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ABSTRACT. We study pseudo-abelian integrals associated with polynomial perturbations of Dar-
boux integrable system with a triple point. Under some assumptions we prove the local boundedness
of the number of their zeros. Assuming that this is the only non-genericity, we prove that the num-
ber of zeros of the corresponding pseudo-abelian integrals is bounded uniformly for nearby Darboux
integrable foliations.

1. INTRODUCTION

Abelian integrals are integrals I(h) =
∫
γ(h)

η of polynomial or rational one-forms along cycles
γ(h) ∈ H1(H−1(h)), H ∈ C[x, y]. Abelian integrals appear as principal part of Poincaré displace-
ment function of the perturbation dH + εη along γ(h). Their zeros are related to limit cycles born
in the perturbation. In [11, 7], Varchenko and Khovanskiii prove the following result

Theorem 1.1. There exist a uniform bound, depending only on the degree of H and η, for the
number of real zeros of Abelian integrals.

Arnold posed with insistence the analogous problem for more general polynomial perturbation
of integrable systems. In particular, for perturbation of systems having a Darboux first integrals
H =

∏
Pαi
i , Pi ∈ C[x, y]. Then instead of Abelian integrals, one encounters pseudo-Abelian

integrals. Pseudo-Abelian integrals naturally appear in generalizations to classes bigger than the
Hamiltonian class. The simplest case is the case of Darboux integrable planar foliations F =
{M dH

H
= 0}, where H =

∏
Pαi
i is a product of real powers of bivariate polynomials and M =∏

Pi is the so-called integrating factor, so the form ω = M dH
H

is a polynomial one-form. Poincaré-
Pontryagin criterium claims that in the regular part the limit cycles of the perturbed foliations
Fε = {ω+ εη = 0} can be born only from those cycles δ of foliation F for which the integral

∫
δ
η
M

vanishes. This integral is called the pseudo-Abelian integral, and currently the main open question
is the existence of a uniform bound on the number of its zeros.

2. FORMULATION AND MAIN RESULT

This paper is a part of program of Bobieński, Mardešić and Novikov to extend the Varchenko-
Khovanskii theorem from Abelian integrals to pseudo-Abelian integrals. After studying the generic
cases [2, 9] and some nongeneric cases [1, 3, 4], in this work we study a nongeneric case. Let
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F = {M dH
H

= 0} denote a foliation with a triple point (assume it to be at the origin), where

H = P ε
0

k∏
i=1

P εi
i , M = P0

k∏
i=1

Pi, Pi ∈ R[x, y], ε, εi > 0,

so that the level curves {P0 = 0}, {P1 = 0} and {P2 = 0} intersect transversally two by two at the
origin which is the only triple point. Let Fλ = {Mλ

dHλ
Hλ

= 0} be a foliation unfolding F , Mλ an
integrating factor, where

Hλ = P ε
λ

k∏
i=1

P εi
i , Mλ = Pλ

k∏
i=1

Pi. (1)

Generically, a triple point unfolds into three saddles-type singular points pλ0 , p
λ
1 and pλ2 correspond

to the transversal intersections of level curves {P1 = 0} and {Pλ = 0}, {P1 = 0} and {P2 = 0},
and {P2 = 0} and {Pλ = 0}. Here also appears a center pcλ in the triangular region bounded by
these levels curves- see Figure 1.
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FIGURE 1. The phase portrait of Hλ
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Assume that the system Mλ
dHλ
Hλ

has a family of cycles γ(λ, h) ⊂ H−1
λ (h) filling a connected

component of R2 \ {PλP1 · · ·Pk = 0}, which we denote by D. The period annulus D is bounded
by {Pλ = 0}, {P1 = 0}, {P2 = 0} and some separatrices {Pi = 0}, i = 3, · · · , k.

Consider a polynomial perturbation of the system Mλ
dHλ
Hλ

.

Mλ
dHλ

Hλ

+ κη, η = Rdx+ Sdy, R, S ∈ R[x, y], κ > 0.

The linear part in perturbation parameter κ of the Poincaré first return map is given by the pseudo-
Abelian integral

I(λ, h) =

∫
γ(λ,h)

η

Mλ

. (2)

We prove the existence of a local bound for the number of zeros of pseudo-Abelian integrals.
Let Ωk(λ, n0, n1, · · · , nk;n) be the following, finite dimensional space of polynomial system with
Darboux type first integral:

Ωk(λ, n0, n1, · · · , nk;n) := {Mλ
dHλ

Hλ

+ κη : Hλ = P ε
λ

k∏
i=1

P εi
i ,

degPλ ≤ n0, degPi ≤ ni, deg(R, S) ≤ n},

where Mλ = Pλ
∏k

i=1 Pi. The parameters of the space Ωk(λ, n0, n1, · · · , nk;n) are positive ex-
ponents (ε, ε1, · · · , εk), coefficients of polynomials Pλ, Pi and coefficients of the polynomials per-
turbation (R, S). We distinguish an open subset Ωk

0(λ, n0, n1, · · · , nk;n) defined by the condition
that the unperturbed system (with κ = 0) admits a period annulus D and the following genericity
assumptions are satisfied

• A1. The Darboux first integral Hλ is regular at infinity.
• A2. ∂Pλ

∂λ
|(0,0,0) 6= 0.

• A3. The level curves {Pi = 0}, i = 3, · · · , k are smooth and intersect transversally two by
two. Morever, there are not triple intersection points, for i = 3, . . . , k.
• A4. η vanishes to the order ≥ 4 at (x, y) = (0, 0) (technical condition)

Theorem 2.1. Let Ω0 ∈ Ωk
0(λ, n0, n1, · · · , nk;n). Assume that the pseudo-Abelian integral IΩ0

associated to Ω0 in (2) is not identically zero. Consider the pseudo-Abelian integrals associated
to Ω ∈ Ωk

0(λ, n0, n1, · · · , nk;n) in a neighborhood of Ω0. Then, there exists an upper bound
Z(Ω0; k, n0, · · · , nk;n) for the number of zeros of the pseudo-Abelian integrals associated to Ω ∈
Ωk

0(λ, n0, n1, · · · , nk;n) close to Ω0.

The main problem is that the Darboux integrable systemsMλ
dHλ
Hλ

have a small nest of cycles which
shrinks to the origine (0, 0) as λ→ 0, i.e. the center pλc generates a possible ramification points of
I(λ, h) located on a circle whose radius is of order |λ|ε+ε1+ε2 . Thus, we can no directly repeat the
argument from [2] to get an λ-independent estimate.

3. CONNECTION WITH BOBIEŃSKI’S RESULT

In [1], the author considers a polynomial one-form ωε = Mε
dHε
Hε

having a Darboux first integral:

Hε = (x− ε)aP
k∏
i=1

P ai
i , Mε = (x− ε)P

k∏
i=1

Pi (integrating factor),
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where P, Pi ∈ R[x, y], a, ai ∈ R+ and ε is a sufficiently small parameter. He imposes the following
genericity assumptions

(1) The Darboux first integral Hε is regular at infinity.
(2) For ε = 0, the polycycle γ(0, 0) consists of the edges γi(0, 0) contained in a smooth part

of the level curve P−1
i (0). Any vertex pij , except (0, 0), corresponds to the transversal

inetrsection of level curves P−1
i (0) and P−1

j (0).
(3) The polynomial P has a critical point of Morse type (0, 0), i.e. P (x, y) = y2 − x2 + h.o.t.

Other polynomials Pj satisfy Pj(0, 0) 6= 0, j = 1, . . . , k.
He considers a small polynomial perturbation ωε = Mε

dHε
Hε

ωε,ε = ωε + εη, η = Rdx+ Sdy, R, S ∈ R[x, y].

The linear part in perturbation parameter ε of the Poincaré first return map is given by the pseudo-
Abelian integrals

I(ε, h) =

∫
γ(ε,h)

η

Mε

, γ(ε, h) ⊂ H−1
ε (h).

Under the above genericity assumptions, Bobieński proves the existence of a local upper bound for
the number of zeros of corresponding pseudo-Abelian integrals I(ε, h). However, his study does
not give the existence of a uniform bound in a full neighborhood of the parameter space (ε, h). The
precise sense is clear after blow-up. Bobieński’s argument works well when one is studying the
integral along cycles contained in a neighborhood of the big polycycle δ = δ01 t δ02 t δ03 t δ− t
δ+ t δ3 t · · · t δk, see Figure 2. It corresponds to a sector in the (ε, h)-space. However, in order to
have a study in a full neighborhood of (0,0) in the product space (ε, h), one must study also cycles
landing on the exceptional level on a polycycle made of the same polycyle in the equatorial plane,
but completed by any one of the continuous family of curves t = εa+2

h
joining two saddles p+ and

p−, see Figure 2. The study of the cycles in this sector is not done in Bobieński’s paper.
To complete the proof, which is the main result of this present paper, we assume that the pertur-

bative one-form η vanishes to the order ≥ 4 at (x, y) = (0, 0) (technical condition), but our study
covers a full neighborhood of the polycycle in the product space with space of parameters. Also, in
this paper Darboux first integral is more general, i.e. ε1 6= ε2. We prove the main result in full gen-
erality by blowing-up the whole family Fλ and subsequently carefully piece-wise investigating the
result combining Petrov’s technique [10], general Gabrielov type results and topological methods.

4. RECTIFYING OF DARBOUX FIRST INTEGRAL

Let us a establish a local normal form near the triple point (0, 0, 0) for the unfolding of the
degenerate polycycle P0....Pk = 0.

Proposition 4.1. Under the above assumptions A2,A3, there exists a local analytic coordinate
system (x, y, λ) at (0, 0, 0) such that Hλ takes the form

Hλ = (x− λ)ε(y − x)ε+(y + x)ε−∆, (3)

where ∆ is an analytic unity function ∆(0, 0, 0) 6= 0.

Proof. There exists an analytic coordinate system (x, y) at (0, 0) such that P1(x, y) = y∆1, P2(x, y) =

x∆2 and
∏k

i=3 P
εi
i = ∆3, where ∆1,∆2,∆3 are unities. In these coordinate and by Weier-

strass preparation theorem we have Pλ = (x − f(y, λ))∆4 where ∆4 is a unit, ∂f
∂λ

(0, 0) 6= 0
4



and ∂f
∂y

(0, 0) 6= 0. A second application of Weierstrass preparation theorem allows us to write
f(y, λ) = (y+g0(λ))∆5, where ∆5 is a unity function and ∂g0

∂λ
(0) 6= 0. Now we put x̃ = x

∆5
. Then

x̃∆5 + (y + g0(λ))∆5 = (x̃− y − g0(λ))∆5.

Finally, Pλ = (x̃ − y − λ̃)∆4∆5, where λ̃ = g0(λ). The normal form (3) can be obtained by a
linear rotation on (x̃, y). �

5. DARBOUX INTEGRABLE FOLIATION

Consider two Darboux integrable foliations of dimension two in dimension three space with
coordinates (x, y, λ)

F1 = {Mλ
dHλ

Hλ

= 0}, F2 = {dλ = 0}.

Let F = {Mλ
dHλ
Hλ
∧ dλ = 0} be the foliation of dimension one in a space of dimension three

with coordinates (x, y, λ) which is given by the intersection of the leaves of F1 and F2. This
foliation has a non-elementary singularity at the origin (0, 0, 0) which is the triple point. To reduce
this singularity, we make the blowing-up of the triple point of the family in the product space
(x, y, λ) of phase and parameter spaces. The family blowing-ups were introduced by Denkowska
and Roussarie in [5].

5.1. Blowing-up the triple point. The blowing up σ with center at the origin (the triple point) is
the projection onto C3 of a space W that is obtained by replacing the origin by the projective space
CP2 of all lines throught the origin:

W = {(p, q) ∈ C3 × CP2 : p ∈ q}

and σ : W → C3 is defined by σ(p, q) = p. Outside the origin, a point p belongs to a unique line
q, but σ−1(0) = CP2 which is called the exceptional divisor. If we write p in terms of the affine
ccordinates p = (p1, p2, p3), and q in the corresponding homogeneous coordinates q = [q1, q2, q3],
then the relation p ∈ q translates into the system of equations piqj = pjqi, for i, j = 1, 2, 3.

The projective space CP2 is covered by three canonical charts: W1 = {x 6= 0} with coordinates
(Y1, E1), W2 = {y 6= 0} with coordinates (X2, E2) and W3 = {λ 6= 0} with coordinates (X3, Y3).
W1,W2 and W3 define canonical charts on W , with coordinates (X1, Y1, E1), (X2, Y2, E2) and
(X3, Y3, E3) respectively. In these coordinates, σ is given by the formulas:

σ1 = σ|W1 : x = X1 y = X1Y1 λ = E1X1, (4)

σ2 = σ|W2 : x = X2Y2 y = Y2 λ = E2Y2, (5)

σ3 = σ|W3 : x = X3E3 y = Y3E3 λ = E3. (6)

We apply the blowing-up σ to the one-dimensional foliation F on the three-dimensional space
with coordinates (x, y, λ) given by intersection of Mλ

dHλ
Hλ

= 0 and dλ = 0. Let σ−1F be the lift of
the foliation F to the complement of the exceptional divisor CP2.

Proposition 5.1. This foliation σ−1F extends in a unique way to a holomorphic singular foliation
σ∗F on W which we call the blow-up of the original dimension-one foliation F by the map σ. The
foliation σ∗F is regular outside of the preimage of the hypersurface {H(x, y, λ) = 0, λ = 0}.
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5.1.1. Singularities of σ∗F . The strict transform of the period annulus D lies completely within
the chart W1. Then, we concentrate our study uniquely on this chart. Let σ∗1F be the restriction
of the blown-up foliation σ∗F to the chart W1. We have σ is a biholomorphism outside CP2

(exceptional divisor), all singularities of σ∗1F on W1 \ {X1 = 0} correspond to singularities of
F . Thus, it suffices to compute the singularities of σ∗1F on the exceptional divisor {X1 = 0}.
Explicitly, near the exceptional divisor {X1 = 0}, the blown-up foliation σ∗1F is given by two first
integrals λ = X1E1 and λa

h
= G, where

G = Ea
1 (1− E1)−ε(Y1 − 1)−ε+(Y1 + 1)−ε−∆̃−1,

∆̃ is unit of the form ∆̃ = c + X1f, f is a holomorphic function and a = ε + ε+ + ε−. Consider
the two-dimensional square Q ⊂ CP2 with vertices p+, p−, q+ and q−. All levels curves {G = λa

h
}

inside Q correspond to values of λa

h
∈ [0,+∞].

Proposition 5.2. The singularities of σ∗1F on the exceptional divisor CP2 are located at the points
p+ = (0, 1, 0), p− = (0,−1, 0), q+ = (0, 1, 1) and q− = (0,−1, 1). All these singular points are
linearisable saddles, with eigenvalues µ+ = (ε+,−a,−ε−), µ− = (−ε−, a, ε−), ν+ = (0,−ε, ε+)
and ν− = (0,−ε, ε−) respectively.

Proof. Let us compute the eigenvalues at p+, p−, q+ and q−. Near p+ the foliation σ∗1F is given
by the two first integrals h = XaY ε+ and λ = XE (we make a convenient variables change). By
Hartman-Grobman theorem the vector field generating the foliation σ∗1F is given by

X(X, Y,E) = µ+
1 X

∂

∂X
+ µ+

2 Y
∂

∂Y
+ µ+

3 E
∂

∂E
,

such that the vector < (µ+
1 , µ

+
2 , µ

+
3 ), (a, ε+, 0) >= 0 and < (µ+

1 , µ
+
2 , µ

+
3 ), (1, 0, 1) >= 0. By short

computation, we obtain

X(X, Y,E) = ε+X
∂

∂X
− aY ∂

∂Y
− ε+E

∂

∂E
.

Similar computation shows that there are local coordinates near q+ in which the vector field gen-
erating the foliation is given by

Y(X, Y,E) = −εY ∂

∂Y
+ ε+E

∂

∂E
.

�

6. PROOF OF THEOREM 2.1

Let us fix some useful notations. Let t = λa

h
, where a = ε + ε− + ε+ and Q ⊂ CP2 is the two-

dimensional square with vertices p+, p−, q+ and q−. All levels curves {G = t} insideQ correspond
to values of t ∈ [0,+∞], where

G = Ea
1 (1− E1)−ε(Y1 − 1)−ε+(Y1 + 1)−ε−∆̃−1.

6.1. Polycycles, relative cycles and normal form. The important advantage of making the blowing-
up σ is to obtain a family of hyperbolic polycycles, i.e. at each intersection of two consecutive
curves we have a saddle point. We consider the family of hyperbolic polycycles δ

δ =
(
σ−1

1 (γ(0, 0) \ (0, 0, 0)) ∪ (Q ∩ {G = t})
)R
, t ∈ [0,+∞], (7)

where (. . .)R denotes the real part of a complex analytic set.
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FIGURE 2. The foliation σ∗1F

6.1.1. Polycycles. Let δ0 (edge) be the real part of the complex analytic set {X1 = E1 = 0}
joining two saddles p− and p+, δ01 be the real part of the complex analytic set {X1 = 0, Y1 = 1}
joining the two saddles p+ and q+, δ02 be the real part of complex analytic set {X1 = 0, Y1 = −1}
joining two saddles p− and q−, δ03 be the real part of complex analytic set {X1 = E1 = 0}
joining two saddles q− and q+, δ04 be the real part of complex analytic set {X1 = 0, G = t}
joining two saddles p− and p+, δ+ be the real part of the complex analytic set {Y1 = 1, E1 = 0}
joining two saddles p1 and p3, δ− be the real part of the complex analytic set {Y1 = −1, E1 = 0}
joining the two saddles p− and pk and finally let δi be the real part of the complex analytic set
{σ∗1Pi = 0, E1 = 0}, i = 3, · · · , k joining the two saddles pm and pn -see Figure 2.

Let 0 ≤ m < M . Then, we can decompose the family of hyperbolic polycycles δ as follows:

(1) If t ∈ [0,m[, we have δ = δ0 t δ− t δ+ t δ3 t · · · t δk.
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(2) If t ∈ [m
2
, 2M ], we have δ = δ04 t δ− t δ+ t δ3 t · · · t δk;

(3) If t ∈ [M,+∞], we have δ = δ01 t δ02 t δ03 t δ− t δ+ t δ3 t · · · t δk.

6.1.2. Relative cycles. Let p1, · · · , pk be the saddles points of the foliation σ∗1F which lie on the
polycycle δ. Let δ′ = δ \ {p1, · · · , pk}. Choose a family of analytic transversals (of complex
dimension two) Σx, through each point point x in δ′ . We can define a relative cycle γ (the part of
the cycle δ(λ, t)) by a initial condition (starting point x) and a end point y = γ∩Σy which is going
from Σx. Concretly, we consider the relative cycles δ0(λ, t) corresponding to the edge δ0, δ01(λ, t)
corresponding to the edge δ01, δ02(λ, t) corresponding to the edge δ02, δ03(λ, t) corresponding to
the edge δ03, δ04(λ, t) corresponding to the edge δ04, δ+(λ, t) corresponding to the edge δ+, the
relative cycle δ−(λ, t) corresponding to the edge δ− and the relative cycles δi(λ, t) corresponding
to the edge δi, i = 3, · · · , k- see Figure 3.
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FIGURE 3. The relative cycles
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6.1.3. Normal form coordinates near the polycycles. Now we obtain normal forms in neighbor-
hoods of each edge of polycyles

Proposition 6.1. (1) There exist a local chart (U0, (X, Y,E)) ⊂ W defined in a neighborhood
of δ0 such that the blown-up foliation σ∗1F is given by two first integrals

λ = XE, t = (Y − 1)−ε+(Y + 1)−ε+Ea.

(2) There exist a local chart (U01, (X, Y,E)) ⊂ W defined in a neighborhood of δ01 such that
the blown-up foliation σ∗1F is given by two first integrals

λ = XE, t = Ea(1− E)−εY −ε+ .

(3) There exist a local chart (U02, (X, Y,E)) ⊂ W defined in a neighborhood of δ02 such that
the blown-up foliation σ∗1F is given by two first integrals

λ = XE, t = Ea(1− E)−εY −ε− .

(4) There exist a local chart (U03, (X, Y,E)) ⊂ W defined in a neighborhood of δ03 such that
the blown-up foliation σ∗1F is given by two first integrals

λ = X, t = E−ε(Y − 1)−ε+(Y + 1)−ε− .

(5) There exist a local chart (U+, (X, Y,E)) ⊂ W defined in a neighborhood of δ+ such that
the blown-up foliation σ∗1F is given by two first integrals

λ = XE, t = Y ε+(1 +X)εiEa.

(6) There exist a local chart (U−, (X, Y,E)) ⊂ W defined in a neighborhood of δ− such that
the blown-up foliation σ∗1F is given by two first integrals

λ = XE, t = Y ε−(1 +X)εiEa.

(7) There exist a local chart (Ui, (X, Y,E)) ⊂ W, i = 3, · · · , k, defined in a neighborhood of
δi such that the blown-up foliation σ∗1F is given by two first integrals

λ = E, t = Y εi(1−X)εi+1Xεi−1 = t.

6.2. Proof of Theorem 2.1. Let δ be a polycycle. Let δ(λ, t) = σ−1(γ(λ, h)) ⊂ W (dashed
cycle, see Figure 2) be the pull-back of the cycle γ(λ, h) by the blowing-up map and δ be its
corresponding polycycle. We define the integral

J(λ, t) =

∫
δ(λ,t)

σ∗1
η

Mλ

. (8)

This integral is considered as the pull-back of the pseudo-abelian integrals I(λ, h) by the blowing-
up σ1, i.e. J(λ, t) = σ∗1I(λ, t). The proof of Theorem 2.1 is reduced to the proof of the following
theorem

Theorem 6.2. Let ε > 0 be sufficiently small. Then, for all |λ| < ε the number #{t ∈ [0,+∞] :
J(λ, t) = 0} is locally bounded.
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6.2.1. Variation operator. Firstly, let us recall some definitions, notation and general results. They
will be useful later.

Definition 6.3. Given any multivalued function J defined in a neighborhood of the origin in C
i.e. a holomorphic function defined on the universal covering C̃∗ of C∗. We define the rescaled
monodromy as

Mon(t,α)J(t) = J(teiπα).

The variation is given as the difference between the counterclockwise and clockwise continuation

Var(t,α)J(t) =Mon(t,α)J(t)−Mon(t,−α)J(t)

= J(teiπα)− J(te−iπα).

Definition 6.4. Let J be a multivalued function in two variables λ and t defined in universal
covering ˜C2 \ {λt = 0} of C2 \ {λt = 0}. We define the mixed variation as

Var(λ,β) ◦ Var(t,α)J(λ, t) = Var(λ,β)(J(λ, teiπα)− J(λ, te−iπα)) =

J(λeiπβ, teiπα)− J(λe−iπβ, teiπα)− J(λeiπβ, te−iπα) + J(λe−iπβ, te−iπα).

Lemma 6.5. The variations Var(λ,β) and Var(t,α) commute

Var(λ,β) ◦ Var(t,α) = Var(t,α) ◦ Var(λ,β).

Proof. The proof is a consequence of the monodromy theorem which says that: If γ1, γ2 are ho-
motopic paths in C2 \ {λt = 0}, then ψγ1 = ψγ2 where ψγ1 =Monγ1ψ and ψγ2 =Monγ2ψ. We
consider

γ1(θ, φ) = (λ(θ, φ), t(θ, φ)) =
(
λ, teiθ

)
θ∈[0,α]

t
(
λeiφ, teiα

)
φ∈[0,β]

,

γ2(θ, φ) = (λ(θ, φ), t(θ, φ)) =
(
λeiφ, t

)
φ∈[0,β]

t
(
λeiβ, teiθ

)
θ∈[0,α]

.

The paths γ1 and γ2 are homotopic and this implies that ψ(λeiαπ, teiβπ) can be defined either as
ψγ1 or ψγ2 . The same argument holds for the other germs ψ(λe−iαπ, teiβπ),
ψ(λeiαπ, te−iβπ) and ψ(λe−iαπ, te−iβπ). �

6.2.2. Analytic properties. The integral J(λ, t) has an analytic extension to the complex argument
t (resp λ). This is a multivalued function with unique branch point t = 0 (resp λ = 0). As in [2],
the key of the proof of Theorem 6.2 is the following.

Proposition 6.6. The integral J(λ, t) satisfies the following iterated rescaled variations equation

Var(t,α1) ◦ . . . ◦ Var(t,αk)J(λ, t) = 0. (9)

where αi are polynomials functions in ε, ε+, ε−, ε3, · · · , εk.

Proof. Let us fix λ. We choose a hyperbolic polycycle δ of the family (6.1). As in [2], using the
different charts of Proposition 6.1 and partition of unity multiplying the blown-up one form σ∗1

η
Mλ

we can consider semilocal problem with a relative cycle δi(λ, t) (part of cycle δ(λ, t)) close to one
edge (i-th edge) of the polycycle. Let δCi be the complexification of the real i-th edge joining the
singular points pi−1, pi+1 (saddles).
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(1) If αi−1 6= αi+1 (generic case), we have

Var(t,αi−1) ◦ Var(t,αi+1)δi(λ, t) = ˜[γi−1, γi+1], (10)

where ˜[γi−1, γi+1] is a complex (closed) cycle obtained as a lift of the commutator [γi−1, γi+1],
where γi−1 and γi+1 are paths in δCi \ {pi−1, pi+1} turning once counterclockwise around

pi−1 and pi+1. This lifting ˜[γi−1, γi+1] vanishes by making third variation, i.e.

Var(t,αi)
˜[γi−1, γi+1] ≡ 0. (11)

(2) If αi−1 = αi+1 (resonant case), we have

Var(t,αi−1)δi(λ, t) = ˜γi−1γ
−1
i+1, (12)

where ˜γi−1γ
−1
i+1 is a complex (closed) cycle obtained as a lift of the figure eight loop

γi−1γ
−1
i+1. This lifting ˜γi−1γ

−1
i+1 vanishes by making second variation, i.e.

Var(t,αi)
˜γi−1γ

−1
i+1 ≡ 0. (13)

Finally, the variations commute so

Var(t,α1) ◦ . . . ◦ Var(t,αk)δ(λ, t) = 0. (14)

This argument is independent of the choice of polycycle, i.e. it holds for any hyperbolic polycycle
δ of family (7). �

Proposition 6.7. The rescaled variation with respect to λ of the integral J(λ, t) is an integral of
the form σ∗1

η
Mλ

along the figure eight loop

Var(λ,1)J(λ, t) =

∫
eight loop

σ∗1
η

Mλ

. (15)

Proof. In the local chart (U0, (X, Y,E)) of Proposition 6.1, the blown-up foliation σ∗1F is given
by the two first integrals λ = XE and t = Ea(Y − 1)−ε+(Y + 1)−ε− . Let γ+ and γ− be two paths
in Y C turning counterclokwise around p+ and p− which are parametrized by

ρ± : θ ∈ [0, 2π] 7→

 X(θ, λ, t)
Y (θ) = ±1 + εeiθ

E(θ, λ, t)
.

Then, we have

F±(λ, t) =

∫
γ±

σ∗1
η

Mλ

=

∫ 2π

0

ρ∗±σ
∗
1

η

Mλ

dθ.

Also, we define two functions

F1(λ, t) =

∫
`−

σ∗1
η

Mλ

, F2(λ, t) =

∫
`+

σ∗1
η

Mλ

,

where `− = [1− ε,−1 + ε] and `+ = [−1 + ε, 1− ε] (segments). So, we obtain

Var(λ,1)J(λ, t) = F−(λ, t) + F2(λ, t) + F+(λ, t) + F1(λ, t) =

∫
˜γ+`−γ−`+

σ∗1
η

Mλ

,

11



where ˜γ+`−γ−`+ is a closed path obtained as a lift of the path γ+`−γ−`+ which is contained in Y C

and homotopic to a figure eight loop. �

Corollary 6.8. Near the ramification point λ = 0, the function J(λ, t) admits the expansion

J(λ, t) = J1(λ, t) + J2(λ, t) log λ, (16)

where J1(., t) is meromorphic and J2(λ, t) = Var(λ,1)J(λ, t).

6.2.3. Proof of Theorem 6.2. The integral J(λ, t) =
∫
δ(λ,t)

σ∗1
η
Mλ

can be analytically continued to

the universal cover ˜C2 \ {λt = 0} of C2\{λt = 0}. To estimate the number of zeros of the integral
J(λ, t) =

∫
δ(λ,t)

σ∗1
η
Mλ

we apply the argument principle.
Let us introduce some definitions which will be useful later.

Definition 6.9. Let f : Rn × R → R. We shall say that f is a logarithmico-analytic function
(LA-function) of type ` in variable y if it has the following form

f(x, y) = F (f1(x, y), . . . , fm(x, y), log fm+1(x, y), . . . , fm+r(x, y)),

where F is a global sub-analytic function and fi are a LA-functions of type `− 1 in y.

Definition 6.10. A logarithmico-exponential function (LE-function) is a finite composition of global
sub-analytic functions, exponentials and logarithms.

Let ∂Ω be the boundary of a complex domain Ω which consists of a big circular arc CR1 =
{|t| = R1, | arg t| ≤ απ}, a two segments C± = {r1 ≤ |t| ≤ R1, | arg t| = ±απ} and the small
circular arc Cr1 = {|t| = r1, | arg t| ≤ απ}-see Figure 4.

The argument principle says that

#{t ∈ Ω : J(λ, t) = 0} ≤ 1

2π
∆ arg∂Ω J =

1

2π
(∆ argCR1

J + ∆ argC± J + ∆ argCr1 J).

(1) The boundedness of the increment of argument ∆ argCR1
J . By Gabrielov’s theorem [6],

the increment of the argument ∆ argCr1 J is uniformly bounded.
(2) The boundedness of the increment of argument ∆ argC± J . Let α ∈ {α1, · · · , αk}. We use

Schwartz’s principle

Im(J(λ, .))|C± = ∓2iVar(t,α)J(λ, t).

So ∆ argC± J ≤ #{t : Im(J(λ, .)) = 0} = #{t : Var(t,α)J(λ, t) = 0}. Moreover, the
variations commute so

Var(t,α1) ◦ · · · ◦ Var(t,α) ◦ · · · ◦ Var(t,αk)J(λ, t) =

Var(t,α1) ◦ · · · ◦ Var(t,αk)(Var(t,α)J(λ, t)) = 0.

Then, near the ramification point t = 0, the function Var(t,α)J(λ, t) can be written as
follows

Var(t,α)J(λ, t) = F (e
α1
α

log t, . . . , e
αk
α

log t, log λ) (17)
where F is a meromorphic function. The function Var(t,α)J(λ, t) is a LA-function of type
1 in variable λ. Then, by Lion-Rolin preparation theorem [8] this function has the following
form

Var(t,α)J(λ, t) = λq00 λ
q1
1 G(t)U(t, λ0, λ1), U(0, 0, 0) 6= 0 (18)
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FIGURE 4. The contour ∂Ω

with λ0 = λ− θ0(t), λ1 = log λ0 − θ1(t), where θ0, θ1,G and U are LE-functions. As the
number of zeros of a LE-function is bounded, so #{t : Var(t,α)J(λ, t) = 0} is uniformly
bounded in λ.

(3) The boundedness of the increment of argument ∆ argCr1 J . Consider the following func-
tional space P

P(m,M ;α1, . . . , αk;λ) := {
∑∑

cjln(λ)tαjn logn t, cjln ∈ C,
m ≤ αjn ≤M, 0 ≤ l ≤ k}.

Proposition 6.11. We have J2(λ, t) = Var(λ,1)J(λ, t) = O(λµ) uniformly in t, for some
constant µ > 0.

Proof. Using the assumption A4, we have σ∗1
η
Mλ

isO(X1), we conclude that, for all closed
paths of finite lenght ` < ∞ contained in a sufficiently small neighborhood of the excep-
tional divisor {X1 = 0}. Since J2(λ, t) = Var(λ,1)J(λ, t) is the integrations of σ∗1

η
Mλ

over
the lift of the eight figure on {X1 = 0, G = t}, we conclude that X1 = O(λ) on this lift
and

J2(λ, t) = Var(λ,1)J(λ, t) = λµtν(1 + . . .), µ > 0.

�
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Lemma 6.12. The functions J1(λ, .), J2(λ, .) are two meromorphic families in λ and satisfy
the following rescaled variation equation with respect to t

Var(t,α1) ◦ . . . ◦ Var(t,αk)Ji(λ, t) = 0, i = 1, 2. (19)

Then, there exists a family of meromorphic function P1(λ, .), P2(λ, .) ∈ P(...) such that

|Ji(λ, t)− Pi(λ, t)| ≤ C|t|M , uniformly in λ, i = 1, 2

and J2(λ, t) − P2(λ, t) = O(λµ), µ > 0 uniformly in t and (J2(λ, t) − P2(λ, t)) log λ =
O(λµ log λ). Moreover J(λ, t) 6= 0. Then for sufficiently bigM : P1(λ, t)+P2(λ, t) log λ 6=
0.

Proof. Using the linearity of the variation operator Var, equations (9) and (16), we have

Var(t,α1) ◦ . . . ◦ Var(t,αk)Ji(λ, t) = 0, i = 1, 2.

Lemma 4.8 from [2] yields that there exists an analytic (a priori meromorphic) families of
functions Pi(λ, .) ∈ P(. . .) such that |Ji(λ, t)− Pi(λ, t)| ≤ C|t|M , uniformly in λ. �

To estimate the limit of the increment of argument ∆ argCr1 J(λ, t) along the small cir-
cular arc Cr1: limr1→0 ∆ argCr1 J , we investigate the leading term of J(λ, t) at t = 0.
By Lemma 6.12 we have J1(λ, t) + J2(λ, t) log λ − (P1(λ, t) + P2(λ, t) log λ) is O(tM)
uniformly in λ. For each element of parameters space, we can choose the leading term P
of P1(λ, t) + P2(λ, t) log λ. By Gabrielov’s theorem, the increment of argument of P is
bounded.
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