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ABSTRACT

This paper proposes a new algorithm for crack detection

based on the selection of minimal paths. It takes account of

both photometric and geometric characteristics and requires

few information a priori. It is validated on synthetic and real

images.

Index Terms— Crack detection, minimal path, Dijkstra

algorithm, non destructive control, pavement.

1. INTRODUCTION

Monitoring road surface conditions is an important issue in

many countries. The objective is to detect surface distresses,

like raveling and cracking, in order to plan effective road

maintenance and to afford a better sustainability of the pave-

ment structure. Human visual inspection has been gradually

replaced by automatic data collection with specific imaging

devices [1]. In consequence, processing techniques have been

then developed (for monitoring surface conditions) as a sup-

port of human visual control [2]. In this paper, only image

based techniques are discussed.

The main difficulty for image processing stems from the

fact that cracks are particular image features that only appear

as thin, irregular dark lines buried into textured noise. Within

the scope of automatic crack detection, two kinds of methods

can be discussed: unsupervised and supervised [3, 4]. Using

a learning machine step [5] provides interesting results but,

in this paper, we will work on fully automatic unsupervised

techniques.

The methods based only on the photometric information,

e.g., threshold methods, are difficult to handle in practice ow-

ing to the observed mono modal grey level distribution on

the whole images [2, 6, 7]. Conventional contrast enhance-

ment and/or equalization techniques may improve the visual

rendering of the image but may also enhance local disconti-

nuities within the crack pattern at the same time, that results

in false and incomplete detections. Better performance and

robustness against the image texture can be achieved when

both photometric and geometric characteristics of cracks are

exploited. As an example, mathematical morphological ap-

proaches were adopted to reduce the discontinuities (by us-

ing dilation operators) within the crack pattern and to remove

false detections (by using erosion operators) [8]. But, the au-

tomatic implementation of the latter methods is made diffi-

cult because of the large amount of parameters to tune. Using

filtering methods is a common approach [9] but even when

using multiresolution, it is still difficult to have good per-

formance in some cases, e.g., the French pavement images

[2, 10]. Some methods introduce local constraints like geo-

metric constraint in a Markovian modeling [2], or both prox-

imity and continuity constraints in a tensor voting approach

[11]. However, the constraints at the local scale may counter-

act the result at the larger scale. Some post-processing, e.g.,

the minimum spanning tree in [11], is then required to afford

the detection of the whole crack network. The most recent

approaches introduce a more powerful geometric constraint

than previous methods: minimal paths that are supposed to

be significantly darker inside the crack than outside the crack.

Using minimal paths has both the advantage of introduc-

ing a global photometric constraint and a global geometric

constraint. Estimating minimal paths in of each pixel of the

image is expensive and, in consequence, the existing ap-

proaches have proposed a strategy to reduce this cost. The

first possibility is to select small subsets of pixels, based on

manual selection [12] or automatic selection of points of in-

terest [13], whereas the second one reduces the estimation

of the path by introducing orientation and length constraints

[14]. The first approach is too selective and the points of

interest detected do not cover all the crack whereas the sec-

ond approach is not able to detect cracks with fast variations

of orientation. For all these reasons, in our previous work

[15], we introduced a minimal path approach without any

constraints on the orientation nor the length of the paths.

The scope of the proposed algorithm is to select endpoints

at the local scale and then to select minimal paths at the global

scale. Moreover, the minimal paths are estimated between a

subset of pixels that covers all the crack and that is larger than

the subset of points of interest used in [13]. The result ob-

tained is a skeleton, i.e. a path with one pixel width in the



center of the crack, as illustrated in Fig. 1(d). These results

were encouraging but there are still some imperfections, such

as: false detections that are assimilating as loops. Moreover,

in order to qualify the size of the disorder, it is necessary to de-

tect the width of the crack and this approach can only provide

the skeleton. In this paper, we propose an enhanced version

in order to cope with such deficiencies and to obtain a result

like in Fig. 1(f).

Section 2 presents the proposed minimal path approach.

The performance assessment in Section 3 includes a compar-

ison with four other methods which have been processed on

both synthetic and real images. Section 4 draws the conclu-

sion and the perspectives.

2. MINIMAL PATH SELECTION

The most famous algorithm to calculate minimal path in

graph theory is Dijkstra algorithm [16]. Assuming that the

crack pattern can be detected by darker pixels than the image

background, a path cost function is defined as the sum of grey

levels along the path as follows:

C(s, d) =
1

card(C)

d∑

m=s

I(m), (1)

where s is the source point, d the destination point, m is a

pixel of the path and card(C) is the length of the path. The

crack pattern is assumed to be a series of connected pixels

with an arbitrary chaotic shape and length. The authors in

[14, 15] consider that the minimal path within a crack reaches

a lower cost function than any other path within the image

background. The strategy of using this information differs

between the two papers. The authors of [14] estimate the

minimal path from each pixel of the image with directional

constraint (four orientations) and a fixed distance (30 pixels)

in order to reduce time execution. The main feature of the

approach is to consider that if one orientation gives different

grey level distribution than the other orientations, the pixel is

probably inside the crack. Consequently, authors select pixels

instead of paths, and the connection information given by the

estimated selected paths is lost.

As opposed to the latter, [15] proposes to use the informa-

tion on both cost function and minimal paths throughout the

process. Moreover, to reduce time execution, significant pix-

els are selected as endpoints of the minimal paths. Then, el-

ementary minimal paths are computed at the local level with-

out either direction or length constraints. The histogram of the

costs of each path estimated between these endpoints presents

a bimodal distribution which allows to choose an appropriate

threshold for selecting the best minimal paths, i.e. paths re-

ally inside the crack. The first results show how approach

manages to detect cracks with chaotic path and orientation

changes compared to [14]. However, some defaults have been

highlighted: the crack detection contains some loops, cf. Fig.

1(e), and only the skeleton is detected.

(a) (b)

(c) (d)

(e) (f)

Fig. 1. The five steps from the original image (a) to the result

(f) of the MPS method, wich are detailed in section 2.

Here, we propose an enhanced Minimal Path Selection

(MPS) algorithm illustrated in Fig. 1, which follows the five

following steps:

1. Automatic endpoints selection, Fig. 1(b): the best

endpoints are selected among the local minima within

P × P sub-images (yellow points in the figure) as the

pixels whose the grey level is lower than the threshold

Sa = µa − σa, where µa and σa are the mean and

the standard deviation of the whole image, respectively

(red points in the figure).

2. Minimal path computation, Fig. 1(c): Dijkstra algo-

rithm is used to calculate the minimal paths between the

selected endpoints. In this step, there is no constraint on

the shape of the paths.

3. Selection of minimal paths, Fig. 1(d): Among the

large set of paths selected at step 2, only a small subset

are within (or partially within) a crack. Here, we use

a threshold on the cost function (1) to select the best

candidates. The histogram of the costs tends to present

two modes contrary to the histogram of the original im-

age. Consequently, we use Sc = µc − σc, where µc is

the mean and σc is the standard deviation of the costs,

as a threshold. As shown on Fig 1(d), this step allows

to converge to the skeleton of the crack. In fact, when

an endpoint is outside the crack, the minimal path al-



gorithm used is able to attract a part of the path in-

side the crack while the other part is outside. This be-

havior causes some artifacts: that we call ”spikes” and

”loops”. A spike is a part of path joining a crack to an

outer endpoint. A loop is made of two spikes joining at

the same endpoint.

4. Elimination of artifacts (spikes and loops), Fig. 1(e):

With the help of minimal paths estimated, we can detect

the outer endpoints and select only the correct parts of

the paths, i.e. inside the crack. Local analysis along the

crack skeleton is performed to differentiate extremities,

ei: red point, and sources of ramification, si: green

point. A spike is the path between ei and si and a loop

is the path between two si. The cost function on each

part of the path is studied and it is appropriate to apply

the same threshold as step 3 to remove the outer parts

of the paths.

5. Width detection, Fig. 1(f): The crack skeleton at step

4 allows us to obtain reliable estimation of grey level

distribution of the crack pixels. Local analysis is then

performed along the crack skeleton which consists of

iteratively aggregating the pixels with grey levels below

the threshold Sw = µw + σw where µw is the mean

and σw the standard deviation of the grey levels of the

skeleton pixels.

In practice, the proposed algorithm requires four parame-

ters: the thresholds Sa, Sc and Sw at steps 1, 3 and 5 respec-

tively, and the size of the image subsets for local analysis, P

at step 1. We choose P = 8 because it induces a reason-

able computation time (few minutes). The thresholds Sa, Sw

and Sc are automatically matched to the statistics of the pix-

els from the image background (Sa), those from the skeleton

cracks (Sw), and the statistics of the cost function (Sc).

3. PERFORMANCE ASSESSMENT

Data Set: To evaluate the performance of MPS we tested the

algorithm on a data set of both synthetic and real images from

the aigle-RN project :

http://media.lcpc.fr/ext/pdf/sem/2008 jtr aigle.pdf

The 36 grey level images of size 1920 × 480 include most

of the pavement types under various lightning configura-

tions (with and without controlled lights) and different types

of cracks (longitudinal, transverse, alligatoring) with some

ramifications at some places.

We generate a new synthetic image which is an improve-

ment compared to [2] where the synthesis of both the crack

and the background (i.e., the road surface) is based on a bi-

modal histogram. Here to be more realistic, an artificial crack

pattern is introduced within a real image. The pixels within

the crack pattern are randomly generated and the associated

grey level distribution obeys the pixel distribution of the real

cracks that have been semi-automatically segmented. The

width along the crack pattern has been fixed to either one or

two pixels. Fig. 2 shows the resulting synthetic image with

some ramifications and directional variations.

Pseudo Ground Truth: The assessment of the algorithms

can be established with a pseudo ground truth (PGT). In [2],

the PGT consists of manually selecting the pixels which were

believed to belong to the crack pattern, before merging the

individual results from four different operators. We update

this PGT by using semi-automatic detection: for each crack

piece, two endpoints are manually selected and the crack pat-

tern is estimated with Dijkstra path-finding algorithm [16].

Criterion: The quantitative assessment consists on com-

puting the true positive (TP) (good detection), false positive

(FP) (false alarm), and false negative (FN) and calculating

the DICE index that is the harmonic mean of precision and

sensitivity, which ranges between 0 (worst score) and 1 (best

score):

DICE =
2TP

2TP + FP + FN
(2)

Methods: As opposed to [13], the performance of the pro-

posed minimal path selection method (MPS) has been com-

pared to three other methods: a modeling approach (labelled

(M) for Markovian modelling [2]), and two other minimal

path approaches, namely the Free Form Anisotropy (FFA)

by Nguyen [14], and the previous version of the proposed

method, labelled (MPS0) [15].

Results and discussion: For both data sets, Markov-based

method provides discontinuous crack segmentation owing to

the sensitivity to the image texture, see Fig. 2(c) and 4(a).

FFA method detects a continuous crack path, but the strategy

with directional and length constraints clearly reveals the dif-

ficulty to detect the chaotic crack pattern and the fine structure

of the crack, e.g., see the change directions and the width on

the right of the image Fig. 2(d) and 4(b). MPS0 [13] provides

a fair segmentation of the skeleton and the full-length crack,

Fig. 2(e) and 4(c). Both loop and spike artifacts have been

reduced. Moreover, we can appreciate the width refinement

in Fig. 3(f) and 4(d) that is quite precise. In Table 1, among

the three methods, Markovian shows the lowest performance,

FFA method provides a small improvement in the DICE rate.

MPS broadly outperforms the performance of the other meth-

ods in any case.

Method M2 FFA MPS0 MPS

DICE 0.40 0.46 0.55 0.83

Table 1. Results – DICE values for different methods applied

to the synthetic image, see Fig. 2.

At this stage of the development, the drawback of the lat-

ter technique is mostly entailed by the computational time en-

countered by the use of the conventional Dijkstra algorithm.

It can be found that the computer time increases a lot be-

yond P = 8, for step 2, and in consequence we choose this



(a) (b)

(c)

M
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FFA
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Fig. 2. Results with a synthetic image (a) with ground truth

presented in (b). (Green: True Positive, red: False Positive,

blue: False Negative).

value. With this parameter, under Matlab programming, the

MPS algorithm requires about 12 minutes for the processing

of 1MPixels on a 2.7 GHz laptop computer with 8 GB RAM,

presented in Fig. 4.

The general quantitative assessment is presented on Fig.

3 for the whole data set of field data. The MPS method gives

the highest DICE rate compared to the three other methods;

for example, it is twice the score of the markovian method.

4. CONCLUSION

This paper has presented a brief review of existing approaches

for the automatic crack detection on pavement images. We

introduce an improved version of an algorithm based on min-

imal path selection by reducing loop and spike artifacts in the

crack detection and by adding the width estimation. Pixel-

based assessment of the method has shown that the image

segmentation is now more reliable than the compared meth-

ods. The method allows a very fine characterization of cracks

which could be used for further monitoring refinement in the

future. In consequence, MPS can detect cracks with variable

widths along the skeleton of any form. The future work will

focus firstly on testing this method on larger pavement im-

ages within the framework of Tomorrow’s Road Infrastruc-

ture Monitoring & Management (TRIMM) European project

Fig. 3. Mean DICE values versus computational cost (in min-

utes) obtained by the three methods presented in section 3 and

applied on the 36 real images, as an example Fig.4.

(http://trimm.fehrl.org/). Secondly, it is also ex-

pected to test the MPS approach on 3D data, which are col-

lected with the latest generation of imaging systems, e.g., the

LCMS device (www.pavemetrics.com) or the RoadScout de-

vice (www.radarportal.com.au). Thirdly, it is planned to

improve the computational efficiency of the second step of

MPS (section 2.2) by either GPU programming or using some

newer versions of minimal path computation algorithms, e.g.,

[17].

(a)

M

(b)

FFA

(c)

MPS0

(d)

MPS

Fig. 4. Results with a real image (Green: True Positive, red:

False Positive, blue: False Negative)
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