
HAL Id: hal-01387807
https://hal.science/hal-01387807

Submitted on 26 Oct 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Defining and Using Collaboration Patterns for Software
Process Development

Tan Thuan Vo, Bernard Coulette, Hanh Nhi Tran, Redouane Lbath

To cite this version:
Tan Thuan Vo, Bernard Coulette, Hanh Nhi Tran, Redouane Lbath. Defining and Using Collabo-
ration Patterns for Software Process Development. International Workshop on Cooperative Model
Driven Development (CMDD 2015) within the 3rd International Conference on Model-Driven Engi-
neering and Software Development (MODELSWARD 2015), Feb 2015, Angers, France. pp.557-564,
�10.5220/0005338705570564�. �hal-01387807�

https://hal.science/hal-01387807
https://hal.archives-ouvertes.fr

Open Archive TOULOUSE Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers and
makes it freely available over the web where possible.

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/
Eprints ID : 15216

The contribution was presented at CMDD 2015 :
http://www.modelsward.org/CMDD.aspx?y=2015

To cite this version : Vo, Tan Thuan and Coulette, Bernard and Tran, Hanh Nhi
and Lbath, Redouane Defining and Using Collaboration Patterns for Software
Process Development. (2015) In: International Workshop on Cooperative Model
Driven Development (CMDD 2015) Co-located with MODELSWARD 2015, 9
February 2015 - 9 February 2015 (Angers, France).

Any correspondence concerning this service should be sent to the repository

administrator: staff-oatao@listes-diff.inp-toulouse.fr

Defining and using Collaboration Patterns for Software Process

Development

Tan Thuan Vo, Bernard Coulette, Hanh Nhi Tran and Redouane Lbath
Institut de Recherche en Informatique de Toulouse, Toulouse, France

vtthuan89@gmail.com, {bernard.coulette, hanh-nhi.tran, redouane.lbath}@irit.fr

Keywords: Model Driven Engineering, Software Development Process, Collaboration, Collaboration Pattern.

Abstract: Collaboration patterns are an efficient way to define, reuse and enact collaborative software development

processes. We propose an approach to define and apply collaboration patterns at modelling, instantiation or

execution time. Our patterns, inspired from workflow patterns, are described in CMSPEM, a Process

Modelling Language developed in our team. In this paper, we briefly describe the CMSPEM metamodel and

focus our presentation on two collaboration patterns: Duplicate in Sequence with Multiple Actors, Duplicate

in Parallel with Multiple Actors and Merge. The approach is illustrated by a case study concerning the

collaborative process “Review a deliverable”.

1 INTRODUCTION

Nowadays, software systems are more and more

complex, and development processes are usually

collaborative. Indeed, these processes are enacted by

several actors, possibly on several sites, that work

together on collaborative tasks with shared artifacts to

achieve a common goal. To facilitate project

management and improve the coherence during

software process execution, collaboration should be

identified, modeled and assisted. Once defined and

approved, generic collaboration situations can be

reused for further projects.
An efficient way to put reuse in action is to define

and apply collaboration patterns. Some research
works can be found in the literature about
collaboration patterns (Verginadis et al., 2010;
Herrmann T., et al. 2003; Erickson, 2000), but very
limited work has been done about their automatic
application during software development.

In this paper, we describe a set of generic
collaboration software patterns and propose a way to
apply them automatically. This work is a continuation
of our previous works on process patterns (Tran et al.,
2011) and on collaborative software processes (Kedji
et al., 2011, 2013). In the first work we proposed a
language to represent process patterns and a
mechanism to apply patterns at modeling time. In the
second work, we defined the meta-model CMSPEM
as an extension of the OMG standard SPEM for
describing collaborative software processes. The
work described in this paper uses CMSPEM to

represent collaboration patterns which are inspired
from workflow patterns (Van der Aalst, website), and
proposes mechanisms to apply collaborative patterns
not only at modeling but also at instantiation or
enactment time.

This paper is structured as follows. Section 2
presents the essential concepts of collaborative
software process modeling. Section 3 presents a way
to represent collaboration patterns. Section 4 shows
how collaboration patterns can be applied at
modeling, instantiation or enactment time. Section 5
presents a case study and a brief overview of the
supporting tool prototype. Section 6 concludes this
paper and proposes some perspectives.

2 MODELLING

COLLABORATIVE PROCESS

Several studies can be found in the literature about

notions of process modeling and collaboration. In this

section, we put the emphasis on Software process

modeling languages, the notion of collaboration in

process enactment, the CMSPEM meta-model that

was elaborated in our team, and workflow patterns

which are reference solutions mainly used in business

process modeling.

2.1 Software Process Modeling

A software process is defined as a set of activities for

developing, administrating and maintaining a

software product (Feiler et al, 1992). A software

process model describes process elements and

relationships among them. ¨Process elements can be

classified in two categories: primary elements are

activities, roles, work products; secondary elements

provide additional information on organizational and

qualitative aspects of a process.

Figure 1a shows the primary process elements and

basic relations among them.

(1a) Conceptual model of a process

(1b) The two views of SPEM 2.0

Figure 1: Key concepts of SPEM 2.0.

Among existing software process modeling

languages, we decided to put the focus on the OMG

standard SPEM 2.0 which is probably the richest

modeling language for software process designers, in

the sense where it favors reusability and is open for

execution expression. Main primary concepts of

SPEM 2.0 are Role, Task and WorkProduct which

may have two views: definition and use (Figure 1b).

In the definition view, we will find process elements

(Method Content) which are intended to be reused in

several processes; in the use view (Process), we will

find instances of real processes. For example, a

TaskDefinition describes a reusable task whereas a

TaskUse represents an instance of TaskDefinition in a

given process.

2.2 Collaboration in Software Process
Modeling

A process is said to be collaborative when it contains

at least one collaborative activity, each collaborative

activity being performed by two or more human

actors targeting the same goal. A collaborative

activity is defined as a coordinated and synchronous

task whose goal is to build and maintain a shared

design of a problem (Roschell et al., 1994).

Collaboration has been largely studied in the

literature as shows the review provided by

(Verginadis et al., 2010). In (Potrock et al., 2009), the

authors propose a classification of collaboration

approaches based on prescriptive and descriptive

formalisms.

CMSPEM meta-model is a prescriptive Process

Modeling Language that was defined by our team in

the context of the GALAXY ANR project (Kedji et

al., 2014) and whose objective was to propose a

framework for supporting collaborative model driven

developments. CMSPEM is an extension of SPEM

which allows defining collaborative software

processes.

CMSPEM supports both dynamic and static

aspects of a process, allowing to enact process

models. In the following of this section, we briefly

present the structural and behavioral views of

CMSPEM.

2.2.1 CMSPEM: Structural View

From a structural view, we added in CMSPEM a new

package, called CollaborationStructure, that

introduces the following concepts – Actor,

ActorSpecificWork and ActorSpecificArtifact – and a

set of related relationships. An Actor is a human

participant who plays one or several roles in a

process. An ActorSpecificWork represents the

contribution of an Actor into a given TaskUse. An

ActorSpecificArtifact represents a copy of a

WorkProductUse for a given Actor.

Figure 2 below shows an extract of the CMSPEM

metamodel concerning the ActorSpecificWork

concept which represents the work performed by a

given actor in a collaborative activity. As shown in

the figure, a TaskAssignment relates an

ActorSpecificWork to an Actor; an ArtifactUse relates

an ActorSpecificArtifact to an ActorSpecificWork; an

ActorSpecificWorkRelationship relates two

ActorSpecificWork. This latter can be used to

represent a precedence order between two

ActorSpecificWork.

2.2.2 CMSPEM: Behavioral View

The behavior of a process must also be modeled to

rigorously specify the process enactment (that may be

also called execution).

Figure 2: Concepts and relationships related to

ActorSpecificWork: extract of CMSPEM metamodel.

In CMSPEM, we have chosen the state-machine

formalism to express this behavior. A state-machine

describes the states of a given process element

(activity or product), and transitions between them.

We distinguish two types of transition: manual,

automatic. A manual transition – called

OperatorEvent – is triggered by an actor. An

automatic transition is either a

ProcessStateChangeEvent or a ConditionalEvent.

Figure 3 shows the kernel of the behavioral part of

CMSPEM. Each enactable process element is

associated a lifecycle represented by a state-machine

that is composed of states and transitions.

Figure 3: Behavioral part of CMSPEM meta-model.

Figure 4 illustrates, in a concrete syntax

associated to CMSPEM, a simple example of

“Design” activity with “Requirements” as input, and

“Design Model” as output. This activity is a

collaborative one (represented by a double rectangle)

in the usual case where several designers work

together to produce the “Design model”.

Figure 4: Collaborative “Design” activity expressed in a

concrete syntax conform to CMSPEM.

Design activity’s behavior is described as the state

machine shown in Figure 5. The states through which

the activity passes are Activatable, Started, Ongoing

and Finished. These states are reached by means of

«OperateurEvent» transitions launch, work or

finish triggered by a designer. From Finished state,

depending on the current state of DesignModel, a

«ConditionnalEvent» transition determines whether

the next state will be the terminal state (corresponding

to DesignModel is validated) or the Invalidated state

which means that the design is not validated and thus

should be reworked.

Figure 5: Behaviour of the “Design” activity.

Figure 6: Synchronization workflow pattern.

2.3 Workflow Patterns

Workflow patterns are reusable generic process

fragments which are of high interest for describing

collaborative processes. Thus, we studied the

workflow patterns proposed in (Van der Aalst,

website) which are reference patterns. It is a set of 42

generic patterns grouped into 8 parts: Basic Control

Flow Patterns, Multiple Instance Patterns, State-

based Patterns, Cancellation and Force Completion

Patterns, Iteration Patterns, Termination Patterns,

Trigger Patterns. Figure 6 illustrates the

Synchonization pattern which is a basic control flow

pattern.

3 AN APPROACH TO

COLLABORATION PATTERNS

Collaboration process patterns are development

strategies that can be applied either at modeling time

or later at instantiation or enactment time. As any

pattern, a collaboration pattern can be defined by a

recurrent problem, a solution and an application

context. We decided to derive a set of collaboration

patterns from workflow patterns that have proven to

be efficient in process modeling. Indeed, most of

collaboration strategies can be described by means of

control flows such as sequence, parallelism, merging,

concatenation, etc.

We have defined a set of collaboration patterns

that can be found in (Vo Tan T., 2013). In the

following of this section, we illustrate two of them

that we consider as representative of collaboration

strategies: DuplicateInSequenceWithMultipleActors,

DuplicateInSequenceWithMultipleActorsAndMerge.

They are described in a graphical syntax

associated to CMSPEM. For each pattern, we briefly

present below the recurring problem, the application

context, and a solution described as an activity

diagram.

Pattern “Duplicate in Sequence with

Multiple Actors” (DSMA)

Problem and Context: This pattern represents a

collaboration in sequence among actors playing the

same role in a given activity. The recurring problem

is the one where human resource is limited in a given

enterprise, but constraint time is not too strong. So in

this context, it is possible to apply a sequence-based

pattern.

Solution: The same activity (cloned) is done by

different actors playing a given role. They work in

sequence on a product elaborated by another actor.

The resulting product becomes the input for the next

actor. Figure 7 shows this pattern as an activity

diagram in CMSPEM for two abstract actors called

Actor1 and Actor2. It contains abstract cloned

activities having one input product and one output

product. Each activity is enacted in sequence by

different actors playing the same role. For example,

this pattern could be used for enacting activities such

as Design a software, Review a document, Test a

program, etc.

Figure 7: Pattern Duplicate in Sequence with Multiple

Actors (DSMA): activity diagram in CMSPEM.

Pattern “Duplicate In Parallel with Multiple
Actors and Merge” (DPMAM)

Problem and Context: This pattern represents a

collaborative situation where actors work on the same

cloned activity with the same role. The problem

occurs whenever outputs are specific of each actor. In

other words, each actor has his own point of view on

the activity. This pattern is suitable when several

actors are available at the same time, meaning that

activities can be enacted in parallel. One of the actors

Activity-clone 1

Actor 1

Actor 2

Role 1

Activity-clone 2

Product 1

Product 2

Product 3

is in charge of merging the output products into a

unique one.

Solution: Cloned activities are enacted in parallel

with the same product (cloned) as input. Their

termination is synchronized and then followed by a

merging activity performed by one of the actors.

Figure 8 shows this pattern with two actors working

on the same cloned activity, with abstract names.

Figure 8 shows this pattern in CMSPEM for two

actors.

Figure 8: Pattern Duplicate in Parallel with Multiple Actors

and Merge (DPMAM): activity diagram in CMSPEM.

This pattern could be used for enacting activities such

as: Test a software component, Review a deliverable,

Evaluate a submission, etc.

This pattern has a specific variant where the

Merge activity is replaced by a Concatenate one.

Indeed, the concatenation can be seen as a particular

case of merging. This variant may be used whenever

Product1 and Product2 are disjoint.

4 APPLICATION OF

COLLABORATION PATTERNS

Whenever a collaborative activity is identified, one

can search for patterns to apply. These patterns are

supposed to be stored into a repository. One can note

that pattern application can be done at modeling time.

At modeling time, the application of a

collaboration pattern consists in identifying a

collaborative activity, choosing a collaboration

pattern without instantiating it, and refining the

activity diagram by unfolding the activity. Unfolding

is based on the structural solution (activity diagram)

of the pattern which serves as a template. The result

of the application of patterns is a refined process

model. The choice of the best collaboration pattern to

apply is an important issue but it is out of the scope

of this paper. To apply such patterns at modeling

time, one must know in advance that an activity will

be enacted as a collaborative one. It is not always the

case since this information may be known later.

At instantiation time, the goal is to take into

consideration the real resources that will be used in a

given project, that is to say products in input and

output, actors playing a given role on a given activity,

etc. For each collaborative activity, one must choose

a collaboration pattern to apply, thus identify and

instantiate the actors (real persons) that will

collaborate, define the products to clone, and unfold

the activity as explained above.

At enacting time, the goal is to enact (execute) the

process which can be seen as its root activity.

Execution of the process must respect the behavioral

description of the process (as explained in section

2.1.2), and in particular the lifecycles that are

assigned to process elements. Actors participate in the

execution of some manual tasks. It is possible and

even necessary to differ the application of

collaboration patterns until this enacting time. Indeed,

some decisions depend on dynamic information

(availability of actors, time constraints, etc.). The

principle of the pattern application is the same as for

the two previous cases.

In the next section, we describe the case study that

we performed and the tool prototype developed as a

proof of concept.

5 REALIZATION AND CASE

STUDY

5.1 Case Study

We have applied our approach to the process “Review
a Deliverable” performed during the ANR Galaxy
project (see Figure 9). Though it is a quite simple
process, it is a real one and it is representative of
collaborative processes.

This process is made of 3 activities: Organize the
review, Review the deliverable, Submit the reviewed
deliverable. The second one, Review, is collaborative,
and thus done by several reviewers. The reviewing
process is organized by a coordinator who specifies
requirements to be satisfied by the reviewers.

Let us suppose that the collaborative activity
Review a deliverable is done by 3 reviewers: Peter,
Paul and Tracy. In the following, we present 2
strategies of collaboration corresponding to the

application of the 2 collaboration patterns presented
in section 3: DSMA, DPMAM. We address the
modeling phase, and only consider here the structural
solution proposed by collaboration patterns.

Figure 9: Process model “Review a deliverable” of the case

study.

Application of Pattern DSMA (Duplicate in
Sequence with Multiple Actors)

This pattern is applicable in the case where the 3

reviewers can work in sequence one after the other,

and whenever there is enough time to achieve the

reviewing activity (Figure 10). It was the case during

the Galaxy project.

The order in which the reviewers must work is

important because the last one finishes the reviewing

work. We suppose here that the same input

deliverable is in entry of the 3 cloned activities, which

means that a reviewer does not update the deliverable.

Peter produces comments on the deliverable. Paul

adds his own comments to those of Peter. Tracy

produces the reviewed deliverable by analyzing

Paul’s comments.

Application of Pattern DPMAM (Duplicate in

Parallel with Multiple Actors and Merge)

This pattern is applicable in the case where the

reviewers are available at the same time and thus can

work in parallel. Figure 11 shows the activity diagram

of the pattern’s solution. The same deliverable (clone)

is in input of each review (cloned activity). Each

reviewer – that is Peter, Paul or Tracy – produces his

proper review by updating the deliverable. Peter, who

plays the reviewer role, as the two others, is also in

charge of the merging activity, whose goal is to merge

the results of the 3 reviews included his own.

A variant of this pattern is the following one: each

reviewer produces a document containing his

comments without modifying the deliverable. In this

case, the merger (Peter) would have to analyze the 3

documents produced by the reviewers and to update

the deliverable accordingly.

Figure 10: Activity diagram resulting of DSMA

application.

Figure 11: Activity diagram resulting from DPMAM

application.

5.2 Supporting Tool Prototype

We have developed a tool prototype for supporting

collaborative processes enactment. It is written in

Java JEE. To represent a process, we first developed

a textual Process Modeling Language (PML). A

process model – described with this PML – is then

represented as a tree.

So far, we have implemented the Duplicate in

Sequence with Multiple Actors pattern (DSMA)

described above. Other patterns are being

implemented. To illustrate the tool, we have chosen a

very simple software process composed of 2 classical

activities: Design and Coding. The process model is

shown (tree representation) on Figure 12.

Figure 12: Example of collaborative simple process.

Enactment of this process is based on the state

machines associated to its process elements,

including the Design activity. At any time of the

process enactment, a set of actions is proposed to the

current actor depending on the current state.

In the following, we consider the Design activity

which may be seen as a collaborative one. Let us

suppose that this activity is performed in an iterative

way by a set of 3 designers. Figures 13 shows the

actions proposed to each designer at the beginning of

the process; one can notice that only the launch action

is executable.

Figure 13: Interface of the tool: manual action triggering.

To perform the collaborative Design activity, one

can choose one collaboration pattern in an existing

repository, for instance the DSMA pattern. As shown

in Figure 14, three Design activities are performed in

sequence in conformity with DSMA’s solution. The

first one, Design 1, done by Bob, takes Requirements

as input and produces DesignModelBob as output.

This latter product becomes the entry of the second

activity, done by Marc, and so one.

It is obvious that this simple process is not a

significant case study that would demonstrate the

scalability of our approach. However we do not really

have any scalability issue with our approach because

the number of collaborative activities is always

limited in a given process. So the size of the process

model is not a significant criterion for the proof of

concept.

Figure 14: Process model resulting from DSMA pattern

application.

6 CONCLUSION

Our work mainly addresses collaborative software

process modeling and enactment. For that sake, we

decided to define and apply collaboration patterns

inspired from workflow patterns whose efficiency has

been largely proven.

In this paper, we have proposed an approach to

firstly (1) model collaboration patterns in CMSPEM,

and secondly (2) apply them during software

development. Our proposition has been validated (as

a proof of concept) on a simple but realistic case

study. A prototype supporting the approach has been

also developed. The tool is operational, but other

collaboration patterns should be implemented in the

prototype.
As main perspectives of this research work, we

are considering several topics at short and longer
terms. First we intend to enrich the base of
collaboration patterns, and to manage them thanks to

a repository. It will be also necessary to improve the
tool prototype, and to apply our approach to larger
collaborative software development processes.

REFERENCES

Beck, K., Cunnimgham, W.,. "Using pattern languages for

object-oriented programs". s.l.: Proceedings of

OOPSLA87, 1987.

Benali, K., Derniame J. C. Proceedings of the European

Workshop on Software Process Technology. 1992,

Norway.

Buschmann F., Meunier R., Rohnert. 1996. Pattern-

Oriented Software Architecture - A System of Patterns.

John Wiley.

Coad P., North D. et Mayfield M. 1995. "Object Models –

Strategies, Patterns and Application". Yourdon Press

Computing Series.

Diaw S., Lbath R., Coulette B. 2011. Specification and

Implementation of SPEM4MDE, a metamodel for

MDE software processes. In SEKE, Miami - USA

Knowledge Systems Institute , p. 646-653.

Erikson. T. Lingua Francas for Design: Sacred Places and

Pattern Languages. NewYork : ACM Press, 2000.

Feiler P., Humphrey W. Software Process Development

and Enactment: Concepts and Definitions, 1992.

Finkelstein, A., Kramer, J., Nuseibeh, B. Software Process

Modelling and Technology, 1994.

Fowler, M. 1997. Analysis Patterns, Reusable Object

Models. Addison-Wesley, 1997.

Fuggetta A., Woft A. Software Process.1996. John Wiley

& Sons.

Gamma E., Helm R., Johnson R., et al. 1994. Design

Patterns: Elements of Reusable Object-Oriented

Software. Addison Wesley.

Herrmann T., et al. Concepts for Usable Patterns of

Groupware Applications. 2003.

Kedji K.A., Coulette B., Nassar M., Lbath R., Tran H. N.,

Ton That M. T. 2011 Collaborative Processes in the

Real World: Embracing their Essential Nature (regular

paper)". In International Symposium on Model Driven

Engineering: Software & Data Integration. Process

Based Approaches and Tools - colocated with ECMFA

2011, Birmingham.

Kedji K. A., Ton That M. T., Coulette B. Lbath R., Tran H.

N., Nassar M. A tool-supported approach for process

modeling: application to collaborative processes. In

18th Asia Pacific Software Engineering Conference

(APSEC), Hochiming City, 2011.

Kedji, K. A., Lbath R., Coulette B., NASSAR, M., Barrese

L., Racaru F. 2014. Supporting collaborative

development using process models: a Tooled

Integration-focused Approach. Journal of Software :

Evolution and Process (JSEP). February 2014, Wiley

online library. DOI: 10.1002/smr.1640.

Mehra A., Grundy J., and Hosking J. 2005. A generic

approach to supporting diagram differencing and

merging for collaborative design. ACM.

Poltrock, S., Handel, M. 2009. Modeling collaborative

behavior: Foundations for collaboration technologies.

In 42nd Hawaii International Conference in System

Sciences.

Tran H. N., Coulette B., Tran D. T., Vu M. H. Automatic

Reuse of Process Patterns in Process Modeling. In

ACM Symposium on Applied Computing (SAC 2011),

Taiwan 2011.

Van der Aalst W. Workflow Patterns. http://

workflowpatterns.com/

Verginadis Y., Papageorgio N., Apostolou D., Mentzas G.

2010. A review of patterns in collaborative

work. GROUP 2010: 283-292.

Vo Tan T. 2013. Application de patrons de collaboration

lors de la mise en œuvre de procédés collaboratifs.

Master thesis, Toulouse, June, 2013.

