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Abstract. Task models produced from task analysis, are a very important element 

of UCD approaches as they provide support for describing users goals and users 

activities, allowing human factors specialists to ensure and assess the effective-

ness of interactive applications. As user errors are not part of a user goal they are 

usually omitted from tasks descriptions. However, in the field of Human Relia-

bility Assessment, task descriptions (including task models) are central artefacts 

for the analysis of human errors. Several methods (such as HET, CREAM and 

HERT) require task models in order to systematically analyze all the potential 

errors and deviations that may occur. However, during this systematic analysis, 

potential human errors are gathered and recorded separately and not connected 

to the task models. Such non integration brings issues such as completeness (i.e. 

ensuring that all the potential human errors have been identified) or combined 

errors identification (i.e. identifying deviations resulting from a combination of 

errors). We argue that representing human errors explicitly and systematically 

within task models contributes to the design and evaluation of error-tolerant in-

teractive system. However, as demonstrated in the paper, existing task modeling 

notations, even those used in the methods mentioned above, do not have a suffi-

cient expressive power to allow systematic and precise description of potential 

human errors. Based on the analysis of existing human error classifications, we 

propose several extensions to existing task modelling techniques to represent ex-

plicitly all the types of human error and to support their systematic task-based 

identification. These extensions are integrated within the tool-supported notation 

called HAMSTERS and are illustrated on a case study from the avionics domain. 

1 Introduction 

Task analysis and modelling approaches have always focused on the explicit repre-

sentation of standard behavior of users, leaving user error analysis for later phases in 

the design processes [2]. This is part of the rationale underlying task analysis which is 

to provide an exhaustive analysis of user behavior describing goals and activities to 

reach these goals. Clearly, errors, mistakes and deviations are not part of the users’ 

goals and thus left aside of tasks descriptions. This exhaustive aspect of task analysis 

is fundamental as it is meant to provide the basics for a global understanding of users 

behaviors which will serve as a basis for driving evolutions of the interactive system. 

However, practice (for real-life applications) shows that reaching this comprehensive-

ness is very hard, especially as it require a vast amount of resources. If cuts have to be 

made when analyzing standard activities, it is clear that infrequent or abnormal behav-

iors are often not considered. However, this is precisely where the emphasis should be 

placed in order to deal efficiently with error tolerance as error prone systems deeply 

impact efficiency and satisfaction. Beyond these usability-related aspects, in critical 



systems the cost of an operator error might put people life at stake, and this is the reason 

why Human Reliability Assessment (HRA) methods (such as HET, CREAM or HERT) 

provide means for identifying human errors. Such approaches go beyond early work of 

Norman on typologies of human errors [23] which have then been integrated in the 

action theory [24]. Indeed, they are usually associated with tasks descriptions in order 

to relate work and goals with erroneous behaviors of operators. However, they all ex-

ploits basic task description techniques making impossible to go beyond qualitative and 

quantitative temporal descriptions.  

In this paper we propose the use of a detailed task description technique called 

HAMSTERS [21] within a HRA method to support identification of errors related to 

information, knowledge and devices. Beyond that, we present extensions to 

HAMSTERS notation in order to describe identified error within the task models. Inte-

grating errors within a task model brings multiple advantages, the most prominent being 

the seamless representation of activities to reach goals and possible deviations. Such 

integrated representation can be exploited for building effective and error avoidant in-

teractive systems. 

The paper is structured as follows. Section 2 presents the human error domain, hu-

man reliability assessment methods and task modeling. This state of the art is used to 

identify limitations of current HRA methods and to identify requirements for extending 

task models to encompass information dedicated to user errors. Section 3 presents an 

extended version of the HAMSTERS notation in which genotypes and phenotypes of 

errors enrich “standard” task models. This section also proposes a stepwise process 

based on Human Error Template (HET) [36] HRA method to systematically identify 

user errors and to represent them in task models. Section 4 shows, on a case study, how 

this framework can be used and what it brings to the design and verification of error-

tolerant safety critical interactive systems. Section 5 highlights benefits and limitations 

of the approach while section 6 concludes the paper and presents future work. 

2 Related Work on Human Error and Task Modelling 

Human error has received a lot of attention over the years and this section aims at pre-

senting the main concepts related to human errors as well as the existing approaches 

for analyzing them. This related work section starts with the analysis of taxonomies of 

human errors followed by processes and methods for identifying human errors in 

socio-technical systems. Last sub-section summarizes work on representing human 

errors with a specific focus on representations based on task description.  

2.1 Definition and taxonomies of human errors 

Several contributions in the human factors domain deal with studying internal human 

processes that may lead to actions that can be perceived as erroneous from an external 

view point. In the 1970s, Norman, Rasmussen and Reason have proposed theoretical 

frameworks to analyze human error. Norman, proposed a predictive model for errors 

[23], where the concept of "slip" is highlighted and causes of error are rooted in im-

proper activation of patterns of action. Rasmussen proposes a model of human perfor-

mance which distinguishes three levels: skills, rules and knowledge (SRK model) [31]. 

This model provides support for reasoning about possible human errors and has been 

used to classify error types. Reason [33] takes advantages of the contributions of Nor-

man and Rasmussen, and distinguishes three main categories of errors: 



1. Skill-based errors are related to the skill level of performance in SRK. These errors 

can be of one of the 2 following types: a) Slip, or routine error, which is defined as 

a mismatch between an intention and an action [23]; b) Lapse which is defined as a 

memory failure that prevents from executing an intended action. 

2. Rule-based mistakes are related to the rule level of performance in SRK and are 

defined as the application of an inappropriate rule or procedure. 

3. Knowledge-based errors are related to the knowledge level in SRK and are defined 

as an inappropriate usage of knowledge, or a lack of knowledge or corrupted 

knowledge preventing from correctly executing a task. 

At the same time, Reason proposed a model of human performance called GEMS 

[33] (Generic Error Modelling System), which is also based on the SRK model and 

dedicated to the representation of human error mechanisms. GEMS is a conceptual 

framework that embeds a detailed description of the potential causes for each error 

types above. These causes are related to various models of human performance. For 

example, a perceptual confusion error in GEMS is related to the perceptual processor 

of the Human Processor model [5]. GEMS is very detailed in terms of description and 

vocabulary (e.g. strong habit intrusion, capture errors, overshooting a stop rule …) and 

structuring approaches have been proposed as the Human Error Reference Table 

(HERT) in [25].  

Causes of errors and their observation are different concepts that should be separated 

when analyzing user errors. To do so, Hollnagel [9] proposed a terminology based on 

2 main concepts: phenotype and genotype. The phenotype of an error is defined as the 

erroneous action that can be observed. The genotype of the error is defined as the char-

acteristics of the operator that may contribute to the occurrence of an erroneous action.  

These concepts and the classifications above provide support for reasoning about 

human errors and have been widely used to develop approaches to design and evaluate 

interactive systems [34]. As pointed out in [26] investigating the association between a 

phenotype and its potential genotypes is very difficult but is an important step in order 

to assess the error-proneness of an interactive system. This is why most of the ap-

proaches for Human Reliability Assessment focus on this double objective, as pre-

sented in next section.  

2.2 Techniques and methods for identifying Human Errors 

Many techniques have been proposed for identifying which human errors may occur in 

a particular context and what could be their consequences in this given context. Several 

human reliability assessment techniques such as CREAM [10], HEART [44], and 

THERP [39] are based on task analysis. They provide support to assess the possibility 

of occurrence of human errors by structuring the analysis around task descriptions. Be-

yond these commonalities, THERP technique provides support for assessing the prob-

ability of occurrence of human errors. Table 1 presents an overview on the existing 

techniques for identifying potential human errors. For each technique, the following 

information is highlighted: 

· Type of technique: to indicate to which scientific domain this technique is related. 

Values can be HEI (Human Error Identification), DC (Dependable Computing), 

SA (Safety Analysis) … 

· Associated task modelling technique: to indicate how the user tasks are described 

once the task analysis has been performed. Most of them exploit HTA (Hierar-

chical Task Analysis notation) [1]; 



Table 1. Summary of techniques and methods used for identifying human errors 

Name of the technique Type of 

tech-

nique 

Task 

model-

ling 

Tool 

sup-

port  

Associated error classification (Ge-

neric/Specific) 

Combi-

nation of 

errors 

Hazard and operability study 

(HAZOP) [15] 

Safety 

analysis 

HTA None Not done, Less, More, As well as, Other 

than, Repeated, Sooner, Later, Misor-

dered, Part of 

G NE 

Systematic human error re-

duction and prediction ap-

proach (SHERPA) [7] 

HEI, 

HRA 

HTA None Action errors, Checking errors, Commu-

nication errors, Info retrieval errors, Se-

lection errors 

S No 

Potential human error cause 

analysis (PHECA) [43] 

HEI, 

HRA 

HTA None HAZOP classification G NE 

Cognitive reliability and er-

ror analysis method 

(CREAM) [10] 

HEI, 

HRA 

HTA None Timing, Duration, Sequence, Object, 

Force, Direction, Distance, Speed 

S NE 

Human error assessment and 

reduction technique 

(HEART) [44] 

HEI, 

HRA 

HTA None None (concrete description of the human 

error) 

S NE 

Human Error Identification 

In Systems Tool (HEIST) 

[13] 

HEI, 

HRA 

HTA None Skill Rule Knowledge model S NE 

Human Error Template 

(HET) [36] 

HEI, Hu-

man Fac-

tors 

HTA None Fail to execute: Task execution incom-

plete, Task executed in the wrong direc-

tion, Wrong task executed, Task re-

peated, Task executed on the wrong in-

terface element,  

Task executed : too early/too late/too 

much/too little, Misread information, 

other 

S No 

System for Predictive Error 

Analysis and Reduction 

(SPEAR) [40] 

HEI, 

HRA, SA 

HTA None Action, Retrieval, Check, Selection, 

Transmission 

G No 

Task Analysis For Error 

Identification (TAFEI) [2] 

HEI, HF HTA None Generic categories S NE 

Technique for Human Error 

Assessment (THEA) [30] 

HEI, HCI HTA None Goals, Plans, Performing actions, Per-

ception, Interpretation and evaluation 

S NE 

Human Error Recovery and 

Assessment (HERA) [14] 

HEI 

HRA 

HTA None Omission, Timing, Sequence, Quality, 

Selection error, Information Transmis-

sion error, Rule Violation, Other 

S No 

Tech. for Human Error Pre-

cision Rate (THERP) [39] 

HRA Not 

speci-

fied. 

None Omission, Commission, Selection error, 

Error of sequence, Time error, Qualita-

tive error. 

S No 

Tech. for the Retrospective 

and Predictive Analysis of 

Cognitive Errors in Air Traf-

fic Control (TRACer) [35] 

HEI 

HRA 

HTA None Selection and Quality 

Timing and Sequence 

Communication 

S No 

Task Model-Based System-

atic Analysis of System Fail-

ures and Human Errors [20] 

HCI, DC HAMST

ERS 

HAM

STER

S 

HAZOP and Reason classifications G NE 



· Tool support for task analysis and modelling: to indicate whether or not a particular 

Computer Aided Software Environment (CASE) tool is available to provide sup-

port for the application of the technique; 

· Associated error classification: to indicate which human error classification is used 

to identify possible errors. ‘G’ and ‘S’ indicates whether the classification comes 

from a generic system failures analysis or whether it is specific to human errors; 

· Capacity to deal with combination of errors: to indicate whether or not the tech-

niques provides explicit support for identifying possible combinations of errors. 

Here only 2 values are possible: ‘No’ and ‘NE’ (Not Explicitly meaning that the 

method was not claiming explicitly that combinations of errors are handled). 

For all the techniques presented above the process of identifying possible human 

errors highly relies on the user tasks descriptions. The task descriptions have to be pre-

cise, complete and representative of the user activities, in order to be able to identify all 

the possible errors. Indeed, the task description language as well as the mean to produce 

the description affect the quality of the analysis. However, most of them exploit Hier-

archical Task Analysis (HTA) which only provides support for decomposing user goals 

into tasks and subtasks and for describing the sequential relationships between these 

tasks (in a separate textual representation called “plan”). As HTA does not provide 

support for describing precisely the types of user actions, the temporal ordering types 

that are different from a sequence of actions (such as concurrent actions, order inde-

pendent actions…), as well as information and knowledge required to perform an ac-

tion, errors related to these elements cannot be identified. Furthermore, as most of these 

techniques do not have tool support it is cumbersome to check coverage of and to store 

identified errors in a systematic way. For example, as HTA does not provide support 

for describing knowledge required to perform a task, none of these methods provide 

explicit support for the identification of all possible knowledge-based mistakes. 

2.3 Support for representation of human errors in task model 

As explained above the expressive power of the task modelling notation has a direct 

impact on how task models produced with these notation are likely to support the iden-

tification of errors. Many task modelling notations have been proposed over the years 

focusing on the representation of standard user behaviors most of the time leaving aside 

erroneous behaviors.  

Table 2 presents a comparison of task modelling notations to assess (depending on 

their expressive power) their capability in identifying and representing human errors. 

For each notation, the following information is highlighted: 

· Identification of human error: to indicate whether or not the notation provides 

support to systematically establish a relationship between a task model element 

and a component of a model of human information processing or model of hu-

man performance. 

· Explicit representation of human error: to indicate whether or not the notation 

provides support to systematically represent human error related information in 

a task model. 

· Explicit representation of error recovery: to indicate whether or not the notation 

provides support to explicitly represent recovery tasks i.e. when an error has 

occurred, to describe the set of actions to be performed in order to still reach the 

goal. While this is possible in most task modelling notations (e.g. set of action 

to perform after entering a wrong PIN when using a cash machine) we identify 



here the fact that the notation makes explicit (or not) that this set of task is re-

lated to a user error. 

Table 2. Support for describing errors and errors-related elements 

Task Modelling Notations 

 

 

 

 

Element of representation 

C
T

T
 [

2
7

] 

C
O

M
M

 [
1

2
] 

G
O

M
S

 [
4

] 

G
T

A
 [

4
1

] 

H
A

M
S

T
E

R
S

 [
1

] 

H
T

A
 [

1
] 

S
A

M
A

N
T

A
 [

4
2

] 

T
K

S
 [

1
1

] 

Id
en

ti
fi

ca
ti

o
n

 o
f 

h
u

m
an

 e
rr

o
r 

Representation of refined user 

tasks 

No No No No Yes No No No 

Representation of declarative 

knowledge 

No No No No Yes No Yes Yes 

Representation of manipu-

lated information 

No No No No Yes No Yes No 

E
x
p

li
ci

t 
re

p
re

se
n
ta

ti
o
n

 o
f 

h
u

m
an

 e
rr

o
r 

Representation of cause and 

observable consequence of 

errors (Genotype, Phenotype) 

No No No No No No No No 

Representation of skill based 

errors (Slips, Lapse) 

No No No No No No No No 

Representation of rule based 

mistakes 

No No No No No No No No 

Representation of knowledge 

based mistakes 

No No No No No No No No 

Explicit representation of error recovery No No No No No No No No 

Even though the table above demonstrates the very limited account of error handling 

in task modeling notation, task models have already been used to take into account 

possible human errors while interacting with an interactive system. Paterno and Santoro 

proposed a model-based technique that uses insertion of deviated human actions into 

task models in order to evaluate the usability of the system and to inform design [28], 

however, such information is presented in tables outside of the task models. This ap-

proach is relevant for human error identification but only in generic terms (as it exploits 

HAZOP which is a standard hazard analysis method). Palanque and Basnyat proposed 

a technique based on task patterns (represented in CTT) that supports human routine 

errors [25] description. Here a specific task model is produced in which recovery ac-

tions following errors are explicitly represented, thus ending up with two un-connected 

task model. Modification in one of the task model has then to be reflected in the other 

one increasing complexity of task modelling activities. In both contributions, no spe-

cific element of the notation are introduced thus leaving the contributions to basic task 

elements provided in CTT notation (and thus not covering errors related to information, 

knowledge … as presented above).  

In order to overcome the limitations of the current task modelling notations, next 

section presents extensions to the HAMSTERS notation to specifically represent errors. 

While the extensions are made explicit on that particular task modelling technique, the 

underlying concepts are generic making them applicable to others.  



3 Extending a Task Modelling Notation to support the 

identification and representation of human errors  

This section presents the extensions that have been added to the HAMSTERS notation 

in order to provide support for systematic identification and representation of human 

errors in task models. We also present how this extended notation has been integrated 

within a human error identification technique. This process starts with an extant task 

model and extends it with explicit genotypes and phenotypes of errors.  

3.1 HAMSTERS notation 

HAMSTERS (Human – centered Assessment and Modeling to Support Task Engi-

neering for Resilient Systems) is a tool-supported graphical task modeling notation for 

representing human activities in a hierarchical and structured way. At the higher ab-

straction level, goals can be decomposed into sub-goals, which can in turn be decom-

posed into activities. Output of this decomposition is a graphical tree of nodes that can 

be tasks or temporal operators. Tasks can be of several types (depicted in Table 3) and 

contain information such as a name, information details, and criticality level. Only the 

single user high-level task types are presented here but they can be further refined. For 

instance the cognitive tasks can be refined in Analysis and Decision tasks [19] and 

collaborative activities can be refined in several task types [17].  

Table 3. Task types in HAMSTERS 

 Abstract Input Output I/O Processing 

Abstract  
Abstract 

Not 
Applicable 

Not 
Applicable 

Not 
Applicable 

Not 
Applicable 

User  
User abstract 

 
Perceptive 

 
Motor 

 
User 

 
Cognitive 

Interactive  
Abstract inter-

active 

 
Input 

 
Output 

 
Input/Output 

Not 

Applicable 

System  
Abstract sys-

tem 

 
Output 

 
Input 

 
Input/Output 

 
System 

Temporal operators (depicted in Table 4 and similar to the ones in CTT) are used to 

represent temporal relationships between sub-goals and between activities. Tasks can 

also be tagged by properties to indicate whether or not they are iterative, optional or 

both. The HAMSTERS notation is supported by a CASE tool for edition and simulation 

of models. This tool has been introduced in order to provide support for task system 

integration at the tool level [17]. This tool supported notation also provides support for 

structuring a large number and complex set of tasks introducing the mechanism of sub-

routines [22], sub-models and components [18]. Such structuring mechanisms allow 

describing large and complex activities by means of task models. These structuring 

mechanisms enables the breakdown of a task model in several ones that can be reused 

in the same or different task models. 



Table 4. Illustration of the operator type within hamsters 

HAMSTERS expressive power goes beyond most other task modeling notations par-

ticularly by providing detailed means for describing data that is required and manipu-

lated [17] in order to accomplish tasks. Fig. 1 summarizes the notation elements to 

represent data. Information (“Inf:” followed by a text box) may be required for execu-

tion of a system task, but it also may be required by the user to accomplish a task. 

Physical objects required for performing a task can also be represented (“Phy O”) as 

well as the device (input and/or output) with which the task is performed (“i/o D”). 

Declarative and situational knowledge can also be made explicit by the “SiK” and 

“StK” elements.  

 

Fig. 1. Representation of Objects, Information and Knowledge with HAMSTERS Notation 

3.2 HAMSTERS notation elements and relationship with genotypes 

All of the above notation elements are required to be able to systematically identify and 

represent human errors within task models. Indeed, some genotypes (i.e. causes of hu-

man errors) can only occur with a specific type of task or with a specific element in a 

task model described using HAMSTERS. This relationship between classification of 

genotypes in human error models and task modelling elements is not trivial. For this 

reason, Table 5 presents the correspondences between HAMSTERS notation elements 

and error genotypes from the GEMS classification [32]. Such a correspondence is very 

useful for identifying potential genotypes on an extant task model.  

It is important to note that strategic and situational knowledge elements are not pre-

sent in this table. Indeed, such constructs are similar to the M (Methods) in GOMS and 

thus correspond to different ways of reaching a goal. As all the methods allow users to 

reach the goal an error cannot be made at that level and is thus not connected to a 

genotype.  

 

Operator type Symbol Description 

Enable T1>>T2 T2 is executed after T1 

Concurrent T1|||T2 T1 and T2 are executed at the same time 

Choice T1[]T2 T1 is executed OR T2 is executed 

Disable T1[>T2 Execution of T2 interrupts the execution of T1 

Suspend-resume T1|>T2 Execution of T2 interrupts the execution of T1, T1 exe-

cution is resumed after T2 

Order Independent T1|=|T2 T1 is executed then T2 OR T2 is executed then T1 



Table 5. Correspondence between HAMSTERS elements and genotypes from GEMS [32] 

Element of notation in 

HAMSTERS 

Related genotype from GEMS [32] 

Perceptive task 

 

Perceptual confusion (Skill Based Error) 

Interference error (Skill Based Error) 

Input task 

 

Motor task 

 

Interference error (Skill Based Error) 

Double capture slip (Skill Based Error) 
Omissions following interruptions (Skill Based Error) 

Cognitive task 

 

Skill based errors ─ Double capture slip 

─ Omissions following interruptions 
─ Reduced intentionality 

─ Interference error 

─ Over-attention errors 

Rule based mistakes Misapplication of good rules 
─ First exceptions 
─ Countersigns and non-signs 

─ Informational overload 

─ Rule strength 
─ General rules 

─ Redundancy 

─ Rigidity 

Application of bad rules 
─ Encoding deficiencies 

─ Action deficiencies 

Knowledge based mis-

takes 

─ Selectivity 

─ Workspace limitations 
─ Out of sight out of mind 

─ Confirmation bias 
─ Overconfidence 

─ Biased reviewing 

─ Illusory correlation 
─ Halo effects 

─ Problems with causality 

─ Problems with complexity 

Information 

 

Double capture slip, Omissions following interruptions, Interference 
error, all of the Rule Based Mistakes and Knowledge Based Mis-

takes 

Declarative knowledge 

 

All of the Knowledge Based Mistakes 

3.3 Extensions to HAMSTERS to describe user errors 

Several notation elements have been added to HAMSTERS in order to allow explicit 

representation of both genotypes and phenotypes of errors. Table 6 summarizes these 

notation elements that can be used to describe an observable consequence of an error 

(phenotype) and its potential associated causes (genotypes). 

In that table the first column lists the types of errors following GEMS classification. 

The second column makes the connection with the SRK classification as previously 

performed in [32]. Third column present the new notation elements in HAMSTERS for 

describing genotypes of errors as well as how they relate to the classifications on human 

error. Four new elements are added: Slips, Lapses, Rule-Based Mistakes and 

Knowledge-Based Mistakes. As for phenotypes only one notation element is proposed. 

Indeed, the phenotype (i.e. how the errors is made visible) only need to be explicitly 

represented, the label beneath it providing a textual description while its relationship to 

Inf : Information

DK : Declarative



the causes is made by connecting genotypes to it. Such connections will be presented 

in details in the case study section.  

Table 6. Representation of genotypes and phenotypes in HAMSTERS 

Type of error 

(GEMS [32]) 

Level of 

Performance from 

[31] 

Representation of 

genotype in 

HAMSTERS 

Representation of 

phenotype in 

HAMSTERS 

Slip 

Skill-based  

 

Lapse 

 

Mistake 

Rule-based 

 

Knowledge-based 

 

3.4 Modelling process 

In this section, we show how we have integrated HAMSTERS extended notation with 

the HET [36] technique. HAMSTERS could be used to replace HTA in any other hu-

man error identification method based on task description, but we have chosen HET 

because it provides a detailed process and because it has been demonstrated in [36] to 

be more accurate than other techniques such as SHERPA and HAZOP [37].  

 

Fig. 2 presents a modified version of the HET process and provides support for iden-

tifying genotypes and phenotypes of possible human errors by embedding error de-

scriptions in the task models that have been produced to describe user activities. The 

extended process starts with a task analysis and description phase (as for the original 

HET one), but in our case the produced task models are refined to represent perceptive, 

cognitive and motor user tasks as well as information and knowledge required to per-

form the tasks. These models take full advantage of the expressive power of 

HAMSTERS that has been presented in section 3. All the modifications made with 

respect to the original process have been made explicit by using various shades of grey.  

Next step in the process exploits the task type–genotypes correspondence table 

(Table 5), to provide support for systematic identification of genotypes associated to 

perceptive, cognitive, motor and interactive input tasks, but also to the related pheno-

types. The likelihood and criticality of a genotype are inserted as properties of the in-

stance of represented genotype. This is performed in HAMSTERS tool by specific 

properties associated to the genotypes icons. Similarly, likelihood and criticality of a 

phenotype can also be described using properties of the instance of a represented phe-

notype. Likelihood of a phenotype may be a combination of likelihood of related gen-

otypes. Once all of the possible genotypes and phenotypes have been identified and 

described in the task model, the human error identification and representation technique 

is applied to the next task model. Once all of the models have been analyzed, a last step 

is performed (see bottom left activity in Fig. 2) in order to determine, for each task 

model that embeds human error descriptions, which phenotypes may be propagated to 

S lip

Lapse

RBM

KBM



other task models. Several phenotypes may be associated to an observable task, but not 

all of them may happen in a particular scenario.  

Start
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Fig. 2. Human error identification and description process extended from HET [36] 



4 Illustrative example from an avionics case study 

This section presents an excerpt of task models produced by the application of the pro-

cess presented above for identification and representation to a case study. The case 

study belongs to the aeronautics domain and more precisely deals with pilot tasks ex-

ploiting a weather radar cockpit application. This section aims at illustrating how the 

HAMSTERS extensions can be applied to human operations on a real-life application. 

Due to space constraints, the application of all new elements of notation are not shown 

in this article but most of them are.  

4.1 Presentation of the weather radar case study 

Weather radar (WXR) is an application currently deployed in many cockpits of com-

mercial aircrafts. It provides support to pilots’ activities by increasing their awareness 

of meteorological phenomena during the flight journey, allowing them to determine if 

they may have to request a trajectory change, in order to avoid adverse weather condi-

tions such as storms or precipitations. In this case study, we particularly focus on the 

tasks that have to be performed by a pilot to check the weather conditions on the current 

flight path.  

a) b)  

Fig. 3. Image of a) the numeric part of weather radar control panel b) physical manipulation of 

the range of the weather radar 

Fig. 3 presents a screenshot of the weather radar control panels, used to operate the 

weather radar application. These panels provides two functionalities to the crew. The 

first one is dedicated to the mode selection of weather radar and provides information 

about status of the radar, in order to ensure that the weather radar can be set up correctly. 

The operation of changing from one mode to another can be performed in the upper 

part of the panel (mode selection section).  

 

Fig. 4. Screenshots of weather radar displays 



The second functionality, available in the lower part of the window, is dedicated to 

the adjustment of the weather radar orientation (Tilt angle). This can be done in an 

automatic way or manually (Auto/manual buttons). Additionally, a stabilization func-

tion aims to keep the radar beam stable even in case of turbulences. The right-hand part 

of Fig. 3 (labelled “b)”) presents an image of the controls used to configure radar dis-

play, particularly to set up the range scale (right-hand side knob with ranges 20, 40, … 

nautical miles).  

 

Fig. 5. Task model of the “Check weather conditions on the flight path” task 

Fig. 4 shows screenshots of weather radar displays according to two different range 

scales (40 NM for the left display and 80 NM for the right display). Spots in the middle 

of the images show the current position, importance and size of the clouds. Depending 

on the color of the clouds in the navigation display (Fig. 4), pilots can determine 

whether or not the content of the clouds is dangerous for the aircraft. For example, the 

red color highlights the fact that the clouds contain heavy precipitations. Such infor-

mation is needed in order to ensure that the current or targeted flight plan are safe. 

4.2 Task model of the task “Check weather conditions on the flight path” 

Fig. 5 presents the description, with HAMSTERS elements of notation, of the activities 

that have to be performed to check the weather conditions on the flight path. 



The tasks presented in this model describe how the pilot builds a mental model of the 

current weather from information gathered on the navigation display (Fig. 4). For a 

pilot, checking weather conditions is very important as it provides support for deciding 

to maintain or change the current trajectory of the aircraft. This task is decomposed into 

3 sub tasks: 

· “Examine Map”: the pilot perceives and examines the radar image of the weather, 

which is displayed on the navigation display (see Fig. 4). To perform this analysis, 

the pilot has to know the meaning of the weather representations (described with 

declarative knowledge notation elements in Fig. 5  such as "Green light clouds mean 

precipitation"). 

· “Manage WXR control panel”: This sub task is represented by a subroutine, and 

linked to another task model, which describes the tasks that have to be performed to 

control the WXR modes. 

· “Manage Display Range”: This sub task describes the actions that have to be per-

formed by the pilot in order to change the range of the WXR display with using the 

physical knob “range” (illustrated in Fig. 3 b)). The pilot has to turn the knob to 

modify the range, and then to wait for the radar image to be refreshed on the navi-

gation display (Fig. 4). 

 

Fig. 6. Task model of the “check weather conditions on the flight path” task embedding the 

description of potential errors 

 



4.3 Task model with human errors 

Fig. 6 presents a modified version of the “Check weather conditions on the flight path” 

task model. This new version embeds the descriptions of possible human errors (geno-

type and phenotypes) which have been identified while applying the human error iden-

tification process.  

Each human task and interactive input task is connected to one (or several) genotype(s), 

indicating possible cause(s) of errors. Genotypes are then connected to phenotypes, 

which are the observable consequences of the errors. For example, the “Perceive im-

age” perception task is connected to the genotype “Perceptual confusion: image badly 

or not perceived” (zoomed in view in Fig 7). This genotype is also connected to the 

phenotype “Weather target wrongly or not detected”. In the same way, the “Interpret 

and analyze” cognitive analysis task, which requires particular knowledge to be per-

formed (the “DK” labeled rectangles containing declarative knowledge about relation-

ships between the color of visual artefacts in the navigation display and the composition 

of the clouds) is connected to the knowledge based mistake “Illusory correlation: No 

weather problem detected”. This means that a wrong user knowledge association could 

cause a non-detection of a weather issue on the flight path. And this genotype is also 

connected to the phenotype “Weather target wrongly or not detected”.  

 

Fig 7. “Examine map” sub-task of the “check weather conditions on the flight path” task em-

bedding the description of potential errors 

5 Benefits and limitations of the approach 

The stepwise refinement process of task models presented in section 3.4 and its appli-

cation to the case study in section 4 have demonstrated the possibility to exploit the 

extended version of HAMSTERS to support identification and description of operator 

errors on an existing task model.  
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While this is critical in order to identify parts in a system that might be error prone or 

parts in the system that are not tolerant to operators errors it is also true that the task 

models enriched with error artefacts are gathering a lot of information that might de-

crease their understandability and modifiability. We currently favor the expressiveness 

of the notation and of the resulting task models than legibility and understandability. 

These two aspects are currently being addressed at tool level providing multiple filter-

ing mechanisms for hiding (in a temporary way) information that the analyst is not 

focusing on. For instance, all the information elements can be hidden, as the genotypes 

and the phenotypes if the current activity is to focus on sequencing of tasks.  

The main objective of the approach is to support redesign activities when error prone 

designs have been identified. Such redesign would take place through an iterative de-

sign process involving co-evolution of tasks and systems as presented in [3] but devel-

opment costs are clearly increased. This is the reason why such an approach would be 

also useful for supporting certification activities in critical systems. For instance, as 

stated in [6] CS25-1302 annex E 1-F-1, “Flight deck controls must be installed to allow 

accomplishment of these tasks and information necessary to accomplish these tasks 

must be provided ” and in CS 25-1309 “stems and controls, including indications and 

annunciations must be designed to minimize crew errors, which could create additional 

hazards”. This CS 25 document consists in a list of requirement that have to be fulfilled 

in order for aircraft manufacturers to go successfully through certification processes 

(which are managed by regulatory authorities and/or third parties). The two highlighted 

requirements demonstrate that certification can only be successful using a complete and 

unambiguous description of operator’s tasks and by ensuring that equipment (called 

system in this paper) are not error prone.  

Finally, it is important to note that the process proposed and its associated tool-sup-

ported notation remain a manual expert-based activity. This is made clearly visible by 

the “is the error credible?” step in the process where identification of errors can only 

come from deep understanding of operators activities and possible deviations.  

6 Conclusion 

In this paper we have presented a way of taking into account in a systematic way ab-

normal user behavior by extending previous work in the area of task modelling and 

human error analysis and identification.  

We proposed the use of several classifications in human error and integrated them into 

an analysis and modelling process exploiting new extensions in the task modelling no-

tation HAMSTERS. These extensions make it possible to explicitly represent geno-

types and phenotypes of operator errors and to describe their relationships.  

These contributions have been applied to a real-life case study in the field of aeronautics 

demonstrating most of the aspects of the contributions. However, errors related to stra-

tegic knowledge and errors related to temporal ordering (e.g. the task model describes 

a sequence of tasks but the operator performs them in parallel) were not presented even 

though covered by the approach.  

As identified in “Benefits and Limitations” section, this work targets at supporting cer-

tification activities for critical systems and more precisely cockpits of large aircrafts. 

However, thanks to the tool support provided by HAMSTERS (which make human 

error identification and description less resource consuming) the approach is also ap-

plicable to other domains where errors are damaging, in terms of human life, econom-

ics, prestige, trust … 
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