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a b s t r a c t

Support Vector Machines (SVM) have been in the forefront of machine learning research for many years

now. They have very nice theoretical properties and have proven to be efficient in many real life appli-

cations but the design of SVM training algorithms often gives rise to challenging optimization issues.

We propose here to review the basics of Support Vector Machine learning from a multi-agent optimiza-

tion perspective. Multi-agents systems break down complex optimization problems into elementary

‘‘oracle’’ tasks and perform a collaborative solving process resulting in a self-organized solution of the

complex problems. We show how the SVM training problem can also be ‘‘tackled’’ from this point of view

and provide several perspectives for binary classification, hyperparameters selection, multiclass learning

as well as unsupervised learning. This conceptual work is illustrated through simple examples in order to

convey the ideas and understand the behavior of agent cooperation. The proposed models provide simple

formulations of complex learning tasks that are sometimes very difficult to solve with classical optimi-

zation strategies. The ideas that are discussed open up perspectives for the design of new distributed

cooperative learning systems.

1. Introduction

SVMs are known as powerful mathematical tools for classifica-

tion as well as regression tasks (Cristianini & Shawe-Taylor, 2001;

Scholkopf & Smola, 2001). They have proven good capabilities for

the classification of complex and large datasets. Many successful

implementations have been developed for various types of

applications: medical diagnosis (Fung & Mangasarian, 2006; Lee,

Mangasarian, & Wolberg, 1999), manufacturing (Balakrishna,

Raman, Santosa, & Trafalis, 2008; Gilbert, Raman, Trafalis,

Obeidat, & Aguirre-Cruz, 2009), meteorology (Trafalis, Adrianto, &

Richman, 2007), hand digits recognition (Decoste & Schölkopf,

2002), fraud detection (Chan & Stolfo, 1998), and many others.

The underlying concepts are based on empirical risk theory

(Vapnik, 1998) and the available algorithms make use of convex

optimization techniques (Boyd & Vandenberghe, 2004). A strong

focus is now put on the ever increasing size of datasets and new

algorithms based on first order stochastic optimization have now

emerged (Bottou, 1997; Bousquet & Bottou, 2007).

Training speed has therefore been greatly reduced by combin-

ing ‘‘cheap’’ first order optimization techniques with stochastic

frameworks that process only samples of data at a time. The

increasing dimensions of datasets and the emergence of online

applications where data is only available dynamically bring new

and great challenges to the machine learning and optimization

communities. Additionally, most learning algorithms require the

selection of hyperparameters. These parameters are usually

problem dependent and control for example the trade-off between

training accuracy and generalization performance (ability to

generalize prediction to unseen data) or some mapping function

(or usually its corresponding kernel function) that will transform

the problem into a linear problem. Selecting the optimal parame-

ters is known as model selection. It is often critical in real life appli-

cations and no matter how effective and fast the training

procedure is, if the hyperparameters are not tuned in a proper

way, the resulting model will not generalize well to new data

(Hastie, Rosset, Tibshirani, & Zhu, 2003/04). Model selection is usu-

ally done through the so-called k-fold Cross Validation (CV) where

the data is split in k subsets and k training procedures are

performed with kÿ 1 subsets as training data and the remaining

subset as validation data (swapping the training and validation

subsets for each training procedure) (Hastie, Tibshirani, &

Friedman, 2009). The k-fold cross validation is combined with a
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grid search method to estimate the optimal hyperparameters. The

CV is statistically valid but has two major drawbacks: (1) if

datasets are large, it can become extremely time expensive and

in practice unrealistic, (2) the grid search will only go over a very

limited and discrete set of values of the hyperparameters while

the optimal parameters could lie in between grid points.

To overcome these drawbacks, some techniques making use of

bi-level SVM formulations have been investigated. The idea is to

perform descent techniques with respect to the hyperparameters

while trying to find the optimal separating hyperplane (Couellan

& Wang, 2014; Du, Peng, & Terlaky, 2009; Kunapuli, Bennett, Hu,

& Pang, 2008). These techniques address successfully the problem

of auto-selecting the trade-off (training accuracy/generalization

performance) parameter but do not extend to the problem of tun-

ing the kernel function parameter that arises in the case of nonlin-

ear learning systems.

Alternatively, to design learning systems that are able to adjust

dynamically to online data as well as being able to self-adjust the

problem hyperparameters, we investigate a novel approach. We

propose to look at the SVM model and its parameter selection as

a whole and perform optimization on a system involving various

natures of variables. These variables are interconnected in a calcu-

lus network so that it can be considered as a complex system. To

solve these types of naturally complex tasks, one way is to make

use of an Adaptive Multi-Agent System (AMAS) where autonomous

agents are each given part of the optimization problem and coop-

eration between them takes place to solve the overall problem.

A multi-agent system (MAS) (Weiss, 1999) is a system com-

posed of several autonomous software entities (the agents), inter-

acting among each others (usually by sending information and

request messages) and with their environment (by observing and

modifying it). The autonomy of an agent is the fundamental charac-

teristic that differentiates it from, for example, the computer sci-

ence concept of object. While an object is a passive entity

encapsulating some data and functions, waiting to be solicited,

an agent is capable of reacting to its environment and displaying

pro-activity (activity originating from its own decision). From this

comparison it should be clear that the concept of agent is, like the

concept of object, the building brick of a paradigm which can be

used to model a complex reality. And indeed, agents have been

used in a great variety of fields, a fact which can contribute to

explain the difficulty to produce a unified definition of the concept.

While it is not true for all MAS, some interesting properties can

be achieved when taking advantage of the autonomy of the agents.

This autonomy, coupled with an adequate behavior of the agents,

can lead to systems able to adjust, organize, react to changes, etc.

without the need for an external authority to guide them. These

properties are gathered under the term self-⁄ capabilities (Di

Marzo Serugendo et al., 2011) (self-tuning, self-organizing, self-

healing, self-evolving. . .). Not all MAS necessarily present all of

these self-⁄ capabilities but, as a result of building a system from

autonomous and locally situated agents, many MAS will exhibit

them to some degree. Consequently, MAS are often relevant for

dynamically taking into account changes in their environment.

For example, a MAS in charge of regulating the traffic of packets

in a computer network could be able to react efficiently to the dis-

appearance of some of the relay nodes.

MAS have been applied to a great variety of fields: social simu-

lation, biological modeling, systems control, robotics, etc. and

agent-oriented modeling can be seen as a programming paradigm

in general, facilitating the representation of a problem.

A particular approach to MAS relying strongly on self-⁄ proper-

ties is the AMAS technology and underlying theory (Georgé,

Edmonds, & Glize, 2004). A designer following this approach

focuses on giving the agent a local view of its environment, means

to detect problematic situations and guidelines to act in a cooper-

ative way, meaning that the agents will try to achieve their goals

while respecting and helping the other agents around them as best

as they can. The fact that the agents do not follow a global directive

towards the solving of the problem but collectively build this solv-

ing, produces an emergent problem solving process that explores the

search space of the problem in original ways.

Modeling SVMs as AMAS has several advantages over more

classical mathematical strategies. It avoids running unnecessary

training procedures for non-optimal regions of the hyperparame-

ters space. The selected optimal hyperparameters values are more

accurate as they are not constrained on a grid but can take freely

any value of the space. Finally, the use of AMAS opens the door

to parallelization, decomposition and distributed computation.

The work presented here can be seen as preliminary work to illus-

trate the possible perspectives that further research along this area

could give. Current research in SVM has generated a great deal of

work on model selection for binary classification and single kernel

techniques with possible but sometimes expensive (complexity

wise) extensions to multi-class and multiple kernel variants.

Clearly the use of AMAS gives more flexible and more natural ways

to extend models to more complicated contexts.

The article is organized as follows. Section 2 recalls the basic

mathematics of classification with SVMs, Section 3 describes the

principles of AMAS. In Section 4 we propose models to perform

training tasks with AMAS and in Section 5 we incorporate the

model selection concepts into our models. Finally, in Section 6

we provide several numerical examples on simple illustrative

problems. Section 7 concludes the paper.

2. SVM classification

2.1. Linear classification

Consider a set of training vectors xi 2 R
n; i ¼ 1; . . . ; Lf g and its

corresponding set of labels yi 2 fÿ1;1g; i ¼ 1; . . . ; Lf g, where L is

the number of training points and n is the number of attributes

of each training point.

The soft margin SVM training problem can be expressed as fol-

lows (see for example Cristianini & Shawe-Taylor (2001), Scholkopf

& Smola (2001) for further details on the construction of the

problem):

min
w;b;n

1

2
kwk2 þ C

X

L

i¼1

ni

subject to yiðw
>xi þ bÞ þ ni P 1; i ¼ 1; . . . ; L;

ni P 0; i ¼ 1; . . . ; L;

ð1Þ

where ni is a slack variable associated to a penalty term in the objec-

tive with magnitude controlled by C, a problem specific parameter.

The vector w is the normal vector to the separating hyperplane

(w>xþ b ¼ 0) and b is its relative position to the origin.

Problem (1) maximizes the margin 2
kwk

between the two separat-

ing hyperplanes w>xþ b ¼ 1 and w>xþ b ¼ ÿ1. The use of slack

variables ni penalizes data points that would fall on the wrong side

of the hyperplanes.

In the constraints, observe that ni Pmax 0;1ÿ yiðw
>xi þ bÞf g,

therefore at optimality we have the equality:

ni ¼ max 0;1ÿ yiðw
>xi þ bÞ

� 	

:

Indeed, the ith point is either correctly classified (ni ¼ 0) or

penalized (ni ¼ 1ÿ yiðw
>xi þ bÞ). Consequently, we can reformu-

late Problem (1) as an unconstrained optimization problem:

min
w;b

1

2
kwk2 þ C

X

L

i¼1

max 0;1ÿ yiðw
>xi þ bÞ

� 	

:



The term max 0;1ÿ yiðw
>xi þ bÞf g is known in statistics as the

‘‘hinge loss’’. Other types of losses could be used and generally,

we can write the problem as:

min
w;b

1

2
kwk2 þ C

X

L

i¼1

‘ðyi;w
>xi þ bÞ

where ‘ is the loss function.

2.2. Nonlinear classification

In real life situations, the data is usually not linearly separable

and the idea is to map the data from the input space into a higher

dimensional space F by setting:

w ¼
X

L

i¼1

aiuðxiÞ;

where ai 2 R, i ¼ 1; . . . ; L andu is the map from the input space to F:

u : R
n ! R

n0 and n0 � n:

By replacing w in Problem (1) formulated in the F space, we

obtain the following ‘‘kernelized’’ primal problem:

min
a;b;n

1

2
aT �Kaþ C

X

L

i¼1

ni

subject to yi
X

L

j¼1

aj
�kðxi; xjÞ þ b

 !

þ ni P 1; i ¼ 1; . . . ; L;

ni P 0; i ¼ 1; . . . ; L;

ð2Þ

where a 2 RL and K is the kernel matrix defined as follows:

�kij ¼ uðxiÞ
TuðxjÞ ¼ �kðxi; xjÞ

with �k being a kernel function, commonly chosen as a polynomial, a

sigmoid function or a Radial Basis Function (RBF). In this work, the

Gaussian RBF function is chosen and the elements of matrix �K will

be calculated as follows:

�kij ¼ �kðxi; xjÞ ¼ e
ÿ

kxiÿxjk
2

2r

� �

; i; j ¼ 1; . . . ; L;with r > 0:

2.3. Model selection and k-fold cross-validation

Commonly, the selection of C (for linear classifier) or ðC;rÞ (for
nonlinear classifier) is done using a statistical technique known as

k-fold cross-validation (CV). The idea is to partition the data into k

equal size parts (folds), and perform training with kÿ 1 folds and

compute a testing error on the remaining fold (called the validation

fold). The process is performed k times so as to choose each time a

new validation fold. The error found each time we select a valida-

tion fold is averaged over the k-th runs to give the so-called k-fold

CV error (see Fig. 1).

To select the optimal C parameter (or ðC;rÞ), one usually deci-

des on a grid search for C (for example C taking the values

0:01;0:1;1;10;100;1000;10000; : . . .) and computes the CV error

for each value on the grid (or on a 2-dimensional grid search for

ðC;rÞ). The value of C that gives the best CV error will be selected.

If NG is the number of values on the grid, one will have to solve

k� NG training problems. If the size of the training problem is

large, this may require a huge amount of time.

3. Adaptive Multi-agent System (AMAS)

In Jorquera et al. (2013), the development of new tools for solv-

ing complex continuous optimization problems is investigated.1 In

this research work, a new multi-agent based algorithm for distrib-

uted continuous problem solving is proposed. The main idea of the

algorithm is to represent an optimization problem as a graph, where

each node of the graph is handled by an agent with a local decision

process. Each agent has the responsibility to correctly propagate the

information to its upper or lower neighbors in order to ensure the

convergence of the problem towards an optimum solution. As an

illustration, consider the following general composite optimization

problem:

min
x2Rn

f p � f pÿ1 � . . . � f 1ðxÞ

subject to hm � hmÿ1 � . . . � h1ðxÞP 0
ð3Þ

where

f 1 : R
n ! R

n1 ; f 2 : R
n1 ! R

n2 ; . . . ; f p : R
npÿ1 ! R

np ;

h1 : R
n ! R

l1 ; h2 : R
l1 ! R

l2 ; . . . ; hm : R
lmÿ1 ! R

lm :

Note that most complex optimization problems can be cast into

this very general form. The multi-agent graph associated to Prob-

lem (3) is shown in Fig. 2. In this graph, there are 5 types of agents:

Fig. 1. K-fold cross-validation.

1 Research project funded by the ANR (French National Research Agency) under the

name of Integrated Design for Complex Systems (ID4CS), see also ID4CS (2013).



(1) the decision variable x, (2) intermediate variables ci and zj
(i ¼ 1; . . . ;m and j ¼ 1; . . . ; p), (3) the model agents calculating the

various function values, (4) the constraint agent ensuring that the

constraint is satisfied and finally (5) the objective agent that will

force the system tominimize the objective. Even though the general

composite formulation is rather complex in Problem (3) and its

solving through classical optimization techniques would probably

require complex chain rule derivation for gradient based descent,

the AMAS system can be expressed in a very simple manner. Each

agent is only executing one elementary task: one function evalua-

tion, one objective or one constraint check. The complex composite

structure is broken down naturally among the agents.

Thus the MAS is the representation of the problem to be solved,

with the relationships between agents reflecting the natural struc-

ture of the problem. It is worth underlining the fact that this trans-

formation (i.e. the agentification) is completely automatic, as it is

fully derived from the expression of the problem. As a result, and

contrary to most of the classical optimization techniques, no expert

knowledge is required, neither in MAS nor on the optimization

problem that is to be solved.

Algorithm 1 is a quick overview of the behavior of each agent

type (model, variable, output, constraint and objective agents), which

are further described in the following sub-sections. This is a syn-

thetic description as it is not the focus of this article, a comprehen-

sive and detailed description can be found in Jorquera et al. (2013).

3.1. Information exchange

The solving process —constituted by the collective behavior of

the agents— basically relies on two types of messages: inform

and request messages exchanged between connected agents and

propagated as required.

Exchange of inform messages can be seen as a simulation mode

where the main concern of the agents is to ensure consistency

between the values of the design variables and the produced out-

puts. To this end, the agentswill propagate Informmessages through

the system that carry new values v. The exact semantic of this infor-

mation slightly changes depending on which agents are involved:

� If the message is sent from a value agent (variable or output) to

a model or criterion agent, it indicates to the receiving agent

that the sending agent has changed its value.

� If the message is sent from a model agent to an output agent, it

indicates to the receiving agent that the model has calculated its

new value (or values) because of changes on its inputs.

Exchange of change-value requests sent by the criteria agents,

resulting in cooperatively decided adjustments done by the design

variables, constitutes the optimization mode. These adjustments

lead to new values computed by the models, resulting in the satis-

faction or dissatisfaction of the criteria agents. Basically, during

solving, the criteria agents try to improve their local goals. That

is, the constraint agents try to keep their constraint satisfied, while

the objective agents try to improve their objective. To this end,

they send Request messages to the agents controlling their inputs,

asking them to change value by sending them a new target value v,

which is more an indication of a direction than a strict target.

Depending of the agent types, this information is either for-

warded after processing or actually treated:

� If the receiving agent is not a variable agent, the agent has to

propagate these requests toward the variable agents in the most

adequate way (making changes depending on the models,

choosing the relevant inputs, solving conflicts, etc.).

� If the receiving agent is a variable agent, it has to take into

account the request and try to satisfy it as best as it can, by man-

aging conflicts and making the changes with specific dynamics

so as to ensure efficient convergence of the solving process.

3.2. Model agent

A model agent takes charge of a model of the problem. It inter-

acts with the agents handling its inputs (which can be variable or

output agents) and the output agents handling its outputs. Its indi-

vidual goal is to maintain the consistency between its inputs and

its outputs. To this end, when it receives a message from one of

its inputs informing it of a value change, a model agent recalculates

the output values of its model and informs its output agents of their

new value. On the other part, when a model agent receives a mes-

sage from one of its output agents it translates and transmits the

request to its inputs. To find the input values corresponding to a

specific desired output value, the model agent uses an external

optimizer. This optimizer is provided by the engineer based on

expert domain-dependent knowledge regarding the structure of

the model itself. It is important to underline that the optimizer is

used only to solve the local problem of the model agent, and is

not used to solve the global problem.

3.3. Variable agent

This agent represents a design variable of the problem. Its indi-

vidual goal is to find a value which is the best equilibrium among



all the requests it can receive (frommodels and criteria for which it

is an input). The agents using the variable as input can request a

value change to the input variable agent. When changing value,

the agent informs all connected agents of its new value. To find

its new value, the variable agent uses an exploration strategy based

on Adaptive Value Trackers (AVT) (Lemouzy, Camps, & Glize, 2011).

The AVT can be seen as an adaptation of dichotomous search for

dynamic values. The main idea is to change value according to a

search direction which is currently requested and directions previ-

ously chosen. As long as the value varies in the same direction, the

magnitude of the variation is increased otherwise it is reduced.

This capability to take into account a changing solution allows

the variable agent to continuously search for an unknown dynamic

target value. This is also a requirement for the system to be able to

adapt to changes made during the solving process.

3.4. Output agent

The output agent takes charge of an output of a model. Output

agent and variable agents have similar roles, except output agents

cannot directly change their value. Instead they send a request to

the model agent they depend on. In this regard, the output agent

acts as a filter for the model agent it depends on, selecting among

the different requests the ones it then transmits. The output agent

is distinct from the variable agent in the way that it can be involved

in cycles. A cycle is a situation of interdependent models (that is,

models which depend of each other to calculate their outputs).

3.5. Constraint agent

The constraint agent has the responsibility for handling a con-

straint of the problem. When receiving a message from one of its

inputs, the agent recalculates its constraint and checks its satisfac-

tion. If the constraint is not satisfied, the agent sends change value

requests to its inputs. It should be noted that, to estimate the input

values required to satisfy the constraint, this agent employs the

same technique as the model agent (i.e. an external optimizer).

3.6. Objective agent

The objective agent is in charge of an objective of the problem.

This agent sends requests to its inputs aiming to improve its objec-

tive, and recalculates the objective when receiving value changed

messages from its inputs. This agent uses an external optimizer

to estimate input values which would improve the objective, as

the model and constraint agents.

3.7. Collective solving and non cooperative situations

The complete collective solving relies on several local algo-

rithms and techniques the agents use to choose between conflict-

ing situations and can not be detailed here (a detailed description

can be found in Jorquera et al. (2013)). But a good understanding

can be achieved by taking into account the following points.

� Local solving. During solving, the criteria agents try to improve

their local goals and the constraint agents try to keep their con-

straint satisfied. To this end, they send request messages to the

agents controlling their inputs, asking them to change value.

The other agents have to propagate these requests toward the

variable agents in the most adequate way. An important point

is that each agent only has a partial knowledge and local strat-

egy. No agent is in charge of the optimization of the system as a

whole, or even of a subset of the other agents. Contrary to clas-

sical approaches, the solving of the problem is not directed by a

predefined methodology, but by the structure of the problem

itself. The emerging global strategy is thus unique and adapted

to the problem.

� Criticality heuristic. In order to guide the decision of the

agents, the multi-agent algorithm introduces several heuristics

to be used in order to converge toward a global optimum. The

first of these heuristics is called the criticality. The criticality

of an agent represents its distance to its local goal, and is trans-

mitted to the neighbors in order to help them select the ade-

quate action. When faced with contradictory requests, an

agent will solve the conflict by favoring the most critical

neighbor.

� Non Cooperative Situations. When represented as graphs,

complex optimization problems often exhibit specific topologi-

cal properties which impede the correct propagation of infor-

mation between agents. These configurations patterns have

been formalized as Non-Cooperative Situations (NCS). A part

of the agents decision process consists in identifying such pos-

sible NCS, and to apply a specific resolution procedure in order

to maintain a correct information propagation in the system.

The different NCSs are summarized in Table 1 and the different

mechanisms used by the agents to solve them are summarized

in Table 2.

Table 1

Non cooperative situations summary.

NCS Description Solving mechanisms

Conflicting requests An agent receives several incompatible requests Criticality

Cooperative trajectories An agent receives seemingly incompatible requests, which can each be satisfied Participation

Cycle solving Several agents are involved in a diverging cycle Signature

Hidden dependencies An agent sends seemingly independent requests to dependent agents Signature, influence

Asynchronous messages Agents receive messages in untimely manner Influence

Table 2

Non cooperative situations solving mechanisms.

Mechanism Description Properties

Criticality An aggregated measure to indicate the state of the agent Comparable between different agents

Signature A unique signature composed of the unique id of the sender/origin of the message and a

(local) timestamp

Comparable, allows a partial ordering of the messages by

sender/origin

Influence An indicator of the impact value of the receiver on the origin Comparable by origin

Participation An indicator of the relative impact of the receiver on the origin relative to the rest of the

system

Comparable between different senders



4. AMAS-based SVM training

Let us first consider the problem of finding the optimal ðw; bÞ

defining the optimal separating hyperplane (the so-called training

phase) in linear classification as discussed in Section 2 and the

optimal ða; bÞ for the nonlinear case. We propose simple multi-

agent schemes that will achieve training by performing coopera-

tion between margin optimization and loss minimization (training

classification error minimization).

4.1. Linear classifier

Consider the following general unconstrained version of Prob-

lem (1):

min
w2Rn ;b2R

mðwÞ þ CpSðw; bÞ; ð4Þ

where mðwÞ is a term that takes into account the margin and

pSðw; bÞ is a penalization term for the constraints

yiðw
>xi þ bÞ þ ni P 1 and ni P 0 8i 2 S;

S being the training set.

In Fig. 3, we propose an AMAS counterpart of this problem. One

agent will perform margin calculation while another agent will

compute the classification error (loss). A third agent combines both

values as a weighted sum that is later minimized as a single

objective.

As mentioned above, classic choices are:

mðwÞ ¼
1

2
kwk22

pSðw; bÞ ¼
X

i2S

max 0;1ÿ yiðw
>xi þ bÞ

ÿ �

:

In Fig. 3, cooperation will take place at the expense of a model

selection procedure to estimate the optimal C parameter for a

given problem. Therefore one could also consider a multiobjective

variant AMAS system where the tradeoff between margin and loss

is naturally achieved through agent cooperation (see Fig. 4 where

the variable agent ‘‘r + C⁄loss’’ is replaced by two variables agents

‘‘r’’ and ‘‘loss’’, both connected to their own objective agent

‘‘minimize’’. Both minimizations are therefore carried out via agent

collaboration in a multi-objective setup).

To increase the generalization capabilities of the classifier, the

optimal trade-off between margin and loss should be tuned on

data that was not used for training. This is why k-fold cross-valida-

tion procedures are usually applied to select C with the drawback

of being expensive. In Section 5, we propose new AMAS

frameworks to overcome such difficulties and find the optimal

hyperplane while performing model selection simultaneously.

An important challenge in SVM learning is the increasing sizes

of datasets and learning algorithms are required to remain tracta-

ble in this context. One way to deal with huge datasets is to per-

form stochastic optimization in the sense that not all training

Fig. 2. Multi-agent graph for Problem (3).

Fig. 3. Multi-agent graph for the linear classifier: ðw; b; objÞ ¼ mLðS;CÞ.

Fig. 4. Multiobjective multi-agent graph for the linear classifier.



datapoints are fed to the system at one time but multiple passes

through randomly picked samples are performed instead. There-

fore, in the context of large datasets, one could consider replacing

the single model pSðw; bÞ by several models pkðw; bÞ ¼ max 0;1ð

ÿykðw
>xk þ bÞÞ, where k is randomly chosen in S each time the

AMAS system requires its evaluation.

4.2. Nonlinear classifier

Consider now the general unconstrained version of Problem (2):

min
a2RL ;b2R

mS;rðaÞ þ CpS;rða; bÞ; ð5Þ

where the classic choices are

mS;rðaÞ ¼
1

2
a> �KðrÞa

pS;rða; bÞ ¼
X

i2S

max 0;1ÿ yiðð
�KðrÞaÞi þ bÞ

ÿ �ÿ �

:

As for the linear case, an AMAS counterpart of this problem can

be constructed. It has the exact same structure as in Fig. 3 where w

is now replaced by a 2 RL with L the number of data points.

The margin and loss agents are now dependent on the choice of

kernel functions we decide to use for the specific learning task. If

general multi-purposes kernels such as Gaussian Radial Basis

Functions are used, the agents will depend on the kernel parameter

r as described in Section 2.

4.3. Unsupervised learning

Consider now a set of L unlabeled training vectors

xi 2 R
n; i ¼ 1; . . . ; Lf g and the problem of assigning one of two

classes to each training vector so as to maximize the margin

between the resulting classes. This problem can be formulated as:

min
y2fÿ1;1gL

s:t:
X

L

i¼1

yi

�

�

�

�

�

�

�

�

�

�

6 Lÿ1

min
ðw;b;nÞ2Rn�R�RL

1
2
kwk2þC

X

L

i¼1

ni

s:t: yiðw
>xiþbÞþniP1 i¼1; . . . ;L;

niP0; i¼1; . . . ;L:

0

B

B

B

B

@

1

C

C

C

C

A

ð6Þ

Problem (6) expresses that the labels are now unknown and

should be selected so as to maximize the margin and minimize

the mis-classification penalties. The constraint
PL

i¼1yi

�

�

�

�

�

� 6 Lÿ 1

ensures that the points are separated into two classes and avoids

the trivial solution that all points lie in only one class. This problem

can also be expressed as:

min
y2fÿ1;1gL

X

L

i¼1

yi

�

�

�

�

�

�

�

�

�

�

6Lÿ1
min

ðw;b;nÞ2Rn�R�RL

1
2
kwk2þC

X

L

i¼1

max 0;1ÿyiðw
>xiþbÞf g

 !

ð7Þ

A multi-agent model of the above problem is proposed in Fig. 5.

Some variable agents have the tasks to assign each data point to a

class while the other model agents are dealing with the search for

ðw; bÞ for the given class assignment. The cooperation between

agents is attempting to reach an equilibrium where each point is

assigned to a class ÿ1 or 1 and where the classes are separated

with the largest possible margin. The optimization problems (6)

and (7) are usually hard to solve with classical optimization tech-

niques as they combine two levels of optimization with mixed

integer variables and nonlinear objectives.

5. Model selection

In the previous section, SVM training with AMAS requires prior

knowledge of optimal C or optimal ðC;rÞ for nonlinear classifiers.
As already discussed, acquiring such knowledge via k-fold cross

validation is time expensive, more so if datasets are large.

For this reason, in this section, we investigate AMAS system

able to self-adjust the hyperparameters while training. Doing so

requires that the AMAS system seek the optimal hyperplane on

training data while adjusting the hyperparameters on validation

data (test data, unused for training). As before, we proceed step

by step and investigate first self-adaptive linear classifier and later

extend the idea to nonlinear classifiers.

5.1. Penalty parameter selection for linear classifier

Let us denote ðw; b; objÞ ¼ mLðS;CÞ the multi-agent graph dis-

played in Fig. 3. Given the training set S and the parameter C, it

gives the characteristics ðw; bÞ of the classifier and the correspond-

ing value of the objective function. Following the classical setup of

a k-fold cross-validation procedure for model selection, we define

K training folds �FK ; j ¼ 1; . . . ;K and their corresponding testing

fold Fk (we have �Fk ¼ fx1; . . . ; xLg n Fk). In the linear case C must

be selected so as to minimize the mean of the testing errors on

the sets Fk obtained after training on the sets �Fk.

The proposed AMAS for such penalty parameter selection is

summarized on the graph in Fig. 6, where EðFk;w; bÞ gives the test-

ing error on the set Fk when calculated using the parameters ðw; bÞ.

The resulting AMAS is a complex cooperative system that

involves training agents providing an optimal hyperplane for each

training set and a given C and other agents that are at the same

time attempting to minimize the test classification error on the

validation sets. Therefore, when a choice for a C value is made,

some agents give feedback on its capability for training and others

give feedback on its capability for testing. The system will

auto-adjust to eventually reach a stable state that is the best com-

promise between training and testing error. Rather than seeking

this compromise sequentially via grid search procedure, we expect

that the system will follow an optimization path avoiding ineffec-

tive (non-optimal) regions of the feasible space and therefore sav-

ing a great amount of computing time. Our expectation will be

later confirmed in the numerical examples (see Section 6).

5.2. Penalty and kernel parameters selection for nonlinear classifier

Let us denote ðw; b; objÞ ¼ mNLð�F;C;rÞ the multi-agent graph

discussed in Section 4.2. Given the training set �F, the penaltyFig. 5. Multi-agent graph for unsupervised classification.



Fig. 6. Multi-agent graph for the penalty parameter selection for linear classifier.

Fig. 7. Multi-agent graph for the penalty and kernel parameters selection for nonlinear classifier.



parameter C and the kernel parameter r, it gives the characteristics

ða; bÞ of the nonlinear classifier.

Following a similar idea as before and using the same notation

for the k training folds �Fk; k ¼ 1; . . . ;K and their corresponding

testing folds Fk, we propose an AMAS system for automatic selec-

tion of C and r. The classification error computed with ða; bÞ is

now denoted ~EðFk;a; bÞ. The idea is summarized on the graph in

Fig. 7. In this system, during the optimization process, each train-

ing agent and each validation agent give feedback on the choice

on both C and r. Cooperation between agents will take place

dynamically in order to select the best C and the best kernel func-

tion to achieve a compromise between training classification error

and validation error. Again and even more so in the nonlinear

context, the system will seek optimal region of the ðC;rÞ space

avoiding non-optimal regions where computing time would be

wasted. In Section 6, we illustrate this behavior.

5.3. Extension to nonlinear multi-class SVM learning

Consider now a set of training vectors xi 2 R
n; i ¼ 1; . . . ; Lf g

and its corresponding set of labels yi 2 f1; . . . ;Mg; i ¼ 1; . . . ; Lf g,

where L is again the number of training points, n the

number of attributes of each training point and M the number

of classes.

Among the most common strategies and mathematical formu-

lations for the multi-class problem, we can refer to the following

two methods:

� One-against-all: M binary SVMmodels are constructed by taking

the class m on one side and the other classes together as the

opposite class. The resulting decision function will be of the

form y ¼ argmax
m¼1;...;M

w>
mxþ bm where ðwm; bmÞ defines the optimal

hyperplane computed by the mth binary model.

Fig. 8. Multi-agent graph for multiclass training on �Fk and validation on Fk : m̂LðFk;CÞ where C ¼ ðC1;C2; . . . ;CPÞ.

Fig. 9. Multi-agent graph for the penalty parameters selection for multiclass training.



� One-against-one: P ¼ MðMÿ1Þ
2

binary SVM models are constructed

by taking each pair of classes in f1 . . . ;Mg. The resulting deci-

sion function is obtained by a majority vote meaning that a

point gets one vote for class m if the p-th pair of classes

(p ¼ 1; . . . ; P) assigns x to class m. The class with the highest

total vote numbers will finally be assigned to x.

In these two methods, one can clearly see that model selection

is a critical issue if the number of classes M is high. In the One-

against-all technique, M training procedures have to be performed,

each one of them involving the selection of Cm; m ¼ 1; . . . ;M. In

the One-against-one technique, P training procedures are required

and therefore P model selection are to be executed. In both cases,

classic k-fold cross-validation procedures would be extremely

expensive. The number of binary classification tasks is greater for

the One-against-one method, however, each task is easier to exe-

cute than for the One-against-all method. This setup (more agents

but less and simpler agent decisions) is usually preferred in AMAS

as it provides a greater breakdown of complexity. We first propose

an AMAS model to train multi-class data in Fig. 8. The P agents will

execute each a binary classification on the fold �Fk and return the

corresponding hyperplanes. Another model agent will perform

the majority vote to calculate the test error for a final variable

agent ek. In Fig. 9, we show how this agent-based training proce-

dure can be embedded in a higher level agent graph that will per-

form model selection on k folds and return the cross-validation

error via the cv variable agent.

6. Some numerical examples

6.1. Experimental setup

We provide several examples to illustrate the behavior of the

AMAS when performing SVM training as described in Section 4

as well as model selection as explained in Section 5. We also show

some simple applications to multi-class training and unsupervised

learning. All agents models used in the examples are implemented

using the ID4CS multi-agent system environment (ID4CS, 2013).

6.2. Example 1: linear classifier

This first simple example illustrates the calculation of the sepa-

ration hyperplane between two classes using agents. We randomly

and uniformly generate samples (xi 2 R
2 for i ¼ 1; . . . ;126) in the

box ½ÿ1;1�2 and define their corresponding labels yi 2 fÿ1;þ1g as:

Fig. 10. Profiles for linear classification.



yi ¼
ÿ1 if x1 þ x2 6 0

þ1 otherwise:

�

ð8Þ

Wealso randomlygenerateN (N ¼ 31) test data points uniformly

in the box ½ÿ1;1�2 and the desired test labels are defined as in (8).

The AMAS has the task to learn the data on one fold and return

the optimal hyperplane defined by ðw; bÞ. There is no model selec-

tion to perform. The C parameter is here taken as C ¼ 1. We eval-

uate the performance of the training by checking the

classification error on the test data. We record the test error profile

as well as margin and loss profiles during the learning process. The

results are given in Fig. 10. In Fig. 11, we plot the hyperplane ðw; bÞ

found by the AMAS and check whether both training and testing

data are well separated. The AMAS was able to achieve zero train-

ing and testing error, with complete separation of the two classes

of points for the training set but also for the testing set.

6.3. Example 2: penalty and kernel parameters selection for nonlinear

classifier

As a second example, we now simulate the nonlinear AMAS

model for parameters selection (see Fig. 7). We use the same

synthetic example as for Example 1 but perturb randomly 10% of

the points by assigning them to the opposite class to ensure non

linear separability. The dataset is randomly divided into 5 folds.

The objective is to achieve agent cooperation in order to find the

optimal ðC;rÞ-pair of hyperparameters over the 5 folds.

We report the results on Fig. 12. Starting from 100%, the

cross-validation error rapidly drops down to a small value after

approximately 25 model agent evaluations. The left figure in

Fig. 12 shows the plane ðC;rÞ. It is interesting to see which values

of ðC;rÞ were evaluated by the agents during the cooperation

process. If one had to run a classic cross-validation procedure

combined with a grid search, the complete space would have to

be explored. Here, the AMAS cooperation process is only going over

specific regions of the space where better compromises between

training error and generalization error can be found. Specifically,

a first region around the starting values of ðC;rÞ ¼ ð1;0:01Þ was

explored and rapidly the system ‘‘jumped’’ into another region

(central region of the figure) where a better optimum was found.

Attempts were made to seek other regions but cooperation was

clearly bringing back the values into the central region. Rather than

a blind grid search, the agents are able to focus only on optimal

regions of the space, leading to savings in computing time.

Fig. 11. Separation of data with linear classifier.

Fig. 12. Separation of data with nonlinear classifier.



6.4. Example 3: penalty parameters selection for multi-class learning

In Example 3, we focus on multi-class learning. We randomly

and uniformly generate samples (xi 2 R
2 for i ¼ 1; . . . ;100) in the

box ½ÿ1;1�2 and define their corresponding labels yi 2 fÿ1;þ1g as:

yi ¼

1 if x1 P 0 and x1 þ x2 P 0;

2 if x1 ÿ x2 P 0 and x1 þ x2 < 0;

3 if x1 ÿ x2 < 0 and x1 < 0:

8

>

<

>

:

ð9Þ

Again, we divide the data into 5 folds and model the AMAS pre-

sented in Fig. 9 to automatically select the P hyperparameters

C1;C2; . . . ;CP corresponding to the P one-against-one binary agent

classification tasks. In this example P ¼ 3. We present the results

in Figs. 13 and 14. On the top graph in Fig. 13, one can see the

profile of the cross-validation error over the 5 folds. The learning

process clearly takes place to eventually reach a CV-error of about

3%. On the bottom graph in Fig. 13, we plot in the ðC1;C2; C3Þ-space,

the values of the hyperparameters that were evaluated by the var-

iable agents and draw their convex-hull to emphasize the complete

volume that was explored by the AMAS: it only focuses on a small

part ðC1;C2;C3Þ 2 f1; . . . ;1500g3 of the complete ðC1;C2;C3Þ-cube

which was set to f1; . . . ;105g
3
. Again, when compared to a classical

cross-validation procedure (combined with a grid search) that

would require exploring the complete cube values, the AMAS sys-

tem is able to limit the search space to a smaller sub-volume. Less

computational effort is spent as non optimal regions are not

explored and better accuracies should be achieved since

ðC1;C2;C3Þ can take any continuous values in the cube instead of

discrete grid values for the classic grid search. To check whether

the ðC1;C2;C3Þ-values found by the AMAS are appropriate for

learning the 3 given classes, we show in Fig. 14 the resulting sep-

aration for the training data as well as for some testing set. The

achieved separation is correct.

6.5. Example 4: unsupervised classification

In this last example, we propose to illustrate the AMAS for

unsupervised classification (see Fig. 5). For this purpose, we draw

randomly and uniformly 10 samples xi 2 R
2 in the box ½ÿ1;1�2.

The objective is to assign each sample into one of the two classes

ÿ1 and 1 such that the separation margin between the two classes

is maximum. The resulting class assignment and separation

achieved by the AMAS model is shown in Fig. 15. In this figure, 6

subplots are given. Each one of them represents a distinct situation

during the learning process. Subplot (1) is the starting situation

with no separation and random class assignment. Subplot (6) gives

the final situation after learning. The AMAS has found that the
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Fig. 13. Penalty parameters selection for multi-class learning.
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maximum margin separation into two classes is achieved when

only one data point belongs to one class (the datapoint around

the coordinates (ÿ0.9, 0.2)) and the other points in the other class.

The subplots (2)–(5) show the intermediate situations and the

rotation and displacement of the hyperplane during the process

of agent collaboration.

7. Discussions and conclusions

We have discussed and proposed a new class of learning

methods making use of multi-agent optimization. Focusing on

Support Vector Machine concepts, we have proposed and illus-

trated how multi-agents systems can perform linear or nonlinear
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classification, model selection as well as multi-class or unsuper-

vised learning.

Using AMAS, our objective is not only to distribute computa-

tional effort. We aim at distributing the complexity of the model

selection issue across agents. As explained in the introduction,

multi-level optimization formulations that are alternatives for

such problems are difficult to solve and actually do not address

the kernel parameter selection (the task is too complex for classical

optimization methods). AMAS provide a natural way to implement

multi-level optimization. This explains why we are not providing

comparison with other efficient techniques such as parallel SMO

(Cao et al., 2006) or other large scale stochastic subgradient

methods (Shalev-Shwartz, Singer, Srebro, & Cotter, 2011). These

methods do not provide numerical methodologies to perform auto-

matic parameter selection. They require cross-validation or other

parameter estimation techniques (see for example Guyon (2009),

Guyon, Saffari, Dror, & Cawley (2010) for reviews of practical

parameter selection techniques).

The AMAS cooperation strategy is building knowledge of the

problem during the solving process. Complex problems are distrib-

uted across agents and each agent gains local knowledge of the

problem with respect to the task it is given. Therefore, the global

strategy of the AMAS could be compared as a ‘‘complex’’ descent

technique towards the optimal solution. One could legitimately

raise the question of comparison with other approaches based on

heuristics such as Genetic Algorithms (GA) or Swarm intelligence.

In fact, these strategies would explore solutions without building

any knowledge of the problem and could be seen as intelligent ran-

dom search rather than ‘‘descent’’ technique. Such heuristics

require themselves problem specific parameter tuning which

makes them poor candidate for parameter selection issues. In the

case of SVM, C and r selection would be replaced by other problem

specific parameter selection (ex: population size in the case of GA)

of the same order of complexity. For these reasons, we believe that

AMAS based models are better suited for model selection issues.

In machine learning, complexity arises with the dimension of

problems, for example, with large datasets or with high number

of classes. Learning problems usually possess a decomposable

structure and AMAS gives a natural way to distribute the learning

task among agents in order to breakdown the complexity. There

are other important issues of learning that could be addressed in

such a way. Multiple kernel learning (MKL) is for example one of

the challenging issue that AMAS could nicely model avoiding the

inherent complexity of classical optimization models (Gönen &

Alpaydın, 2011).

In MKL, one makes use of convex combinations of kernels

kðxi; xjÞ ¼
X

Q

q¼1

bqkqðxi; xjÞ

with
PQ

q¼1bq ¼ 1 and bq P 0 for all q ¼ 1; . . . ;Q to find the

maximum margin hyperplane. Therefore, the problem is to find

the best convex combination coefficients bq, in order to compute

the separating hyperplane in the Reproducing Kernel Hilbert Space

(i.e. the mapped space as mentioned above) associated to the result-

ing composite kernel function. This problem is a multi-level optimi-

zation that is usually difficult to solve. By setting variable agents to

decide on the values of the coefficients bq P 0 and adding specific

constraint agents, the agent graph for training can naturally be

defined. It is also simple to include heterogeneous kernel functions

(ex: a mixture of gaussian kernels, polynomials or other

specific-purposed kernels) and let the agents decide on the best

combination as well as the best kernel parameters (flatness for

gaussian kernels, degree for polynomials,. . .). Such setup could be

efficient on very complex learning tasks as it is known that MKL

can outperform single kernel techniques.

Clearly, AMAS provides a natural formalism to express learning

problems. Further research and implementations should confirm

that this framework could be an alternative solution for building

learning systems that require high level of adaptability especially

for complex learning tasks where distribution of problem solving

among agents is necessary. Furthermore, high degree of

parallelization is possible since most of the time all elementary

agent decisions are independent and asynchronized. AMAS are

therefore suited to high dimensional problems arising in many

applications such as in genomic data analysis in biology or in

webdata analysis from the internet environment. Even though

we did not detail the idea of online learning with data being fed

to the system one at a time, it is also important to mention that

all concepts that were discussed can be extended to such situations

as long as the AMAS system implementation allows online gener-

ation and integration of new agents.
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