
HAL Id: hal-01387826
https://hal.science/hal-01387826

Submitted on 26 Oct 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

DVFS governor for HPC: Higher, Faster, Greener
Georges da Costa, Jean-Marc Pierson

To cite this version:
Georges da Costa, Jean-Marc Pierson. DVFS governor for HPC: Higher, Faster, Greener. 23rd
Euromicro International Conference on Parallel, Distributed and network-based Processing (PDP
2015), Mar 2015, Turku, Finland. pp.533-540, �10.1109/PDP.2015.73�. �hal-01387826�

https://hal.science/hal-01387826
https://hal.archives-ouvertes.fr


  
   

Open Archive TOULOUSE Archive Ouverte (OATAO)  
OATAO is an open access repository that collects the work of Toulouse researchers and 
makes it freely available over the web where possible.  

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/ 
Eprints ID : 15211 

The contribution was presented at PDP 2015:  
http://www.pdp2015.org/ 

 
 

To cite this version : Da Costa, Georges and Pierson, Jean-Marc DVFS governor 
for HPC: Higher, Faster, Greener. (2015) In: 23rd Euromicro International 
Conference on Parallel, Distributed and network-based Processing (PDP 2015), 
4 March 2015 - 6 March 2015 (Turku, Finland). 

Any correspondence concerning this service should be sent to the repository 

administrator: staff-oatao@listes-diff.inp-toulouse.fr 



DVFS governor for HPC: Higher, Faster, Greener

Georges Da Costa, Jean-Marc Pierson

IRIT, University of Toulouse

dacosta@irit.fr pierson@irit.fr

Abstract—In High Performance Computing, being respectful of
the environment is usually secondary compared to performance:
The faster, the better. As Exascale computing is in the spotlight,
electric power concerns arise as current exascale projects might
need too much power to even boot. A recent incentive (Exascale

at maximum 20MW) shows that reality is catching up with HPC
center designers.

Beyond classical works on hardware infrastructure or at the
middleware level, we do believe that system-level solutions have
great potential for energy reduction. Moreover energy-reduction
has often been neglected by the HPC community that focus
mainly on raw computing performance.

In the literature, energy savings is achieved mainly by two
means: Either processor load is the only metric taken into account
to reduce processors frequency and to ensure no impact on raw
performances; Or processor frequency is managed only at task
level outside the critical path.

In this article we show that designing and implementing a
DVFS (Dynamic Voltage and Frequency Scaling) mechanism
based on instantaneous system values (here network activity) can
save up to 25% of energy consumption while reducing marginally
performance. In several cases, reducing energy consumption also
leads to an increase in performances because of the thermal
budget of recent processors. This work is validated with real
experiments on a linux cluster using the NAS Parallel Benchmark
(NPB).

Index Terms—HPC; Green; Energy; DVFS; Governor;

I. INTRODUCTION

Saving energy for High Performance Computing applica-

tions has gained interest since only a few years. Solutions

widely accepted in other IT domains can not be directly

transferred to HPC systems. In HPC, the key performance

criteria is time-to-solution. Consolidation with virtualization

and dynamic migration of virtual machines coupled with

switching-off unused nodes, empowered in commodity clusters

and cloud computing, are not acceptable because of their

impact on performances and the high level of utilization of

the HPC clusters. Applications are deployed on large scale

infrastructure making solutions for embedded systems also not

applicable.

Techniques for reducing the energy demand on HPC infras-

tructure are mainly based on hardware dynamic adaptation

to the applications needs. For instance when an application is

using the disk IO only for specific phases (usually initialization

and loading phase, and finish phase and dumping results),

disks can be switched into an energy efficient sleep mode

for the rest of the time. The same applies for communication

phases when the CPU can be slowed down without impact-

ing the application makespan. Diverse techniques exist for

detecting such possibilities, either before, during or after the

execution of an HPC application.

In this article, we show the potential for energy savings

using automatic adaptation to application behavior at runtime.

We propose a simple algorithm (NetSched) for optimizing

HPC energy-to-solution based on CPU frequency adaptation

on the hosts of the infrastructure, and we validate our approach

using well known HPC benchmarks. Our main contributions

are the following:

• Development of system-level runtime monitoring of HPC

applications enabling behavior detection for HPC appli-

cations;

• Development of an algorithm for automatic hardware ad-

justment aimed at reducing energy consumption without

impacting time-to-solution.

The rest of this article is organized as follows: Section II

gives an overview of the different approaches for energy

savings in the context of HPC applications. Section III details

our methodology and our NetSched algorithm while Sec-

tion IV describes our experiment setup and results. Section V

discusses the impact of our results for HPC centers while

Section VI concludes and gives perspectives to our work.

II. STATE OF THE ART

In HPC environments the main focus for reducing energy

has long been to improve the power efficiency of the hard-

ware [7], including the environment infrastructure (i.e. cooling

efficiency). While incomplete, [19] gives a good overview

of the literature on power management for high performance

systems.

Another widely used solution for cloud computing is consol-

idation. But even with low-overhead virtualization techniques

for HPC systems [16], [26], [28] consolidation is of no use

on fully loaded systems.

In the literature, the method usually followed to reduce

energy in HPC systems is to consider that HPC workload can

be modeled as a graph of tasks. For tasks not on the critical

path in terms of execution time, it is possible to reduce their

processors’ frequency. It leads to energy-savings and reduced

performance for those tasks. However as they are not on the

critical path, the makespan of the whole application is not

affected. This technique used in Adagio [24] is more generally

called slack reclamation [13], [2], [30], [23], [29], [17], [9],

[1]. The main limits of this approach are two fold: the need

for information on the applications structure, and the task

granularity of the adaptation.



Other quite similar approaches consist in using information

of running applications (beyond the graph of tasks) to set the

hardware performances according to these. Most of them only

consider that hardware is limited to processors and adaptation

is limited to frequency scaling, while few consider network,

memory and disk as well. The needed information can be given

with the application in terms of communication patterns and

resource needs [28], [22]. They can also be retrieved for the

whole applications or for phases of applications after a pre-

characterization process [11], [6], or using a code instrumen-

tation and/or analysis [14], [10], [21], [4]. Application phases

can be obtained and used at runtime within a modified code

linked to an ad-hoc library [20], [18] or without the need to

adapt the application [8], [27], [15]. In these approaches one

setting is valid for the duration of one phase.

Classical DVFS (Dynamic Voltage and Frequency Scaling)

at kernel level are usually based on CPU utilization. After

each time-slot (100ms or less) processor frequency is adapted

based on the recent CPU utilization. Frequency is chosen to

optimize first performance then power consumption. They are

not adapted for HPC workloads as CPU utilization stays most

of the time at 100% for such workloads and thus processors are

always at maximum frequency. Such approaches encompass

classical linux governor (ondemand) or β-adaptation algo-

rithm [15]. In these cases and more generally, sleep states are

rarely used as they halt not only the processor but also other

processing such as the interactions between the processor and

the memory or the network.

A more generic but seldom-used approach is the one of

Miser [12] and Green Governor [25]. Authors propose to

evaluate if memory or processor is the bottleneck resource

at a particular time step (one second or less) and to change

the processor frequency accordingly. If the bottleneck is the

processor, its frequency is increased, if it is memory, it is

decreased. This approach brings energy improvement with

limited impact on performance for a large variety of workload

without the need for internal information of the application.

Our approach is a generalization of these as we propose

a framework that consider not only memory but also any

resource bottleneck with the same reactivity as the kernel

approach. We will illustrate this flexibility by using network

resource consumption in the experiment Section. One inter-

esting point is that slack reclamation and bottleneck detection

are compatible. Usually the latter can save energy based on a

performance reduction budget given by the former.

III. DVFS FOR HPC, TIME- AND ENERGY-WISE

For the evaluation of this research work, applications come

from NAS Parallel Benchmark (NPB) [3]. This benchmark

provides 7 applications (IS, FT, EP, BT, LU, CG and SP)

with workloads being representatives of HPC applications.

They exhibit a range of behaviors from an embarrassingly

parallel code (EP) to LU decomposition of matrix (LU) with

interleaved computations and communications phases. These

applications are well studied in the literature and present well

known communication and computing patterns.

Benchmark FT SP BT EP LU IS CG
Time increase (%) 36 69 110 159 96 35 83
Energy increase (%) -18 2 21 50 16 -19 7

Fig. 1. comparing max frequency (reference, performance governor) and
min frequency (powersave governor)

A. Task-level DVFS

One of the goal of HPC programmers is to use at maximum

the raw computing power of the hardware. For instance a clas-

sical goal is to overlap communications with computations. If

this goal was perfectly achieved, it would mean that reducing

raw computing power (by reducing CPU frequency) would in-

crease the makespan (time-to-solution) of HPC applications so

much that it would ultimately consume more energy globally.

Energy is computed as the product of makespan and mean

power consumed. For instance, if a computer can run at either

1GHz (powersave kernel governor) or 2.6GHz (performance

kernel governor), consuming respectively 150W and 250W,

it leads to a computing power ratio of 2.6 and a power

consuming ratio of 1.666. With such ratios, if an application is

only limited by raw computing power, running at 1GHz would

consume nearly 1.56 times more energy than at 2.6GHz.

But real applications are not that simple. To illustrate,

Figure 1 shows the behavior of NPB with respect to change

in processors’ frequency. For instance, for IS benchmark,

reducing frequency of all nodes from 2.6GHz to 1GHz leads

to 35% increase in execution time only instead of the 160%

expected if the limit was only raw computing power. In this

scenario, the total energy is reduced by 19%: Indeed, mean

power consumption is vastly reduced while time increases only

slightly, making the product time-to-solution by mean power

more interesting at low frequency than at high frequency for

this application.

Those only interested in energy-to-solution metric (energy

needed to finish a task) would run IS and FT applications at

low frequency, leading to an energy decrease of nearly 20%

at the cost of a time penalty of 35%. In HPC environment this

time escalation is unacceptable. From these experiments, we

understand that reducing frequency has a positive impact on

energy-to-solution for IS and FT, while time increases do not

correspond to the ratio of frequencies. We conclude that these

two applications are not limited only by frequency nor are

unrelated to frequency. But since a time increase is observed,

raw computing power is, at least partially, a limitation.

B. Phase-level DVFS

Simply choosing for a whole application at which speed to

run the processor is inefficient. At a finer grain, an application

can be seen in a simplified modeling, in one of the following

states:

• Computing

• Communicating (network)

• Disk or memory I/O

• Idle



Benchmark FT SP BT EP LU IS CG
Time increase (%) 0 -3 -1 1 -2 2 0
Energy increase (%) 0 -3 -1 -1 -2 -1 -1

Fig. 2. Comparing max frequency (reference, performance governor) and
ondemand governor

Fig. 3. Classical pattern of HPC application behavior. The length will be
α+ β seconds if using performance governor, and αλ+ β seconds if using
powersave, with λ > 1. λ is the ratio between maximum and minimum
processor frequency.

The Idle case is already covered by classical approaches like

the ondemand governor. This governor adapts the processor

frequency as a function of the load in order to maximize

efficiency. Usually HPC applications can not benefit from this

governor since these applications’ programmers tend to reduce

idle times. Figure 2 shows that time and energy are roughly

the same for ondemand and performance on classical HPC

benchmarks: Nodes are rarely idle as time-to-solution and

energy-to-solution are equals meaning that mean powers are

equals. If mean powers are equals, we conclude that most of

the time the ondemand governor is choosing the maximum

frequency.

It is to be noted that most current MPI implementations are

actively waiting for packets (polling) and thus applications stay

only rarely in Idle state. As explained in the State of the Art,

the only relevant case is when a distributed application can

be described as a DAG. In this case it is efficient to change

processor frequency to the lowest available or to sleep mode

when a processor has no tasks. As previously discussed, this

article focuses on the case where a task is currently running, in

particular on the critical path where performance is of utmost

importance.

Disk and memory I/O and network communications are

symmetrical: In the following the article will focus on commu-

nication without loss of generality. Future work will consist in

modeling in the same way other shared buses such as memory

or disks.

C. NetSched

We build our approach on the weak hypothesis that during

the execution of HPC applications, there is an oscillation

between two behaviors, computing and communicating as

shown on Figure 3.

This figure shows successive computing and communication

phases cycles. If for one phase the time for computation is α
and the time for communication is β while running at full

speed, then the same execution at the slowest speed would

last λα for the computation part (λ is the ratio between the

two speeds) and would not change the communication part. If

P1 is the mean power consumption at full load at full speed,

and P2 is the one at slowest speed, the energies for a cycle

are (α + β)P1 and (λα + β)P2 for respectively fastest and

slowest processor speed.

To minimize energy consumption, it is more efficient to stay

at maximum speed if

(α+ β)P1 < (λα+ β)P2

.

Obtaining α and β at runtime is difficult. We decided to

use the application used bandwidth (which is easy to measure)

to obtain the ratio α/β, using the relation (where Bm is the

maximum bandwidth of the link) :

Bw = Bm

β

α+ β

Merging the two equations, we obtain

Bw <
Bm

λ− 1
(λ−

P1

P2

) = B1

Hence, when running at full speed, if the current bandwidth

is lower than B1, from the energy consumption point of view

it is more interesting to stay at this speed, otherwise it is more

interesting to change to a lower speed.

The same reasoning gives B2 as the threshold over which it

is interesting to stay at low speed, and under which it is more

interesting to switch to full speed.

B2 =
Bm

λ− 1
(λ

P2

P1

− 1)

Figure 4 exhibits the incoming byte rate during the exe-

cution of each of the 7 applications from the NPB (values

shown for one node and one run, horizontally scaled since

each application has a different time-to-solution): Applications

adapted to low frequency (IS and FT) communicate way

more than others. This fits to the presented model: Lowering

frequency while communicating decreases the energy.

D. NetSched implementation

In the following we tested our hypothesis that during

communications phases frequency can be reduced without

impacting computing performances. We designed and imple-

mented NetSched, a program that adapts processor frequency

during runtime based on monitored network load.

Based on the equations from Section III-C, we consider that

if the communication bandwidth is over B1 (resp. lower B2)

while the processor is at maximum (resp. minimum) speed, it

is interesting to reduce (resp. increase) processor speed.

In order to avoid oscillating situations, levels will be re-

spectively 10% over B1 and 10% below B2. This creates an

hysteresis to improve the stability of the system.
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Fig. 4. One example of values of netRECVbyte for each application (left performance, right powersave)

The resulting NetSched algorithm is then (where IBR is

Incoming Byte Rate):

• Every 10th of second, do:

– If processor at Slowest frequency and IBR ≤ .9×B1

→ Change frequency to Fastest

– If processor at Fastest frequency and IBR ≥ 1.1×B2

→ Change frequency to Slowest

At the moment NetSched is implemented as a Linux daemon

using system calls to obtain network bandwidth values as

well as changing the frequency. This daemon implementation

follows the same philosophy of the Linux kernel governors

(such as ondemand). A future step will be the integration of

NetSched as a module in the Linux kernel itself.

Compared to the classical state of the art using whole tasks

or detecting phases in the application, NetSched behaves like

a kernel governor and takes decisions every 100ms.

IV. EXPERIMENTS

A. Experimental environment

Experiments throughout this article were done on nodes

from Toulouse Grid5000 site. Grid5000 [5] is a completely

reconfigurable infrastructure where each node can be adjusted

to the needs of the experiment.

Each node is connected to a powermeter able to measure

power consumption every second. Those monitored nodes are

bi Dual-Core AMD Opteron processors (2218) with 8GB of

memory and Gigabyte Ethernet card. Processors are DVFS-

enabled and can run at frequencies between 1GHz and

2.6GHz.

Nodes run Debian, using 2.6.37 Linux kernel. Since the

powermeter sampling frequency is at maximum 1Hz (one

sample per second), the power measurement infrastructure for

assessing our research work was set up to one second. MPI

library is Mpich2. System-level measures are finer grained and

by default collected every 100ms.

NPB class C problems are used. NPB classes are related to

problem length. Class C problems are solved between half a

minute to few minutes on selected nodes. These applications

do not use disks during computation, as many HPC applica-

tions.

For this batch of experiments, 4 nodes were used, leading to

16 cores experiments. NAS Parallel Benchmark applications

are configured to use 16 slots, one per core. Depending on the

application, some limits are imposed on the number of slots:

Some applications need a power of two, some need a square,...

Therefore 16 cores have been used in order to have the same

number of slots for the 7 applications.

In this infrastructure, λ = 2.6 as minimum frequency is

1GHz and maximum frequency is 2.6GHz. Bm = 10243/8
as the network is Gigabit Ethernet, P1 = 280 and P2 = 152
(in Watts, as measured directly on the nodes).

Using these values, 1.1×B1 ≃ 7.107 and 0.9×B2 ≃ 3.107.

Several policies have been tested on the infrastructure:

For all the 7 applications, 4 settings of the governor for

the CPU frequency (called DVFS policies in the following)

were used, namely performance, powersave, ondemand, and

NetSched. For each of these settings, the experiment was

repeated 100 times, energy and makespan were monitored, the

mean, standard deviation and slope deviation were computed.

Therefore, for each application, 400 experiments were used

to analyze the behavior of all 4 DVFS policies (including

our proposed algorithm NetSched), leading to a total of 2800

experiments. In order to avoid bias the sequence of the 2800

experiments was randomly chosen.

For each block of 100 experiments (meaning for each

application and DVFS policy, i.e. 28 blocks), the normalized

standard deviation (standard deviation divided by mean value)

was computed: 24 values are below 4%, and all 28 are below

7.5%, both for energy and makespan mean values (maximum

are for SP and LU applications, shown in Table 5 for the

performance policy). Despite the accuracy of the power mon-

itoring infrastructure (sampling rate of our power measures

is 1Hz), the standard deviation is still low, especially when

considering that the duration of some applications is small

in comparison (from 16s to 355s, see Table 5). For the IS

application, finishing in 16s, a measure every 1s has an higher

impact on accuracy than for SP finishing in 355s.

It can be noted that for some benchmarks like LU, the

application consumes less energy with NetSched policy than

performance policy and is also faster. Modern processors have



fine-grain control of their thermal budget. When a processor

heat exceeds a threshold, its internal frequency is reduced

(at hardware level, whatever the operating system governor)

in order to let it cool down below a temperature threshold.

Using an energy-saving system such as NetSched allows the

processor to go faster when needed because it cools down

when possible. It results in overall faster runs on several

benchmarks while still saving energy (LU, FT, SP) compared

to the maximum frequency.

In the same way, we evaluated the normalized slope de-

viation of the energy and makespan values (computed using

least square linear interpolation of values to obtain the slope,

values shown are a percentage of the vertical change of this

slope for 100 experiments to the mean value). This was done to

check if these values were impacted by the sequence of jobs on

the hosts (computing machines may heat up and their energy

consumption might increase slightly due to this). The average

slope of the measured values is almost zero (see Table 5),

meaning that the impact of the sequence is negligible. Results

are similar for the other DVFS policies than performance.

Performance governor sets the CPU frequency to the maxi-

mum for the whole duration of the experiment (2.6GHz on our

infrastructure). Powersave governor sets the CPU frequency to

the minimum for the whole duration of the experiment (1GHz

on our infrastructure). Setting the governor to performance or

powersave modes has no impact on the operating system since

the frequency does not change over time.

The ondemand governor increases the CPU frequency to

the maximum frequency when the CPU utilization overpass

a threshold value. When CPU utilization decreases below this

threshold, the governor decreases the frequency step by step: It

sets the CPU to run at the next lowest frequency until reaching

the lowest possible frequency. The CPU utilization is checked

every time-step (100ms on our infrastructure) and the same

algorithm is applied to dynamically adjust the CPU frequency

to current process load. Like the two previous governors it

runs inside the Linux kernel as a module.

NetSched governor has already been described in III-C. At a

bird-eye-view it has the same behavior as ondemand, adjusting

the CPU frequency to the actual behavior of the application.

It adapts frequency up to 10 times per second.

The two governors ondemand and NetSched have an impact

on the operating system since a monitoring of the load (for

ondemand) or of the IBR (for NetSched) is done and changes

in frequency performed. Despite this overhead we will see that

results are promising.

B. Experimental results

Figure 6 shows the mean energy consumption on the left,

and the makespan on the right. Graphs are normalized so that

the reference (100) is set to be the performance policy.

Concerning the energy consumption, we observe that for

IS and FT applications, energy consumption is decreased by

about 20% with powersave and up to 25% for our NetSched

algorithm while ondemand consumes the same energy than

performance. For the remaining 5 applications (SP, CG, LU,

BT and EP) powersave has higher energy cost (up to 50%

increase for EP), while our NetSched has always better energy

consumption than performance (except for EP with an increase

of less than 1%) and is very close to ondemand (at maximum

3%). We conclude that from an energy point of view, our

NetSched algorithm is almost always better than any other

policy available. Compared to the ondemand that is also

changing the CPU frequency at runtime, our strategy can save

up to 25% of energy (see FT application).

Besides energy savings, it is important to check if the

duration of the applications are impacted by the policies. For

each application, not surprisingly, the powersave policy has a

negative impact on the makespan: The frequency is lowered,

the CPU takes more time to perform the computation. When

the application is mainly composed of raw computation (like

the EP application), the time is multiplied by 2.6. Comparing

with other policies, we exhibit that our NetSched policy is

always better (for 3 applications, and up to 4% for the LU

application) or on the same level than the performance and

ondemand governor. Only on the IS bench we observe a slight

increase in the makespan (less than 5%).

Altogether, we conclude that on the studied applications, our

algorithm is beneficial in almost all the cases, with a potential

large impact on energy savings (up to 25%), a potential for

better makespan on some cases (by a few %) while at worst

increasing the energy of less than 1% and the makespan of

less than 5%.

Using phase-level DVFS lets NetSched to be in most

case more efficient than performance as it reduces processor

frequency when processor is the less needed (during communi-

cation) while not reducing it when it would impact makespan.

Makespan is then globally stable but mean power consumption

is reduced, so energy-to-solution is reduced.

Compared to powersave, NetSched has smaller time-to-

solution even if mean power is higher: While doing only com-

munications their mean power consumptions are the same, but

NetSched benefits from the fact that doing raw computations at

maximum frequency is more energy-efficient than at minimum

frequency.

Finally the comparison with ondemand has large similarity

with performance as ondemand scarcely manages to reduce

frequency for the applications at hand, as explained earlier.

C. Validation

Previous experiments show that for efficient HPC code (i.e.

without idle time) using network bandwidth for adjusting the

CPU frequency leads to improvements. In a more generic

case, using at the same time load (ondemand-like), network

(NetSched-like), and IO information would certainly lead to an

energy efficiency improvement greater than the one obtained

solely with NetSched. Currently most DVFS techniques take

only load into account. Figure 7 shows energy consumption of

NPB using performance as a reference. Without entering in the

details of all governors tested, we notice that all of them (other

than performance and powersave) are using only the load of

the system to manage dynamically the CPU frequency. Most of



Application FT SP BT EP LU IS CG

Makespan (seconds) 167 355 210 33 239 16 71
Normalized Standard deviation (makespan) 1.89 6.27 3.06 1.37 7.82 4.19 2.21
Normalized Slope deviation (makespan) 0.44 1.16 -0.24 -0.09 1.96 -2.91 0.41

Energy (Kilo Joules ) 170 366 222 33 249 17 75
Normalized Standard deviation (energy) 1.93 6 2.81 1.63 7.33 3.34 1.98
Normalized Slope deviation (energy) 0.91 0.97 -0.15 0.6 2.29 -1.54 0.09

Fig. 5. Mean energy consumption, makespan, standard deviation, slope deviation for performance policy.

���

���

���

����

����

����

����

��	�

��
�

����

� �� � �� �� �� ��

�
�
�
��

�
��

��
��

��
 �
!
�
� 

�
�"

#
�
$
�
%

���

����

����

��	�

����

����

����

����

��	�

����

� �� � �� �� �� ��

�
�"

�
��

��
��

��
 �
!
�
� 

�
�"

#
�
$
�
%

!�� ��"#�$�
!�'��(#)�
��*+($,�-
��-�"#�-

Fig. 6. Mean energy consumption (left) and makespan (right) of DVFS policies. Please note that y-axes do not start at 0.
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Fig. 7. Energy consumption (energy-to-task) for several schedulers that
base their decision only on load. Reference is performance. Classical linux
performance and conservative governors are present.

them behave as performance as they do not detect any idle time

(ondemand and conservative are present). Next HPC governors

will need an holistic view in order to achieve maximal gains.

Current implementation of NetSched uses only two processor

frequencies, but the model can be applied to any number of

frequency levels using the same methodology.

One particularly interesting point is that using the model

designed in Section III-C, the reduction in energy consumption

should be correlated with an increase in execution time as

shown on Figure 8. In real cases, Figure 6 shows that most of
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Fig. 8. Theoretical slowdown of applications as a function of computation
percentage using NetSched. Worst case is reached at about 45% of computa-
tion (using values of Section IV-A).

the time this increase is absent but for one case. The case of

FT is particularly interesting as it shows the best improvement

in energy consumption without performance penalty. This

property is linked to the communication pattern. A significant

slowdown would appear only if the application behavior is

a mix of communication and computation close to the point

NetSched changes the frequency from minimum to maximum

(at about 45% using our environment, seen on Figure 8). This

limit is actually when (α+ β)P1 = (λα+ β)P2. In this case

the slowdown would be P1/P2 (i.e. 1.8 in our experimental

environment, 1.6 taking into account the hysteresis). As seen
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Fig. 9. Communication pattern during a run of FT using performance

governor

in Figure 9, FT does not follow any pattern and is rarely in

this region, hence not suffering much from this slowdown.

Furthermore it must be noted that these results were ob-

tained using 16 slots. A larger scale would increase the

ratio communication over computation. In this case NetSched

would exhibit even more savings, following this ratio.

V. IMPACT ON HPC CENTERS

System administrators of HPC centers are confronted with a

dilemma: On the one hand their users require more and more

computing power (and often obtain budgets for the hardware)

and are not ready to trade any performance loss for energy

concerns; On the other hand they have to handle two problems:

(1) their operational cost is limited by external factors (like

financial stress) where the operational cost includes costs for

the electricity and costs for the staff. (2) their energy provider

is capping their potential instantaneous power to the physical

limits of the power plants or the electrical wires bringing the

energy to the data center.

In this perspective, our proposal has several merits:

• Reducing the energy consumption of HPC applications

leads to lower operational energy costs. Given a budget

limit, this means that more computations can be done

for the same price, especially when the machines are

managed on a pay-per-use perspective.

• It allows to make more computations with the same phys-

ical limit on maximum power usage (power capping), this

gain will depend on the particular application.

• The operating system is adjusting automatically to the

actual applications on the machines, without the loss of

performances from a user point of view, and without any

additional staff commitment.

• It does not involve any change in the HPC application.

• It is fully complementary with other approaches at the

hardware level (taking more energy efficient hardware

and infrastructure) and at the middleware level: Indeed,

acting at the machines operating system level allows our

approach to be transparent from its environment. Also,

every watt saved at the lower level of an infrastructure has

an indirect impact on the other levels as well (including

the cooling infrastructure).

The goal of exascale computing for a 20 MW power

budget is achievable only when all the leverages are used and

combined together. This improvement is not sufficient, but is

one of the pieces needed to achieve it. Many HPC centers

are not prepared for higher power demands (on the energy

provider point of view) and reducing every watt is a necessary

step to be able to handle more and more complex applications

and computing power. We do believe that our strategy is a

stepping stone towards this goal.
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VI. CONCLUSION AND PERSPECTIVES

The main contributions of this article are two-fold. First

it shows that having an holistic view of the system instead

of relying only on load leads to improve energy efficiency

without sacrificing performances for HPC applications. Second

it provides the model and algorithm of a decision process

reducing energy consumption based on network utilization.

Experiments on NAS Parallel Benchmarks show that large

energy savings can be achieved (up to 25%) without impacting

the performances of the applications in most of the cases (even

increasing them on 3 cases, up to 4%) with only one case

where the performance is decreased (less than 5%).

The proposed method is complementary and compatible

with other methods proposed for HPC applications based on

global applications characteristics (using expected slacks in

DAG, synchronizing different tasks,...) since it runs at the

lower level of the operating system.

The validation of our approach exhibited in this article

must be confronted with several other benchmarks and real

applications, in order to pass from an application to a behav-

ioral perspective. The NetSched algorithm is very simple at

the moment while achieving already good results. We want

to check several directions to extend its scope and to limit

the rare situations when slight increases in energy or time

are witnessed. Among those, we will first merge it with the

ondemand governor in order to be able to manage idle time

and network usage. We will also increase the number of

possible frequencies, from the two currently used in our proof

of concept to an arbitrary number. The resulting governor will

be able to manage larger use-cases, not only limited to well-

written HPC applications. The goal of future experiments is to

run large scale applications. Then, other components will be

included, first one being an IO module and a memory module

following the same idea than the network one.

The NetSched algorithm is currently implemented in user-

space and will benefit from being in kernel-space. It would

reduce its footprint by reducing the number of system calls.



Also, constants B1 and B2 are easy to compute but work is

still to be done to evaluate them automatically or to adjust

them on the fly.

Finally merging NetSched with a slack reclamation algo-

rithm is the next step. Depending on the constants B1 and B2

it is possible to model the slowdown and thus to optimize even

more energy consumption outside of the critical path.

An interesting perspective will also be to experiment on

heterogeneous architecture such as big.LITTLE in order to

generalize our concept of running platform. It will done

by considering a parallel between different architectures and

different frequencies in our current model.
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