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Abstract: Not only SQL (NoSQL) databases are becoming increasingly popular and have some interesting strengths 

such as scalability and flexibility. In this paper, we investigate on the use of NoSQL systems for 

implementing OLAP (On-Line Analytical Processing) systems. More precisely, we are interested in 

instantiating OLAP systems (from the conceptual level to the logical level) and instantiating an aggregation 

lattice (optimization). We define a set of rules to map star schemas into two NoSQL models: column-

oriented and document-oriented. The experimental part is carried out using the reference benchmark TPC. 

Our experiments show that our rules can effectively instantiate such systems (star schema and lattice). We 

also analyze differences between the two NoSQL systems considered. In our experiments, HBase (column-

oriented) happens to be faster than MongoDB (document-oriented) in terms of loading time. 

1 INTRODUCTION 

Nowadays, analysis data volumes are reaching 

critical sizes (Jacobs, 2009) challenging traditional 

data warehousing approaches. Current implemented 

solutions are mainly based on relational databases 

(using R-OLAP approaches) that are no longer 

adapted to these data volumes (Stonebraker, 2012), 

(Cuzzocrea et al., 2013), (Dehdouh et al., 2014). 

With the rise of large Web platforms (e.g. Google, 

Facebook, Twitter, Amazon, etc.) solutions for “Big 

Data” management have been developed. These are 

based on decentralized approaches managing large 

data amounts and have contributed to developing 

“Not only SQL” (NoSQL) data management 

systems (Stonebraker, 2012). NoSQL solutions 

allow us to consider new approaches for data 

warehousing, especially from the multidimensional 

data management point of view. This is the scope of 

this paper. 

In this paper, we investigate the use of NoSQL 

models for decision support systems. Until now (and 

to our knowledge), there are no mapping rules that 

transform a multi-dimensional conceptual model 

into NoSQL logical models. Existing research 

instantiate OLAP systems in NoSQL through R-

OLAP systems; i.e., using an intermediate relational 

logical model. In this paper, we define a set of rules 

to translate automatically and directly a conceptual 

multidimensional model into NoSQL logical 

models. We consider two NoSQL logical models: 

one column-oriented and one document-oriented. 

For each model, we define mapping rules translating 

from the conceptual level to the logical one. In 

Figure 1, we position our approach based on 

abstraction levels of information systems. The 

conceptual level consists in describing the data in a 

generic way regardless of information technologies 

whereas the logical level consists in using a specific 

technique for implementing the conceptual level. 

 

Figure 1: Translations of a conceptual multidimensional 

model into logical models. 

Our motivation is multiple. Implementing OLAP 

systems using NoSQL systems is a relatively new 
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alternative. It is justified by advantages of these 

systems such as flexibility and scalability. The 

increasing research in this direction demands for 

formalization, common models and empirical 

evaluation of different NoSQL systems. In this 

scope, this work contributes to investigate two 

logical models and their respective mapping rules. 

We also investigate data loading issues including 

pre-computing data aggregates. 

Traditionally, decision support systems use data 

warehouses to centralize data in a uniform fashion 

(Kimball et al., 2013). Within data warehouses, 

interactive data analysis and exploration is 

performed using On-Line Analytical Processing 

(OLAP) (Colliat, 1996), (Chaudhuri et al., 1997). 

Data is often described using a conceptual 

multidimensional model, such as a star schema 

(Chaudhuri et al., 1997). We illustrate this 

multidimensional model with a case study about 

RSS (Really Simple Syndication) feeds of news 

bulletins from an information website. We study the 

Content of news bulletins (the subject of the analysis 

or fact) using three dimensions of those bulletins 

(analysis axes of the fact): Keyword (contained in 

the bulletin), Time (publication date) and Location 

(geographical region concerned by the news). The 

fact has two measures (analysis indicators): 

§ The number of news bulletins (NewsCount). 

§ The number of keyword occurrences 

(OccurrenceCount). 

 

Figure 2: Multidimensional conceptual schema of our 

example, news bulletin contents according to keywords, 

publication time and location concerned by the news. 

The conceptual multidimensional schema of our 

case study is described in Figure 2, using a graphical 

formalism based on (Golfarelli et al., 1998), (Ravat 

et al., 2008). 

One of the most successful implementation of 

OLAP systems uses relational databases (R-OLAP 

implementations). In these implementations, the 

conceptual schema is transformed into a logical 

schema (i.e. a relational schema, called in this case a 

denormalized R-OLAP schema) using two 

transformation rules: 

§ Each dimension is a table that uses the same 

name. Table attributes are derived from 

attributes of the dimension (called parameters 

and weak attributes). The root parameter is the 

primary key. 

§ Each fact is a table that uses the same name, 

with attributes derived from 1) fact attributes 

(called measures) and 2) the root parameter of 

each associated dimension. Attributes derived 

from root parameters are foreign keys linking 

each dimension table to the fact table and 

form a compound primary key of the table. 

 

Due to the huge amount of data that can be 

stored in OLAP systems, it is common to pre-

compute some aggregated data to speed up common 

analysis queries. In this case, fact measures are 

aggregated using different combinations of either 

dimension attributes or root parameters only. This 

pre-computation is a lattice of pre-computed 

aggregates (Gray et al., 1997) or aggregate lattice 

for short. The lattice is a set of nodes, one per 

dimension combinations. Each node (e.g. the node 

called “Time, Location”) is stored as a relation called 

an aggregate relation (e.g. the relation time-

location). This relation is composed of attributes 

corresponding to the measures and the parameters or 

weak attributes from selected dimensions. Attributes 

corresponding to measures are used to store 

aggregated values computed with functions such as 

SUM, COUNT, MAX, MIN, etc. The aggregate lattice 

schema for our case study is shown in Figure 3. 

Considering NoSQL systems as candidates for 

implementing OLAP systems, we must consider the 

above issues. In this paper and, in order to deal with 

these issues, we use two logical NoSQL models for 

the logical implementation; we define mapping rules 

(that allows us to translate a conceptual design into a 

logical one) and we study the lattice computation. 

The rest of this paper is organized as follows: in 

section 2, we present possible approaches that allow 

getting a NoSQL implementation from a data 

warehouse conceptual model using a pivot logical 

model; in section 3 we define our conceptual 

multidimensional model, followed by a section for 

each of the two NoSQL models we consider  along 

with their associated transformation rules, i.e. the 

column-oriented model in section 4 and the 

document-oriented model in section 5. Finally, 

section 6 details our experiments. 

 



 

 

Figure 3: A pre-computed aggregate lattice in a R-OLAP system. 

 

2 RELATED WORK 

To our knowledge, there is no work for 

automatically and directly transforming data 

warehouses defined by a multidimensional 

conceptual model into a NoSQL model. 

Several research works have been conducted to 

translate data warehousing concepts to a relational 

R-OLAP logical level (Morfonios et al., 2007). 

Multidimensional databases are mostly implemented 

using these relational technologies. Mapping rules 

are used to convert structures of the conceptual level 

(facts, dimensions and hierarchies) into a logical 

model based on relations. Moreover, many works 

have focused on implementing logical optimization 

methods based on pre-computed aggregates (also 

called materialized views) as in (Gray et al., 1997), 

(Morfonios et al., 2007). However, R-OLAP 

implementations suffer from scaling-up to large data 

volumes (i.e. “Big Data”). Research is currently 

under way for new solutions such as using NoSQL 

systems (Lee et al., 2012). Our approach aims at 

revisiting these processes for automatically 

implementing multidimensional conceptual models 

directly into NoSQL models. 

Other studies investigate the process of 

transforming relational databases into a NoSQL 

logical model (bottom part of Figure 1). In (Li, 

2010), the author has proposed an approach for 

transforming a relational database into a column-

oriented NoSQL database using HBase (Han et al., 

2012), a column-oriented NoSQL database. In (Vajk 

et al., 2013), an algorithm is introduced for mapping 

a relational schema to a NoSQL schema in 

MongoDB (Dede et al., 2013), a document-oriented 

NoSQL database. However, these approaches never 

consider the conceptual model of data warehouses. 

They are limited to the logical level, i.e. 

transforming a relational model into a column-

oriented model. More specifically, the duality 

fact/dimension requires guaranteeing a number of 

constraints usually handled by the relational 

integrity constraints and these constraints cannot be 

considered in these logical approaches. 

This study highlights that there is currently no 

approaches for automatically and directly 

transforming a data warehouse multidimensional 

conceptual model into a NoSQL logical model. It is 

possible to transform multidimensional conceptual 

models into a logical relational model, and then to 

transform this relational model into a logical NoSQL 

model. However, this transformation using the 

relational model as a pivot model has not been 

formalized as both transformations were studied 

independently of each other. Also, this indirect 

approach can be tedious. 

Id Keyword Time Localisation NewsCount OccurrenceCount

1 ill 12/10/14 Paris 10 10

2 Virus 15/10/14 Paris 15 25

3 vaccine 09/06/14 London 20 30

City Country Population Continent Zone
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We can also cite several recent works that are 

aimed at developing data warehouses in NoSQL 

systems whether columns-oriented (Dehdouh et al., 

2014), or key-values oriented (Zhao et al., 2014). 

However, the main goal of these papers is to propose 

benchmarks. These studies have not put the focus on 

the model transformation process. Likewise, they 

only focus one NoSQL model, and limit themselves 

to an abstraction at the HBase logical level. Both 

models (Dehdouh et al., 2014), (Zhao et al., 2014), 

require the relational model to be generated first 

before the abstraction step. By contrast, we consider 

the conceptual model as well as two orthogonal 

logical models that allow distributing 

multidimensional data either vertically using a 

column-oriented model or horizontally using a 

document-oriented model. 

Finally we take into account hierarchies in our 

transformation rules by providing transformation 

rules to manage the aggregate lattice. 

3 CONCEPTUAL MULTI-

DIMENSIONAL MODEL 

To ensure robust translation rules we first define the 

multidimensional model used at the conceptual 

level. 

A multidimensional schema, namely E, is 

defined by (F
E
, D

E
, Star

E
) where: 

§ F
E
 = {F1,…, Fn} is a finite set of facts, 

§ D
E
 = {D1,…, Dm} is a finite set of dimensions, 

§ Star
E
: F

E
→2!

"
 is a function that associates 

each fact Fi of F
E
 to a set of Di dimensions, 

DiÎStar
E
(Fi), along which it can be analyzed; 

note that 2!
"
 is the power set of D

E
. 

A dimension, denoted DiÎD
E
 (abusively noted 

as D), is defined by (N
D
, A

D
, H

D
) where: 

§ N
D
 is the name of the dimension, 

§ #!! = !$%&! , � , !%'!(È$)*! , !#++!( is a set of 

dimension attributes, 

§ -!
! = !{-&! , � , !-.!}/ is a set hierarchies. 

A hierarchy of the dimension D, denoted 

HiÎH
D
, is defined by (N

Hi
, Param

Hi
, Weak

Hi
) where: 

§ N
Hi

 is the name of the hierarchy, 

§ 0%1%345 ! = ! < )*! , !6&
45 , � , !6.5

45 , !#++! >/ is 

an ordered set of vi+2 attributes which are 

called parameters of the relevant graduation 

scale of the hierarchy, "kÎ[1..vi], 67
48
ÎA

D 
. 

§ Weak
Hi

: Param
Hi

 ® 29
:;?@A@BC5

 is a function 

associating with each parameter zero or more 

weak attributes. 

A fact, FÎF
E
, is defined by (N

F
, M

F
) where: 

§ N
F
 is the name of the fact, 

§ DE = !{F&G3&
EH, � , !F.G3.

EH}/ is a set of 

measures, each associated with an aggregation 

function fi. 

 

Example. Consider our case study where news 

bulletins are loaded into a multidimensional data 

warehouse consistent with the conceptual schema 

described in Figure 2. 

The multidimensional schema E
News

 is defined by 

F
News

={FContent}, D
News

={DTime, DLocation, DKeyword} and 

Star
News

(FContent)={DTime, DLocation, DKeyword}. 

The fact represents the data analysis of the news 

feeds and uses two measures: the number of news 

(NewsCount) and the number of occurrences 

(OccurrenceCount); both for the set of news 

corresponding to a given term (or keyword), a 

specific date and a given location. This fact, FContent 

is defined by (Content, {SUM(NewsCount), 

SUM(OccurrenceCount)}) and is analyzed 

according to three dimensions, each consisting of 

several hierarchical levels (detail levels): 

§ The geographical location (Location) 

concerned by the news (with levels City, 

Country, Continent and Zone). A 

complementary information of the country 

being its Population (modeled as additional 

information; it is a weak attribute). 

§ The publication date (Time) of the bulletin 

(with levels Day, Month and Year); note that 

the month number is associated to its Name 

(also a weak attribute), 

§ The Keyword used in the News (with the 

levels Term and Category of the term). 

For instance, the dimension DLocation is defined by 

(Location, {City, Country, Continent, Zone, 

ALL
Location

}, {HCont, HZn}) with City = id
Location

 and: 

§ HCont = (HCont, {City, Country, Continent, 

ALL
Location

}, (Country, {Population})); note 

that Weak
HCont 

(Country) = {Population}, 

§ HZn = (HZn, {City, Country, Zone, ALL
Location

}, 

(Country, {Population})). 

4 CONVERSION INTO A NOSQL 

COLUMN-ORIENTED MODEL 

The column-oriented model considers each record as 

a key associated with a value decomposed in several 

columns. Data is a set of lines in a table composed 

of columns (grouped in families) that may be 

different from one row to the other. 



 

4.1 NoSQL Column-Oriented Model 

In relational databases, the data structure is 

determined in advance with a limited number of 

typed columns (a few thousand) each similar for all 

records (also called “tuples”). Column-oriented 

NoSQL models provide a flexible schema (untyped 

columns) where the number of columns may vary 

between each record (or “row”). 

A column-oriented database (represented in 

Figure 4) is a set of tables that are defined row by 

row (but whose physical storage is organized by 

groups of columns: column families; hence a 

“vertical partitioning” of the data). In short, in these 

systems, each table is a logical mapping of rows and 

their column families. A column family can contain 

a very large number of columns. For each row, a 

column exists if it contains a value. 

 

Figure 4: UML class diagram representing the concepts of 

a column-oriented NoSQL database (tables, rows, column 

families and columns). 

A table T = {R1,…, Rn} is a set of rows Ri. A 

row Ri = (Keyi, (CFi
1
,…, CFi

m
)) is composed of a 

row key Keyi and a set of column families CFi
j
. 

A column family CFi
j
 = {(Ci

j1
, {vi

j1
}),…, (Ci

jp
, 

{vi
jp

})} consists of a set of columns, each associated 

with an atomic value. Every value can be 

“historised” thanks to a timestamp. This principle 

useful for version management (Wrembel, 2009) 

will not be used in this paper due to limited space, 

although it may be important. 

The flexibility of a column-oriented NoSQL 

database allows managing the absence of some 

columns between the different table rows. However, 

in the context of multidimensional data storage, data 

is usually highly structured (Malinowski et al., 

2006). Thus, this implies that the structure of a 

column family (i.e. the set of columns defined by the 

column family) will be the same for all the table 

rows. The initial structure is provided by the data 

integration process called ETL, Extract, Transform, 

and Load (Simitsis et al., 2005). 

Example: Let us have a table T
News

 representing 

aggregated data related to news bulletins (see Figure 

5), with: T
News

 = {R1, …, Rx, …, Rn}. We detail the 

Rx row that corresponds to the number of news 

bulletins, and the number of occurrences where the 

keyword “Iraq” appears in those news bulletins, 

published at the date of 09/22/2014 and concerning 

the location “Toulouse” (south of France). 

Rx=(x, (CFx
Time

={(Cx
Day

, {Vx
Day

}), (Cx
Month

, Vx
Month

), 

(Cx
Name

, Vx
Name

), (Cx
Year

, Vx
Year

)}, CFx
Location

 ={(Cx
City

, 

Vx
City

), (Cx
Country

, Vx
Country

), (Cx
Population

, Vx
Population

), 

(Cx
Continent

, Vx
Continent

), (Cx
Zone

, Vx
Zone

)}, CFx
Keyword

 

={(Cx
Term

, Vx
Term

), (Cx
Category

, Vx
Category

)}, CFx
Content

 

={(Cx
NewsCount

, Vx
NewsCount

), (Cx
OccurrenceCount

, 

Vx
OccurrenceCount

)}) ) 

The values of the five columns of CFx
Location

, 

(Cx
City

, Cx
Country

, Cx
Population

, Cx
Continent

 and Cx
Zone

), are 

(Vx
City

, Vx
Country

, Vx
Population

, Vx
Continent

 and Vx
Zone

); e.g. 

Vx
City

 = Toulouse, Vx
Country

 = France, Vx
Population

 = 

65991000, Vx
Continent

 = Europe, Vx
Zone

 = Europe-

Western. 

More simply we note: CFx
Location

 = {(City, 

{Toulouse}), (Country, {France}), (Population, 

{65991000}), (Continent, {Europe}), (Zone, 

{Europe-Western})}. 

 

Figure 5: Example of a row (key = x) in the TNews table. 

4.2 Column-Oriented Model Mapping 
Rules 

The elements (facts, dimensions, etc.) of the 

conceptual multidimensional model have to be 

transformed into different elements of the column-

oriented NoSQL model (see Figure 6). 

§ Each conceptual star schema (one Fi and its 

associated dimensions Star
E
(Fi)) is 

transformed into a table T. 

§ The fact Fi is transformed into a column 

family CF
M

 of T in which each measure mi is a 

column Ci Î CF
M

. 

Table

Name
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§ Each dimension Di Î Star
E
(F

i
) is transformed 

into a column family CF
Di

 where each 

dimension attribute Ai Î A
D
 (parameters and 

weak attributes) is transformed into a column 

Ci of the column family CF
Di

 (Ci Î CF
Di

), 

except the parameter All
Di

. 

 

Remarks. Each fact instance and its associated 

instances of dimensions are transformed into a row 

Rx of T. The fact instance is thus composed of the 

column family CF
M

 (the measures and their values) 

and the column families of the dimensions CF
Di

 Î 

CF
DE

 (the attributes, i.e. parameters and weak 

attributes, of each dimension and their values). 

As in a denormalized R-OLAP star schema 

(Kimball et al., 2013), the hierarchical organization 

of the attributes of each dimension is not represented 

in the NoSQL system. Nevertheless, hierarchies are 

used to build the aggregate lattice. Note that the 

hierarchies may also be used by the ETL processes 

which build the instances respecting the constraints 

induced by these conceptual structures (Malinowski 

et al., 2006); however, we do not consider ETL 

processes in this paper. 

 

Figure 6: Implementing a multidimensional conceptual 

model into the column-oriented NoSQL logical model. 

Example. Let E
News

 be the multidimensional 

conceptual schema implemented using a table 

named T
News

 (see Figure 6). The fact (F
Contents

) and its 

dimensions (D
Time

, D
Localisation

, D
Keyword

) are 

implemented into four column families CF
Time

, 

CF
Location

, CF
Keyword

, CF
Contents

. Each column family 

contains a set of columns, corresponding either to 

dimension attributes or to measures of the fact. For 

instance the column family CF
Location

 is composed of 

the columns {C
City

, C
Country

, C
Population

, C
Continent

, 

C
Zone

}. 

Unlike R-OLAP implementations, where each 

fact is translated into a central table associated with 

dimension tables, our rules translate the schema into 

a single table that includes the fact and its associated 

dimensions together. When performing queries, this 

approach has the advantage of avoiding joins 

between fact and dimension tables. As a 

consequence, our approach increases information 

redundancy as dimension data is duplicated for each 

fact instance. This redundancy generates an 

increased volume of the overall data while providing 

a reduced query time. In a NoSQL context, problems 

linked to this volume increase may be reduced by an 

adapted data distribution strategy. Moreover, our 

choice for accepting this important redundancy is 

motivated by data warehousing context where data 

updates consist essentially in inserting new data; 

additional costs incurred by data changes are thus 

limited in our context. 

4.3 Lattice Mapping Rules 

We will use the following notations to define our 

lattice mapping rules. A pre-computed aggregate 

lattice or aggregate lattice L is a set of nodes A
L
 

(pre-computed aggregates or aggregates) linked by 

edges E
L
 (possible paths to calculate the aggregates). 

An aggregate node AÎA
L
 is composed of a set of pi 

parameters (one by dimension) and a set of 

aggregated mi measures fi(mi). A = < p1 ....pk, 

f1(m1),…, fv(mv)>, k ≤ m (m being the number of 

dimensions, v being the number of measures of the 

fact). 

The lattice can be implemented in a column-

oriented NoSQL database using the following rules: 

§ Each aggregate node AÎA
L
 is stored in a 

dedicated table. 

§ For each dimension Di associated to this node, 

a column family CF
Di

 is created, each 

dimension attribute ai of this dimension is 

stored in a column C of CF
Di

, 

§ The set of aggregated measures is also stored 

in a column family CF
F
 where each 

aggregated measure is stored as a column C 

(see Figure 7). 

 

Example. We consider the lattice News (see 

Figure 7). The lattice News is stored in tables. The 

node (Keyword_Time) is stored in a Table 

T
Keyword_Time

 composed of the column families 

CF
Keyword

, CF
Time

 and CF
Fact

. The attribute Year is 

stored in a column C
Year

, itself in CF
Time

. The 

attribute Term is stored in a column C
Term

, itself in 

CF
Keyword

. The two measures are stored as two 

columns in the column family CF
fact

. 
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Many studies have been conducted about how to 

select the pre-computed aggregates that should be 

computed. In our proposition we favor computing all 

aggregates (Kimball et al., 2013). This choice may 

be sensitive due to the increase in the data volume. 

However, in a NoSQL architecture we consider that 

storage space should not be a major issue. 

 

Figure 7: Implementing the pre-computed aggregation 

lattice into a column-oriented NoSQL logical model. 

5 CONVERSION INTO A NOSQL 

DOCUMENT-ORIENTED 

MODEL 

The document-oriented model considers each record 

as a document, which means a set of records 

containing “attribute/value” pairs; these values are 

either atomic or complex (embedded in sub-records). 

Each sub-record can be assimilated as a document, 

i.e. a subdocument. 

5.1 NoSQL Document-Oriented Model 

In the document-oriented model, each key is 

associated with a value structured as a document. 

These documents are grouped into collections. A 

document is a hierarchy of elements which may be 

either atomic values or documents. In the NoSQL 

approach, the schema of documents is not 

established in advance (hence the “schema less” 

concept). 

Formally, a NoSQL document-oriented database 

can be defined as a collection C
 
composed of a set of 

documents Di, C = {D1,…, Dn}. 

Each Di document is defined by a set of pairs 

Di = {(#II8
&, J8

&),…, (#II8
B, J8

B)}, j Î [1, m] where 

Atti
j
 is an attribute (which is similar to a key) and Vi

j
 

is a value that can be of two forms: 

§ The value is atomic. 

§ The value is itself composed by a nested 

document that is defined as a new set of pairs 

(attribute, value). 

 

We distinguish simple attributes whose values 

are atomic from compound attributes whose values 

are documents called nested documents. 

 

Figure 8: UML class diagram representing the concepts of 

a document-oriented NoSQL database. 

Example. Let C be a collection, 

C={D1,…,Dx,,…,Dn} in which we detail the 

document Dx (see Figure 9). Suppose that Dx 

provides the number of news and the number of 

occurrences for the keyword “Iraq” in the news 

having a publication date equals to 09/22/2014 and 

that are related to Toulouse. 

Within the collection C
News

={D1,…,Dx,…,Dn}, 

the document Dx could be defined as follows: 

Dx = {(Attx
Id

, Vx
Id

), (Attx
Time

, Vx
Time

), (Attx
Location

, 

Vx
Location

),(Attx
Keyword

, Vx
Keyword

),(Attx
Content

, Vx
Content

)} 

where Attx
Id

 is a simple attribute and while the other 

4 (Attx
Time

, Attx
Location

, Attx
Keyword

, and Attx
Content

) are 

compound attributes. Thus, Vx
Id

 is an atomic value 

(e.g. “X”) corresponding to the key (that has to be 

unique). The other 4 values (Vx
Time

, Vx
Location

, 

Vx
Keyword

, and Vx
Content

) are nested documents: 

Vx
Time

  = {(Attx
Day

, Vx
Day

), (Attx
Month

, Vx
Month

),  

(Attx
Year

, Vx
Year

)}, 

Vx
Location

 = {(Attx
City

, Vx
City

), (Attx
Country

, Vx
Country

),  

(Attx
Population

, Vx
Population

), (Attx
Continent

,  

Vx
Continent

), (Attx
Zone

, Vx
Zone

)}, 

Vx
Keyword

 = {(Attx
Term

, Vx
Term

),  

(Attx
Category

, Vx
Category

)}, 

Vx
Contents

 = {(Attx
NewsCount

, Vx
NewsCount

),  

(Attx
OccurenceCount

, Vx
OccurenceCount

)}. 

In this example, the values in the nested 

documents are all atomic values. For example, 

values associated to the attributes Attx
City

, Attx
Country

, 

Attx
Population

, Attx
Continent

 and Attx
Zone

 are: 

Vx
City

= “Toulouse”, 

Vx
Country 

= “France”, 

Vx
Population 

= “65991000”, 

Vx
Continent 

= “Europe”, 

Vx
Zone 

= “Europe Western”. 

Id Keyword Fact

1 … …

…

vId1 Term: Virus

Category: Health

NewsCount : 5

OccurrenceCount: 8

vId2 Term:  Ill

Category: Health

NewsCount : 4

OccurrenceCount: 6

Id Keyword Time Fact

1 … … …

…

vId1 Term:  Virus

Category: Health

Day: 05/11/14

Month: 11/14

Name: November

Year: 2014

NewsCount: 1

OccurrenceCount: 2

vId2 Term: Ill

Category: Health

Day: 05/11/14

Month: 11/14

Name: November

Year: 2014

NewsCount: 3

OccurrenceCount: 4

Keyword, Time, Location

Keyword, Time Keyword,  Location Time, Location

Keyword Time Location

ALL
Collection

DocumentAtomic

Couple

Attribute

Value

1..*

1..* 1..*

1..1



 

 

See Figure 9 for the complete example. 

  

Figure 9: Graphic representation of a collection CNews. 

5.2 Document-Oriented Model 
Mapping Rules 

Under the NoSQL document-oriented model, the 

data is not organized in rows and columns as in the 

previous model, but it is organized in nested 

documents (see Figure 10). 

§ Each conceptual star schema (one Fi and its 

dimensions Star
E
(Fi)) is translated in a 

collection C. 

§ The fact Fi is translated in a compound 

attribute Att
CF

. Each measure mi is translated 

into a simple attribute Att
SM

.  

§ Each dimension Di Î Star
E
(Fi) is converted 

into a compound attribute Att
CD

 (i.e. a nested 

document). Each attribute Ai Î A
D
 (parameters 

and weak attributes) of the dimension Di is 

converted into a simple attribute Att
A
 

contained in Att
CD

.  

 

Remarks. A fact instance is converted into a 

document d. Measures values are combined within a 

nested document of d. Each dimension is also 

translated as a nested document of d (each 

combining parameter and weak attribute values). 

The hierarchical organization of the dimension is 

not preserved. But as in the previous approach, we 

use hierarchies to build the aggregate lattice. 

Example. The document noted Dx is composed 

of 4 nested documents, Att
Content

, that groups 

measures and Att
Location

, Att
Keyword

, Att
Time

, that 

correspond to the instances of each associated 

dimension. 

As the previous model, the transformation 

process produces a large collection of redundant 

data. This choice has the advantage of promoting 

data querying where each fact instance is directly 

combined with the corresponding dimension 

instances. The generated volume can be 

compensated by an architecture that would 

massively distribute this data. 

 

Figure 10: Implementing the conceptual model into a 

document-oriented NoSQL logical model. 

5.3 Lattice Mapping Rules 

As in the previous approach, we store all the pre-

computed aggregates in a separate unique collection. 

Formally, we use the same definition for the 

aggregate lattice as above (see section 4.3). 

However, when using a document oriented NoSQL 

model, the implementation rules are: 

§ Each node A is stored in a collection. 

§ For each dimension Di concerned by this 

node, a compound attribute (nested document) 

Att
CD

Di is created; each attribute ai of this 

dimension is stored in a simple attribute Att
ai

 

of Att
CD

Di. 

§ The set of aggregated measures is stored in a 

compound attribute Att
CD

F where each 

aggregated measure is stored as a simple 

attribute Attmi. 

 

Example. Let us Consider the lattice L
News

 (see 

Figure 11). This lattice is stored in a collection 

C
News

. The Node <month_country> is stored as a 

document d. The dimension Time and Location are 

stored in a nested document d
date

 and d
location

 of d. 

The month attribute is stored as a simple attribute in 

the nested document d
Time

. The country attribute is 

stored in a nested document d
location

 as simple 

attribute. The two measures are also stored in a 

nested document denote d
fact

. 

{}          Collection

()          Document

Att: {}  Nested Document

Att:      Attribute

vAtt Value of the Att Attribute

Legend

{

(Id : vId
Time : {Day: vDa, Month: vMo, Name: vNa, Year: vYe} 

Location: {City: vCi, Country: vCtr, Population: vPo, 

Continent: vCnt, Zone: vZn}

KeyWord : {Term: vTe, Category: vCa}

Content : {NewsCount: vNCt, OccurrenceCount: vOCt} )

( Id … )

…

}

Time

Day Month Year All

Name

H_TIME

KeyWord

Term Category All

H_KW

NewsCount
OccurenceCount

CONTENT
Population

City

Location

Country

ContinentZone

All

Attributes values are represented
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Figure 11: Implementing the pre-computed aggregation 

lattice into a document-oriented NoSQL logical model. 

As in the column-oriented model, we choose to 

store all possible aggregates of the lattice. With this 

choice there is a large potential decrease in terms of 

query response time. 

6 EXPERIMENTS 

6.1 Experimental setup 

Our experimental goal is to illustrate the 

instantiation of our logical models (both star schema 

and lattice levels). Thus, we show here experiments 

with respect to data loading and lattice generation. 

We use HBase and MongoDB respectively for 

testing the column-oriented and the document-

oriented models. Data is generated with a reference 

benchmark (TPC-DS, 2014). We generate datasets 

of sizes: 1GB, 10GB and 100GB. After loading data, 

we compute the aggregate lattice with map-

reduce/aggregations offered by both HBase and 

MongoDB. The details of the experimental setup are 

as follows: 

Dataset. The TPC-DS benchmark is used for 

generating our test data. This is a reference 

benchmark for testing decision support (including 

OLAP) systems. It involves a total of 7 fact tables 

and 17 shared dimension tables. Data is meant to 

support a retailer decision system. We use the 

store_sales fact and its 10 associated dimensions 

tables (the most used ones). Some of its dimensions 

tables are higher hierarchically organized parts of 

other dimensions. We consider aggregations on the 

following dimensions: date (day, month, year), 

customer address (city, country), store address (city, 

country) and item (class, category). 

Data generation. Data is generated by the 

DSGen generator (1.3.0). Data is generated in 

different CSV-like files (Coma Separated Values), 

one per table (whether dimension or fact). We 

process this data to keep only the store_sales 

measures and associated dimension values (by 

joining across tables and projecting the data). Data is 

then formatted as CSV files and JSon files, used for 

loading data in respectively HBase and MongoDB. 

We obtain successively 1GB, 10GB and 100GB of 

random data. The JSon files turn out to be 

approximately 3 times larger for the same data. The 

entire process is shown in the Figure 12. 

Data loading. Data is loaded into HBase and 

MongoDB using native instructions. These are 

supposed to load data faster when loading from files. 

The current version of MongoDB would not load 

data with our logical model from CSV file, thus we 

had to use JSON files. 

 

Figure 12: Broad schema of the experimental setup. 

Lattice computation. To compute the aggregate 

lattice, we use map-reduce functions from both 

HBase and MongoDB. Four levels of aggregates are 

computed on top of the detailed facts. These 

aggregates are: all combinations of 3 dimensions, all 

combinations of 2 dimensions, all combinations of 1 

dimension, all data. 

MongoDB and HBase allow aggregating data 

using map-reduce functions which are efficient for 

distributed data systems. At each aggregation level, 

we apply aggregation functions: max, min, sum and 

count on all dimensions. For MongoDB, instructions 

look like: 
db.ss1.mapReduce( 

 function(){emit( 

  {item: {i_class: this.item.i_class,  

   i_category: this.item.i_category}, 

  store: {s_city: this.store.s_city, s_country:  

   this.store.s_country}, 

  customer: {ca_city: this.customer.ca_city,  

   ca_country: this.customer.ca_country}}, 

  this.ss_wholesale_cost);  } , 

 function(key, values){ 

  return {sum: Array.sum(values), max:  

   Math.max.apply(Math, values),  

   min: Math.min.apply(Math, values),  

   count: values.length};}, 

 {out: 'ss1_isc'}  

); 

{

(Id : vId1

KeyWord : {Term : Virus, 

Category:Health}

Fact : {NewsCount:5,

OccurrenceCount:8}

)

…

(Id : vId2

KeyWord : {Term : Ill,

Category:Health}

Fact : {NewsCount:4,

OccurrenceCount:6)

}

{

(Id : vId1

KeyWord : {Term : Virus,

Category:Health}

Time: {Day : 05/11/14,

Month:11/14,

Name:November,

Year:2014}

Fact : {NewsCount :  1,

OccurrenceCount:2}

)

…

(Id : vId2

KeyWord : {Term : Ill ,

Category:Health}

Time: {Day : 05/11/14 ,

Month:11/14,

Name:November,

Year:2014}

Fact : {NewsCount:1,

OccurrenceCount:1}

)

}



 

 

Figure 13: The pre-computed aggregate lattice with processing time (seconds) and size (records/documents), using HBase 

(H) and MongoDB (M). The dimensions are abbreviated (D: Date, I: item, S: store, C: customer). 

In the above, data is aggregated using the item, 

store and customer dimensions. For HBase, we use 

Hive on top to ease the query writing for 

aggregations. Queries with Hive are SQL-like. The 

below illustrates the aggregation on item, store and 

customer dimensions. 
INSERT OVERWRITE TABLE out 

select  

sum(ss_wholesale_cost), max(ss_wholesale_cost), 

min(ss_wholesale_cost), count(ss_wholesale_cost) , 

i_class,i_category,s_city,s_country,ca_city,ca_country 

from store_sales  

group by  

i_class,i_category,s_city,s_country,ca_city,ca_country 

; 

Hardware. The experiments are done on a 

cluster composed of 3 PCs, (4 core-i5, 8GB RAM, 

2TB disks, 1Gb/s network), each being a worker 

node and one node acts also as dispatcher. 

Data Management Systems. We use two 

NoSQL data management systems: HBase (v.0.98) 

and MongoDB (v.2.6). They are both successful 

key-value database management systems 

respectively for column-oriented and document-

oriented data storage. Hadoop (v.2.4) is used as the 

underlying distributed storage system. 

6.2 Experimental results 

Loading data: The data generation process 

produced files respectively of 1GB, 10GB, and 

100GB. The equivalent files in JSon where about 3.4 

times larger due to the extra format. In the table 

below, we show loading times for each dataset and 

for both HBase and MongoDB. Data loading was 

successful in both cases. It confirms that HBase is 

faster when it comes to loading. However, we did 

not pay enough attention to tune each system for 

loading performance. We should also consider that 

the raw data (JSon files) takes more space in 

memory in the case of MongoDB for the same 

number of records. Thus we can expect a higher 

network transfer penalty. 

Table 1: Dataset loading times for each NosQL database 

management system. 

Dataset size 1GB 10GB 100GB 

MongoDB 9.045m 109m 132m 

HBase 2.26m 2.078m 10,3m  

 

Lattice computation: We report here the 

experimental observations on the lattice 

computation. The results are shown in the schema of 

Figure 13. Dimensions are abbreviated (D: date, C: 

customer, I: item, S: store). The top level 

corresponds to IDCS (detailed data). On the second 

level, we keep combinations of only three 

dimensions and so on. For every aggregate node, we 

show the number of records/documents it contains 

and the computation time in seconds respectively for 

HBase (H) and MongoDB (M). 

In HBase, the total time to compute all 

aggregates was 1700 seconds with respectively 

1207s, 488s, 4s and 0.004s per level (from more 

detailed to less). In MongoDB, the total time to 

compute all aggregates was 3210 seconds with 

respectively 2611s, 594s, 5s and 0.002s per level 

(from more detailed to less). We can easily observe 

that computing the lower levels is much faster as the 



 

amount of data to be processed is smaller. The size 

of the aggregates (in terms of records) decreases too 

when we move down the hierarchy: 8.7 millions 

(level 2), 3.4 millions (level 3), 55 thousand (level 4) 

and 1 record in the bottom level. 

7 DISCUSSION 

In this section, we provide a discussion on our 

results. We want to answer three questions:  

§ Are the proposed models convincing? 

§ How can we explain performance differences 

across MongoDB and HBase? 

§ Is it recommended to use column-oriented and 

document-oriented approaches for OLAP 

systems and when? 

 

The choice of our logical NoSQL models can be 

criticized for being simple. However, we argue that 

it is better to start from the simpler and most natural 

models before studying more complex ones. The 

two models we studied are simple and intuitive; 

making it easy to implement them. The effort to 

process the TPC-DS benchmark data was not 

difficult. Data from the TPC-DS benchmark was 

successfully mapped and inserted into MongoDB 

and HBase proving the simplicity and effectiveness 

of the approach.  

HBase outperforms MongoDB with respect to 

data loading. This is not surprising. Other studies 

highlight the good performance on loading data for 

HBase. We should also consider that data fed to 

MongoDB was larger due to additional markup as 

MongoDB does not support csv-like files when the 

collection schema contains nested fields. Current 

benchmarks produce data in a columnar format (csv 

like). This gives an advantage to relational DBMS. 

The column-oriented model we propose is closer to 

the relational model with respect to the document-

oriented model. This remains an advantage to HBase 

compared to MongoDB.  We can observe that it 

becomes useful to have benchmarks that produce 

data that are adequate for the different NoSQL 

models. 
At this stage, it is difficult to draw detailed 

recommendations with respect to the use of column-
oriented or document-oriented approaches with 
respect to OLAP systems. We recommend HBase if 
data loading is the priority. HBase uses also less 
memory space and it is known for effective data 
compression (due to column redundancy). 
Computing aggregates takes a reasonable time for 
both and many aggregates take little memory space. 

A major difference between the different NoSQL 
systems concerns interrogation. For queries that 
demand multiple attributes of a relation, the column-
oriented approaches might take longer because data 
will not be available in one place. For some queries, 
the nested fields supported by document-oriented 
approaches can be an advantage while for others it 
would be a disadvantage. Studying differences with 
respect to interrogation is listed for future work.  

8 CONCLUSION 

This paper is about an investigation on the 

instantiation of OLAP systems through NoSQL 

approaches namely: column-oriented and document-

oriented approaches. We have proposed respectively 

two NoSQL logical models for this purpose. The 

models are accompanied with rules that can 

transform a multi-dimensional conceptual model 

into a NoSQL logical model.  

Experiments are carried with data from the TPC-

DS benchmark. We generate respectively datasets of 

size 1GB, 10GB and 100GB. The experimental 

setup show how we can instantiate OLAP systems 

with column-oriented and document-oriented 

databases respectively with HBase and MongoDB. 

This process includes data transformation, data 

loading and aggregate computation. The entire 

process allows us to compare the different 

approaches with each other.  

We show how to compute an aggregate lattice. 

Results show that both NoSQL systems we 

considered perform well; with HBase being more 

efficient at some steps. Using map-reduce functions 

we compute the entire lattice. This is done for 

illustrative purposes and we acknowledge that it is 

not always necessary to compute the entire lattice. 

This kind of further optimizations is not the main 

goal of the paper. 

The experiments confirm that data loading and 

aggregate computation is faster with HBase. 

However, document-based approaches have other 

advantages that remain to be thouroughly explored. 

The use of NoSQL technologies for 

implementing OLAP systems is a promising 

research direction. At this stage, we focus on the 

modeling and loading stages. This research direction 

seems fertile and there remains a lot of unanswered 

questions. 

Future work: We will list here some of the 

work we consider interesting for future work. A 

major issue concerns the study of NoSQL systems 

with respect to OLAP usage, i.e. interrogation for 



 

 

analysis purposes. We need to study the different 

types of queries and identify queries that benefit 

mostly for NoSQL models. 

Finally, all approaches (relational models, 

NoSQL models) should be compared with each 

other in the context of OLAP systems. We can also 

consider different NoSQL logical ilmplementations. 

We have proposed simple models and we want to 

compare them with more complex and optimized 

ones.  

In addition, we believe that it is timely to build 

benchmarks for OLAP systems that generalize to 

NoSQL systems. These benchmarks should account 

for data loading and database usage. Most existing 

benchmarks favor relational models.   
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