real part of the complex analytic set {X 1 = E 1 = 0} joining two saddles p -and p + , δ 01 be the real part of the complex analytic set {X 1 = 0, Y 1 = 1} joining the two saddles p + and q + , δ 02 be the real part of complex analytic set {X 1 = 0, Y 1 = -1} joining two saddles p -and q -, δ 03 be the real part of complex analytic set {X 1 = E 1 = 0} joining two saddles q -and q + , δ 04 be the real part of complex analytic set {X 1 = 0, G = t} joining two saddles p -and p + , δ + be the real part of the complex analytic set {Y 1 = 1, E 1 = 0} joining two saddles p 1 and p 3 , δ -be the real part of the complex analytic set {Y 1 = -1, E 1 = 0} joining the two saddles p -and p k and finally let δ i be the real part of the complex analytic set {σ * 1 P i = 0, E 1 = 0}, i = 3, • • • , k joining the two saddles p m and p n -see Figure 2. Let 0 ≤ m < M . Then, we can decompose the family of hyperbolic polycycles δ as follows:

(1

) If t ∈ [0, m[, we have δ = δ 0 δ -δ + δ 3 • • • δ k . (2) If t ∈ [ m 2 , 2M ], we have δ = δ 04 δ -δ + δ 3 • • • δ k ; (3) If t ∈ [M, +∞], we have δ = δ 01 δ 02 δ 03 δ -δ + δ 3 • • • δ k . 6.1.2. Relative cycles. Let p 1 , • • • , p k be the saddles points of the foliation σ * 1 F which lie on the polycycle δ. Let δ = δ \ {p 1 , • • • , p k }.
Choose a family of analytic transversals (of complex dimension two) Σ x , through each point point x in δ . We can define a relative cycle γ (the part of the cycle δ(λ, t)) by a initial condition (starting point x) and a end point y = γ ∩ Σ y which is going from Σ x . Concretly, we consider the relative cycles δ 0 (λ, t) corresponding to the edge δ 0 , δ 01 (λ, t) corresponding to the edge δ 01 , δ 02 (λ, t) corresponding to the edge δ 02 , δ 03 (λ, t) corresponding to the edge δ 03 , δ 04 (λ, t) corresponding to the edge δ 04 , δ + (λ, t) corresponding to the edge δ + , the relative cycle δ -(λ, t) corresponding to the edge δ -and the relative cycles δ i (λ, t) corresponding to the edge δ i , i = 3, • • • , ksee Figure 3. (1) There exist a local chart (U 0 , (X, Y, E)) ⊂ W defined in a neighborhood of δ 0 such that the blown-up foliation σ * 1 F is given by two first integrals

λ = XE, t = (Y -1) -+ (Y + 1) -+ E a .
(2) There exist a local chart (U 01 , (X, Y, E)) ⊂ W defined in a neighborhood of δ 01 such that the blown-up foliation σ * 1 F is given by two first integrals

λ = XE, t = E a (1 -E) -Y -+ .
(3) There exist a local chart (U 02 , (X, Y, E)) ⊂ W defined in a neighborhood of δ 02 such that the blown-up foliation σ * 1 F is given by two first integrals

λ = XE, t = E a (1 -E) -Y --.
(4) There exist a local chart (U 03 , (X, Y, E)) ⊂ W defined in a neighborhood of δ 03 such that the blown-up foliation σ * 1 F is given by two first integrals

λ = X, t = E -(Y -1) -+ (Y + 1) --.
(5) There exist a local chart (U + , (X, Y, E)) ⊂ W defined in a neighborhood of δ + such that the blown-up foliation σ * 1 F is given by two first integrals

λ = XE, t = Y + (1 + X) i E a .
(6) There exist a local chart (U -, (X, Y, E)) ⊂ W defined in a neighborhood of δ -such that the blown-up foliation σ * 1 F is given by two first integrals 2) be the pull-back of the cycle γ(λ, h) by the blowing-up map and δ be its corresponding polycycle. We define the integral

λ = XE, t = Y -(1 + X) i E a . (7) There exist a local chart (U i , (X, Y, E)) ⊂ W, i = 3, • • • , k, defined in a neighborhood of δ i such that the blown-up foliation σ * 1 F is given by two first integrals λ = E, t = Y i (1 -X) i +1 X i -1 = t. 6.2. Proof of Theorem 2.1. Let δ be a polycycle. Let δ(λ, t) = σ -1 (γ(λ, h)) ⊂ W (dashed cycle, see Figure
J(λ, t) = δ(λ,t) σ * 1 η M λ . ( 8 
)
This integral is considered as the pull-back of the pseudo-abelian integrals I(λ, h) by the blowingup σ 1 , i.e. J(λ, t) = σ * 1 I(λ, t). The proof of Theorem 2.1 is reduced to the proof of the following theorem Theorem 6.2. Let ε > 0 be sufficiently small. Then, for all |λ| < ε the number #{t ∈ [0, +∞] : J(λ, t) = 0} is locally bounded. 6.2.1. Variation operator. Firstly, let us recall some definitions, notation and general results. They will be useful later. Definition 6.3. Given any multivalued function J defined in a neighborhood of the origin in C i.e. a holomorphic function defined on the universal covering C * of C * . We define the rescaled monodromy as Mon (t,α) J(t) = J(te iπα ).

The variation is given as the difference between the counterclockwise and clockwise continuation

Var (t,α) J(t) = Mon (t,α) J(t) -Mon (t,-α) J(t) = J(te iπα ) -J(te -iπα ).
Definition 6.4. Let J be a multivalued function in two variables λ and t defined in universal covering

C 2 \ {λt = 0} of C 2 \ {λt = 0}.
We define the mixed variation as

Var (λ,β) • Var (t,α) J(λ, t) = Var (λ,β) (J(λ, te iπα ) -J(λ, te -iπα )) = J(λe iπβ , te iπα ) -J(λe -iπβ , te iπα ) -J(λe iπβ , te -iπα ) + J(λe -iπβ , te -iπα ).
Lemma 6.5. The variations Var (λ,β) and Var (t,α) commute

Var (λ,β) • Var (t,α) = Var (t,α) • Var (λ,β) .
Proof. The proof is a consequence of the monodromy theorem which says that:

If γ 1 , γ 2 are ho- motopic paths in C 2 \ {λt = 0}, then ψ γ 1 = ψ γ 2 where ψ γ 1 = Mon γ 1 ψ and ψ γ 2 = Mon γ 2 ψ. We consider γ 1 (θ, φ) = (λ(θ, φ), t(θ, φ)) = λ, te iθ θ∈[0,α] λe iφ , te iα φ∈[0,β] , γ 2 (θ, φ) = (λ(θ, φ), t(θ, φ)) = λe iφ , t φ∈[0,β] λe iβ , te iθ θ∈[0,α] .
The paths γ 1 and γ 2 are homotopic and this implies that ψ(λe iαπ , te iβπ ) can be defined either as ψ γ 1 or ψ γ 2 . The same argument holds for the other germs ψ(λe -iαπ , te iβπ ), ψ(λe iαπ , te -iβπ ) and ψ(λe -iαπ , te -iβπ ). 6.2.2. Analytic properties. The integral J(λ, t) has an analytic extension to the complex argument t (resp λ). This is a multivalued function with unique branch point t = 0 (resp λ = 0). As in [START_REF] Bobieński | Pavao Pseudo-Abelian integrals along Darboux cycles[END_REF], the key of the proof of Theorem 6.2 is the following. Proposition 6.6. The integral J(λ, t) satisfies the following iterated rescaled variations equation

Var (t,α 1 ) • . . . • Var (t,α k ) J(λ, t) = 0. ( 9 
)
where α i are polynomials functions in , + , -, 3 , • • • , k .

Proof. Let us fix λ. We choose a hyperbolic polycycle δ of the family (6.1). As in [START_REF] Bobieński | Pavao Pseudo-Abelian integrals along Darboux cycles[END_REF], using the different charts of Proposition 6.1 and partition of unity multiplying the blown-up one form σ *

1 η M λ
we can consider semilocal problem with a relative cycle δ i (λ, t) (part of cycle δ(λ, t)) close to one edge (i-th edge) of the polycycle. Let δ C i be the complexification of the real i-th edge joining the singular points p i-1 , p i+1 (saddles).

(1) If α i-1 = α i+1 (generic case), we have

Var (t,α i-1 ) • Var (t,α i+1 ) δ i (λ, t) = [γ i-1 , γ i+1 ], (10) 
where [γ i-1 , γ i+1 ] is a complex (closed) cycle obtained as a lift of the commutator

[γ i-1 , γ i+1 ],
where γ i-1 and γ i+1 are paths in δ C i \ {p i-1 , p i+1 } turning once counterclockwise around p i-1 and p i+1 . This lifting [γ i-1 , γ i+1 ] vanishes by making third variation, i.e.

Var (t,α i ) [γ i-1 , γ i+1 ] ≡ 0. (11) 
(2) If α i-1 = α i+1 (resonant case), we have

Var (t,α i-1 ) δ i (λ, t) = γ i-1 γ -1 i+1 , (12) 
where γ i-1 γ -1 i+1 is a complex (closed) cycle obtained as a lift of the figure eight loop γ i-1 γ -1 i+1 . This lifting γ i-1 γ -1 i+1 vanishes by making second variation, i.e.

Var (t,α i ) γ i-1 γ -1 i+1 ≡ 0. (13) 
Finally, the variations commute so

Var (t,α 1 ) • . . . • Var (t,α k ) δ(λ, t) = 0. ( 14 
)
This argument is independent of the choice of polycycle, i.e. it holds for any hyperbolic polycycle δ of family [START_REF] Khovanskii | Real analytic manifolds with property of finitness, and complex abelian integrals[END_REF]. Proof. In the local chart (U 0 , (X, Y, E)) of Proposition 6.1, the blown-up foliation σ * 1 F is given by the two first integrals λ = XE and t = E a (Y -1) -+ (Y + 1) --. Let γ + and γ -be two paths in Y C turning counterclokwise around p + and p -which are parametrized by

ρ ± : θ ∈ [0, 2π] →    X(θ, λ, t) Y (θ) = ±1 + εe iθ E(θ, λ, t)
.

Then, we have

F ± (λ, t) = γ ± σ * 1 η M λ = 2π 0 ρ * ± σ * 1 η M λ dθ.
Also, we define two functions

F 1 (λ, t) = - σ * 1 η M λ , F 2 (λ, t) = + σ * 1 η M λ , where -= [1 -ε, -1 + ε] and + = [-1 + ε, 1 -ε] (segments). So, we obtain 
Var (λ,1) J(λ, t) = F -(λ, t) + F 2 (λ, t) + F + (λ, t) + F 1 (λ, t) = γ + -γ -+ σ * 1 η M λ ,
where γ + -γ -+ is a closed path obtained as a lift of the path γ + -γ -+ which is contained in Y C and homotopic to a figure eight loop.

Corollary 6.8. Near the ramification point λ = 0, the function J(λ, t) admits the expansion

J(λ, t) = J 1 (λ, t) + J 2 (λ, t) log λ, (16) 
where J 1 (., t) is meromorphic and J 2 (λ, t) = Var (λ,1) J(λ, t).

6.2.3. Proof of Theorem 6.2. The integral J(λ, t) = δ(λ,t) σ * 1 η M λ can be analytically continued to the universal cover C 2 \ {λt = 0} of C 2 \{λt = 0}. To estimate the number of zeros of the integral J(λ, t) = δ(λ,t) σ * 1 η M λ we apply the argument principle. Let us introduce some definitions which will be useful later. Definition 6.9. Let f : R n × R → R. We shall say that f is a logarithmico-analytic function (LA-function) of type in variable y if it has the following form f (x, y) = F (f 1 (x, y), . . . , f m (x, y), log f m+1 (x, y), . . . , f m+r (x, y)), where F is a global sub-analytic function and f i are a LA-functions of type -1 in y. Let ∂Ω be the boundary of a complex domain Ω which consists of a big circular arc

C R 1 = {|t| = R 1 , | arg t| ≤ απ}, a two segments C ± = {r 1 ≤ |t| ≤ R 1 , | arg t| = ±απ} and the small circular arc C r 1 = {|t| = r 1 , | arg t| ≤ απ}-see Figure 4.
The argument principle says that

#{t ∈ Ω : J(λ, t) = 0} ≤ 1 2π ∆ arg ∂Ω J = 1 2π (∆ arg C R 1 J + ∆ arg C ± J + ∆ arg Cr 1 J).
(1) The boundedness of the increment of argument ∆ arg C R 1 J. By Gabrielov's theorem [START_REF] Gabrièlov | M Projections of semianalytic sets[END_REF], the increment of the argument ∆ arg Cr 1 J is uniformly bounded. (2) The boundedness of the increment of argument ∆ arg C ± J. Let α ∈ {α 1 , • • • , α k }. We use Schwartz's principle Im(J(λ, .))| C ± = ∓2iVar (t,α) J(λ, t).

So ∆ arg C ± J ≤ #{t : Im(J(λ, .)) = 0} = #{t : Var (t,α) J(λ, t) = 0}. Moreover, the variations commute so

Var (t,α 1 ) • • • • • Var (t,α) • • • • • Var (t,α k ) J(λ, t) = Var (t,α 1 ) • • • • • Var (t,α k ) (Var (t,α) J(λ, t)) = 0.
Then, near the ramification point t = 0, the function Var (t,α) J(λ, t) can be written as follows Var (t,α) J(λ, t) = F (e α 1 α log t , . . . , e α k α log t , log λ) (17) where F is a meromorphic function. The function Var (t,α) J(λ, t) is a LA-function of type 1 in variable λ. Then, by Lion-Rolin preparation theorem [START_REF] Lion | Jean Phillipe Théorème de préparation pour les fonctions logarithmico-exponentielles[END_REF] this function has the following form Var (t,α) J(λ, t) = λ q 0 0 λ q 1 1 G(t)U(t, λ 0 , λ 1 ), U(0, 0, 0) = 0 with λ 0 = λ -θ 0 (t), λ 1 = log λ 0 -θ 1 (t), where θ 0 , θ 1 , G and U are LE-functions. As the number of zeros of a LE-function is bounded, so #{t : Var (t,α) J(λ, t) = 0} is uniformly bounded in λ.

(3) The boundedness of the increment of argument ∆ arg Cr 1 J. Consider the following functional space P P(m, M ; α 1 , . . . , α k ; λ) := { c jln (λ)t α j n log n t, c jln ∈ C, m ≤ α j n ≤ M, 0 ≤ l ≤ k}. Proposition 6.11. We have J 2 (λ, t) = Var (λ,1) J(λ, t) = O(λ µ ) uniformly in t, for some constant µ > 0.

Proof. Using the assumption A 4 , we have σ * 1 η M λ is O(X 1 ), we conclude that, for all closed paths of finite lenght < ∞ contained in a sufficiently small neighborhood of the exceptional divisor {X 1 = 0}. Since J 2 (λ, t) = Var (λ,1) J(λ, t) is the integrations of σ * 1 η M λ over the lift of the eight figure on {X 1 = 0, G = t}, we conclude that X 1 = O(λ) on this lift and J 2 (λ, t) = Var (λ,1) J(λ, t) = λ µ t ν (1 + . . .), µ > 0. E-mail address: aymenbraghtha@yahoo.fr
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Lemma 6.12. The functions J 1 (λ, .), J 2 (λ, .) are two meromorphic families in λ and satisfy the following rescaled variation equation with respect to t

Then, there exists a family of meromorphic function P 1 (λ, .), P 2 (λ, .) ∈ P(...) such that

and J 2 (λ, t) -P 2 (λ, t) = O(λ µ ), µ > 0 uniformly in t and (J 2 (λ, t) -P 2 (λ, t)) log λ = O(λ µ log λ). Moreover J(λ, t) = 0. Then for sufficiently big M : P 1 (λ, t)+P 2 (λ, t) log λ = 0.

Proof. Using the linearity of the variation operator Var, equations ( 9) and ( 16), we have

Lemma 4.8 from [START_REF] Bobieński | Pavao Pseudo-Abelian integrals along Darboux cycles[END_REF] yields that there exists an analytic (a priori meromorphic) families of functions P i (λ, .) ∈ P(. . .) such that |J i (λ, t) -P i (λ, t)| ≤ C|t| M , uniformly in λ.

To estimate the limit of the increment of argument ∆ arg Cr 1 J(λ, t) along the small circular arc C r 1 : lim r 1 →0 ∆ arg Cr 1 J, we investigate the leading term of J(λ, t) at t = 0. By Lemma 6.12 we have J 1 (λ, t) + J 2 (λ, t) log λ -(P 1 (λ, t) + P 2 (λ, t) log λ) is O(t M ) uniformly in λ. For each element of parameters space, we can choose the leading term P of P 1 (λ, t) + P 2 (λ, t) log λ. By Gabrielov's theorem, the increment of argument of P is bounded.