
HAL Id: hal-01387757
https://hal.science/hal-01387757v1

Submitted on 26 Oct 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Trapezoid Quorum Protocol Dedicated to Erasure
Resilient Coding Based Schemes

Théodore Jean Richard Relaza, Jacques Jorda, Abdelaziz M’Zoughi

To cite this version:
Théodore Jean Richard Relaza, Jacques Jorda, Abdelaziz M’Zoughi. Trapezoid Quorum Protocol
Dedicated to Erasure Resilient Coding Based Schemes. 20th IEEE Workshop on Dependable Paral-
lel, Distributed and Network-Centric Systems held in conjunction with the 29th IEEE International
Parallel and Distributed Processing Symposium Workshop (IPDPSW 2015), May 2015, Hyderabad,
India. pp.1082-1088, �10.1109/IPDPSW.2015.108�. �hal-01387757�

https://hal.science/hal-01387757v1
https://hal.archives-ouvertes.fr

Open Archive TOULOUSE Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers and
makes it freely available over the web where possible.

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/
Eprints ID : 15253

The contribution was presented at IPDPSW 2015:
http://www.ipdps.org/ipdps2015/

To cite this version : Relaza, Théodore Jean Richard and Jorda, Jacques and
M'zoughi, Abdelaziz Trapezoid Quorum Protocol Dedicated to Erasure
Resilient Coding Based Schemes. (2015) In: 20th IEEE Workshop on
Dependable Parallel, Distributed and Network-Centric Systems held in
conjunction with the 29th IEEE International Parallel and Distributed Processing
Symposium Workshop (IPDPSW 2015), 25 May 2015 - 29 May 2015
(Hyderabad, India).

Any correspondence concerning this service should be sent to the repository

administrator: staff-oatao@listes-diff.inp-toulouse.fr

Trapezoid Quorum Protocol Dedicated to Erasure Resilient Coding Based Schemes

Théodore J. R. Relaza, Jacques Jorda and Abdelaziz M’zoughi

Institut de Recherche en Informatique de Toulouse (IRIT)

Université Paul Sabatier, Toulouse, France

{relaza | jorda | mzoughi}@irit.fr

Abstract—In distributed storage systems like parallel filesys-
tems or storage virtualization middleware, data replication
is the mainly used solution to implement data avaialability.
The more replicas are distributed among nodes, the more
robust is the storage system. However, the price to pay for
this dependability becomes significant, due to both direct costs
(the price of disks) and indirect costs (the energy consumption
of this large amount of disks needed).

In order to lower the disk space needed for a given
availalbility, Erasure Resilient Codes (referred to as ERC after
this) are of interest and start to be implemented in this context.
However, the use of such codes involves some new problems
in data management. In fact, if some constraints like data
concurrency can be solved using classical ways, others like
coherency protocols need some adaptations in order to fit this
context.

In this paper, we present an adaptation of trapezoid protocol
in the context of ERC schemes (instead of full replication [12]).
This new quorum protocol shows an increase of storage space
efficiency while maintaining a high level of availability for read
and writes operations.

Keywords-Data availability; error codes; consistency; quo-
rums;

I. INTRODUCTION

The most used way to implement reliability in distributed

filesystems is data replication: when a data is stored, n

replicas (n ≥ 1) are created and distributed among nodes.

The higher is n, the more robust is the filesystem. The most

commonly used replication level is triple block replication

(n = 2), because of its balance between cost and reliability

[11]. However, the cost of this replication is becoming

unbearable as data stored grows. While 5 Exabytes of data

are produced every 2 days (i.e. 0,8 ZB for the next year!),

multiplying data replicas to ensure storage reliability is no

longer a solution.

The most efficient solution to balance between redun-

dancy and storage space consumed in parallel storage sys-

tems is the use of erasure coding [2]. For trivial per-

formances reasons, only systematic codes are used: the

original data is part of the encoding process output and thus

distributed as is among nodes. To ensure an optimal failure

resilience, MDS code are commonly used. In such codes, k

blocks are mapped into n total blocks called a stripe (the

k original blocks and n − k redundant blocks), and any k

blocks chosen over the n may be used to reconstruct any of

the k original blocks. These MDS codes may be categorized

according to their repair capabilities. When one node fails,

the blocks it owned have to be reconstructed. These new

blocks just have to ensure that they still form a valid

(n, k) MDS code. Thus, these new blocks may be either

identical to the original ones (exact repairs) or different,

but still allowing to retrieve the original blocks using some

computations (functional repairs). An hybrid category uses

an exact repair for the k original blocks, and a functional

repair for the n − k redundant blocks. This question is

of importance because an exact repair allows to quickly

retrieve the original data when a read is performed, but

it requires either more storage or additional bandwidth for

repair operations. In contrast, a functional repair will only

require a message broadcast to an information flow graph

to reconstruct data blocks [5] but a more heavy processing

will be required to retrieve or update the original data. Thus,

these code are of less interest in the context of distributed

storage.

The main problematic is then: how to efficiently sup-

port nodes failures. In fact, ERC-based schemes involves

a significant network and IO overhead to reconstruct the

original data when some blocks are missing. Thus, new

storage schemes have been proposed, almost all sharing

the same goals and making the same assumptions. First,

they wish to optimize the update process. A basic approach

requires read and write operations on n − k + 1 blocks of

the stripe [2]. For exemple, a (9,6)-MDS will require 8 read

and write operations for a single block update: one read and

one write for the target block, and one read and one write

for each of the three redundant blocks. The goal is then to

create new ERC codes allowing in-place updates using the

commutativity of Gallois fields operations. Secondly, they

wish to optimize the recovery process. In fact, if a node

failure occurs, the blocks stored on that node have to be

computed back using the redundant blocks and the reverse

algorithm used. This process may be very compute-intensive

and may have a significant impact on the storage system

performances.

These goals and constraints have led to some assumptions

shared by almost all existing studies. The main one is

the consideration of append-only filesystems. To be more

precise, the updates are considered as new writes, the old

versions of blocks being garbage-collected using a lazy

process. This assumption is not problematic since as of now,

these storage systems are mainly used to store infrequently

changed data (e.g. using a REST API, or backing up classical

replicated data over an ERC storage system). As a direct

result, no consistency protocol is used, or rely on a weak

protocol. However, this assumption is not suited to all

kind of storage. For exemple, when users’ data stored on

virtual disks is accessed by several virtual machines, a

strict consistency protocol is required in any case to avoid

incoherent data.

Although data consistency protocols have been exten-

sively studied, they all target classical data replication

schemes. These protocols cannot be used as is on ERC-

based schemes, as the access to a single block of the stripe

is not a sufficient condition: since an operation may fail

on some nodes due to hardware issues, the conditions for

read and writes are enforced. Thus, even if data availability

and storage space is significantly improved using such

ERC-based schemes, the real availability of read and write

operations regarding nodes failures should be computed.

Our objective is to propose a new coherency protocol

dedicated to such storage schemes. Built upon the clas-

sical trapezoidal protocol [12], it is extended to handle

(n, k)−MDS code. Read and write availability are studied

and compared to the space gained

II. CONTEXT AND RELATED WORK

Replication has been used for a long time to implement

data availability in distributed storage systems. However,

the information explosion draws the limits of this technique

[14]. To ensure data availability with a lower storage re-

sources usage, Erasure Resilient Codes (ERC codes) are

being studied in the context of distributed storage systems

[6]. Maximum Distance Separable codes (MDS codes) are

optimal to that end since they allow an adequate tradeoff

between reliability and storage space used: an (n, k) MDS

code splits the data in k blocks and adds n − k additional

redundant blocks to overcome up to n − k nodes failures.

Thus, n and k may be chosen with respect to the storage

needs.

Some very recent works have been published in this

domain. In [10], specific encoding / decoding techniques

are used on top of RS codes to decrease both network

traffic and disk IO during reconstruction stage. However,

this scheme is used to backup in an erasure-encoded storage

data already stored in a replicated way. Thus updates are

not handled and no consistency mechanism is proposed.

The same assumptions are made in [11], and a similar

constraint is assumed in [9]: the storage systems targeted

by their scheme are append-only, and no coherency protocol

is implemented. The assumptions are slightly differents in

[3]. Outlining that a strong consistency is often required by

end users (especially enterprise customers), an attempt to

conciliate consistency and availability if proposed. However

the storage is always append-only, and no updates are

allowed on node failures.

To allow a real strong consistency among blocks, some

protocol must be implemented. In the full replication con-

text, many works have been published on the subject. The

most basic approach, named ROWA (Read One Write All),

requires a successful write of all blocks, thus implying that

any single block read will give the latest value. The two main

drawbacks of this system are the write penalty (each replica

must be written before the operation to complete) and the

lack of reliability of the write operations (since all target

nodes are required, any failure prevent these operations).

Quorum systems have been introduced to overcome these

difficulties. In these protocols, the nodes required to read

and/or write blocks are restricted to sets named quorums.

The most trivial implementation, called Majority Quorum,

requires a strict majority of nodes for both read and write

operations [13]. Given that condition, the set of nodes used

for any read operation will intersect the set of nodes used

for any write operation. Many logical structured have been

proposed for these sets: in diamonds [7], grids [4], trapeze

[12], trees [1] or even hypercubes [8]. However, all these

works only deal with full replication and do not encompass

ERC schemes.

The reason why they are not suited to distributed storage

using erasure codes is the difference between the original

data block and the other ones. In fact, on full replication,

any node giving the adequate latest version of a block can be

used to retrieve the corresponding data. The case is different

on ERC-based schemes: if the original data block have the

latest version, it can be used to retrieve the data. But in

the opposite case, k blocks having the latest version must

be found to reconstruct the original block. This leads to

significant differences in the computation of read and write

availabilities for these protocols, and thus has to be studied.

III. MODEL

Our work focus on consistency protocols dedicated to

distributed storage systems using ERC instead of full repli-

cation. After a brief recall on a classical implementation of

Erasure Resilient Codes, we are going to present our data

consistency protocol.

A. Erasure Resilient Codes

In our storage system, we use Erasure Resilient Codes (ERC)
to store the data. An (n, k) MDS (Maximum Distance Separable)
erasure code, stores the original k data blocks into the k nodes
out of n nodes and generates n − k redundant blocks such that
any k nodes out of n nodes can reconstruct the original data.
Let {N1, N2, ..., Nk, Nk+1, ..., Nn} be the n nodes where
{N1, N2, ..., Nk} store the original k data blocks and
{Nk+1, ..., Nn} store the n− k redundant blocks.
Let {b1, b2, ..., bk, bk+1, ..., bn} be the n data blocks where
{b1, b2, ..., bk} are the original k data blocks and {bk+1, ..., bn}
are the n− k redundant blocks generated.

For k + 1 ≤ j ≤ n,

bj =

i=k
∑

i=1

αj,i.bi (1)

Where αj,i are carefully chosen constants, and arithmetic is over
some finite field, usually GF(2h) [2].

B. Data Consistency Protocol

In this section, we introduce an adapted version of the trape-
zoidal quorum protocol dedicated to ERC schemes. We will define
the necessary and sufficient conditions for read and write operations
to work properly, and propose the respectives algorithms.

1) Defintions: A write quorum (WQ) is a set of nodes
required to write data. More precisely, WQ is the set of nodes to be
updated successfully in order to complete a write operation. |WQ|
denotes the size of the write quorum. Similarly, a read quorum
(RQ) is a set of nodes required to read data. More precisely, the
replicas of a data being all retrieved from the nodes of RQ, one
is sure to have among them at least one replica with the latest
version. |RQ| denotes the size of the read quorum.
For a given RQ and WQ in a same quorum system, there is at
least one node which belongs simultaneously to RQ and WQ [12],
in the other words the following condition must be held:

RQ ∩WQ 6= ∅ (2)

This condition ensures that a read quorum contains at least one
node with a chunk updated (i.e. with the latest version). If WQ1
and WQ2 are two write quorums in the same quorum system, then

WQ1 ∩WQ2 6= ∅ (3)

This condition ensures that two successive write operations on an
object will have at least one node in common, and thus that each
write quorum contains at least one node with the latest version.

2) Design: In the trapezoidal protocol [12], the nodes are
arranged on a logical trapezoid that has h+ 1 levels (0 ≤ l ≤ h).
The level l = 0 contains b nodes and the l-th level (1 ≤ l ≤ h)
contains sl = a.l + b nodes, where a and b are two integers with
a ≥ 0 and b ≥ 1. Therefore, the number of nodes used to store
one block in this protocol is equal to

Nbnode =

l=h
∑

l=0

sl (4)

Using ERC as a data distribution technique, the nodes
{Ni, Nk+1, ..., Nn} are used to store the block bi where 1 ≤ i ≤
k. The original data block bi is stored in Ni and the redundant
blocks αj,i.bi are stored in Nj for k + 1 ≤ j ≤ n. Therefore,
in order to ensure the consistency of block bi, the protocol will
organize the nodes {Ni, Nk+1, ..., Nn} in a logical trapezoid. The
node Ni (which contains the original data block) is placed in level
l = 0 of trapezoid. Thus,

Nbnode = n− k + 1 (5)

Figure 1 in page 3 shows an example of nodes organized in a
logical trapezoid Nbnode = n− k + 1 = 15.

3) Write quorum: An Erasure Resilient Code compliant
write quorum is any set of nodes constituted by wl arbitrary-chosen
nodes in each level.

|WQ| =
l=h
∑

l=0

wl (6)

Where w0 = ⌊ b
2
⌋+ 1, 1 ≤ wl ≤ sl for 1 ≤ l ≤ h.

With this definition of a write quorum, for any two quorum WQ1

Figure 1. Trapezoid protocol for Nbnode = 15 and sl = 2l+3 (a = 2,
b = 3, h = 2)

and WQ2, the property WQ1 ∩WQ2 6= ∅ is always verified.
Proof. Let WQ1 and WQ2 be two write quorums in a system
with N nodes in which we select n (n ≤ N) nodes to store the
blocks. Then, each write quorum contains an absolute majority of
nodes residing at level l = 0. This guarantees that these two write
quorums contain at least one common element in level l = 0.
Therefore, equation (3) is verified. �

The algorithm 1 describes the way write operations are imple-
mented for a trapezoidal protocol dedicated to (n,k) MDS erasure
code. The protocol starts to write the different bocks from level
l = 0 up to level l = h (see algorithm 1 line 16). To validate a write
operation in a level l, write operation must be done successfully in
at least wl nodes out of sl nodes residing in this level. Therefore,
the write operation fails if the protocol can’t write at least wl nodes
in any level l where 0 ≤ l ≤ h) (see algorithm 1 lines 35 to 37).

4) Read quorum: We want to read the data block i where
0 ≤ i ≤ k. There are two steps in order to read this block.

1) Step 1 (Checking version): The latest version can be
checked in one of the h+1 levels (0 ≤ l ≤ h) by comparing
the version of the block in the sl − wl + 1 nodes out of sl
nodes residing in this level. If the latest version is found then
go to step 2. Otherwise, the read operation fails.

2) Step 2 (Read or decode the data block): If node Ni

contains the latest version then the protocol read directly
the block value from this node. Otherwise, the data block is
decoded using any k nodes out of n nodes with the latest
version.

The algorithm 2 describes the way read operations are imple-
mented for a trapezoidal protocol dedicated to (n,k) MDS erasure
code. The protocol starts to check the latest version of data block
in a given level l by comparing the version of sl−wl+1 nodes out
of sl nodes residing in this level. The checking version starts from
level l = 0 to level l = h (see algorithm 2 line 11). If the latest
version is found in a given level then one of the two following
cases will apply depending on the version of block storing in the
node which contains the original data block(see algorithm 2 lines
30 to 36), the Case 1 will be launched if this node contains the
latest version and the Case 2 otherwise:

• Case 1: The protocol read directly from the node which
contains the original data block.

• Case 2: The decode operation will be launched using any
k updated nodes out of n nodes in order to reconstruct the
orginal data block.

IV. ANALYSIS

We are now going to evaluate the availability of the read and
write operations and the space used depending on the values of

Algorithm 1 Write data block x in node Ni

1: Definitions
2: sl, wl, h ⊲ Trapezoid protocol parameters
3: n, k ⊲ ERC parameters
4: Ul ⊲ List of nodes residing at level l
5: ⊲ Where U0 ∪ U1 ∪ ... ∪ Ul = {Ni, Nk+1, Nk+2, ..., Nn}
6: V ⊲ kx(n− k) matrix : version of redundant nodes
7: ⊲ Where V (i, j − k) denotes version of αi,j .bi for 1 ≤ i ≤ k and

k + 1 ≤ j ≤ n
8: ⊲ V (:, j − k) denotes all elements of V in column j − k

9: procedure INIT
10: for l← 0, h do
11: Ul = {u

l
1
, ul

2
, ..., ul

sl
} ⊲ from l-th level

12: end for
13: end procedure

14: procedure WRITEBLOCK(i, x) ⊲ Write block value x in node Ni

15: [chunk, version]←READBLOCK(i, id) ⊲ Read old block value
16: for l← 0, h do
17: counter ← 0
18: for all u ∈ Ul do
19: if (u = Ni) then
20: state← u.write(x) ⊲ Write x in node Ni

21: if state = V ALID then ⊲ Write operation is done
22: counter ← counter + 1
23: end if
24: else ⊲ u = Nj where k < j ≤ n
25: V [:, j − k]← u.version(id)
26: if V [i, j − k] = version then
27: state← u.add(αi,j .(x− chunk))
28: ⊲ Where Nj .add(buf) denotes bj ← bj+buf and

write it in Nj

29: if state = V ALID then
30: counter ← counter + 1
31: end if
32: end if
33: end if
34: end for
35: if counter < wl then
36: return FAIL ⊲ Write block is failed
37: end if
38: end for
39: return SUCCESS ⊲ Write block is done
40: end procedure

various parameters. We are going to compute this probability for
the two following cases:

1) A full replication storage system ensuring that each data
block is stored on n− k + 1 nodes for given parameters n
and k ;

2) A (n, k) MDS ERC based storage system.

These two cases implement the same level of availability, and thus
are well suited to compare the capabilities of each scheme. We
will then show some numerical evaluation to outline the balance
between the operations availability and the storage space saved.

Notations

• p: denotes node availability, i.e. the probability that one given
node is available in the system.

• r: denotes size of the read quorum for the trapezoid protocol
in the general threshold scheme context.

• wl: denotes the minimal number of nodes required to write
the block in level l.

• rl: denotes the minimal number of nodes required to check
the latest version of data in level l (rl ≡ sl − wl + 1).

• TRAP-FR: makes reference to Trapezoid Protocol in the full
replication context.

• TRAP-ERC: makes reference to Trapezoid Protocol dedicated
to erasure resilient codes context.

With no loss of generality, we assume that:

Algorithm 2 Read data block in node Ni

1: Definitions
2: sl, wl, h ⊲ Trapezoid protocol parameters
3: n, k ⊲ ERC parameters
4: Ul ⊲ List of nodes residing at level l

5: procedure INIT ⊲ List of nodes in the system
6: for l← 0, h do
7: Ul = {u

l
1
, ul

2
, ..., ul

sl
} ⊲ from l-th level

8: end for
9: end procedure

10: procedure READBLOCK(i, id) ⊲ id: id of data
11: for l← 0, h do
12: counter = 0
13: version← −1
14: for all u ∈ Ul do
15: if (u = Ni) then
16: temp← u.version(id)
17: if temp 6= INV ALID then
18: version← max(version, temp)
19: counter ← counter + 1
20: end if
21: else ⊲ u = Nj where k < j ≤ n
22: V [:, j − k]← u.version(id)
23: if version 6= INV ALID then
24: if V [i, j − k] > version then
25: version← V [i, j − k]
26: end if
27: counter ← counter + 1
28: end if
29: end if
30: if (counter = sl − wl + 1) then
31: if (version = Ni.version(id)) then
32: return [Ni.read(id), version] ⊲ Data block is

available in Ni

33: else ⊲ Need to reconstruct the data block
34: return decode(i, id, V) ⊲ Using k nodes out of n
35: end if
36: end if
37: end for
38: end for
39: return ∅ ⊲ Data is not readable
40: end procedure

1) node availability is the same and equal to p for all nodes in
the system.

2) nodes fail independently of each other.
3) each node stops on failure (fail-stop).
4) there is no failure on communication links.

For readability, we use the following expression to refer the
probability that at least i nodes and less than or equal to j nodes
out of z would be available.

Φz(i, j) ≡

k=j
∑

k=i

(

z

k

)

p
k(1− p)z−k

(7)

A. Write availability

The write availability Pwrite represents the probability that one
data block can be written into the system.

1) TRAP-FR: For the write operation of data block to succeed
in a full replication system, the validation of blocks’ write operation
on at least wl nodes out of sl for each level l (0 ≤ l ≤ h) is
required. Consequently, write availability Pwrite is equal to:

Pwrite =

l=h
∏

l=0

Φsl(wl, sl) (8)

2) TRAP-ERC: For the write operation of data block to
succeed in this system, the validation of blocks’ write operation

on at least wl nodes out of sl for each level l (0 ≤ l ≤ h) is
required. Consequently, write availability Pwrite is equal to:

Pwrite =

l=h
∏

l=0

Φsl(wl, sl) (9)

B. Read availability

The read availability Pread represents the probability that one
data block can be read from the system.

1) TRAP-FR: The probability that the data is readable using
the nodes in level l is equal to Φsl(rl, sl).
Therefore,

Pread = 1−
l=h
∏

l=0

(1− Φsl(rl, sl)) (10)

2) TRAP-ERC: For readability, we use the following expres-
sions:

βl ≡

{

max(0, rl − 2) for l = 0
rl − 1 for 1 ≤ l ≤ h

(11)

λl ≡

{

sl − 1 for l = 0
sl for 1 ≤ l ≤ h

(12)

Let P1 and P2 be respectively the probability that the data block
can be read without recovery operation (i.e. the protocol can found
directly a quorum read) and the probability that the data block can
be read after recovery operation.

P1 = p.

(

1−
l=h
∏

l=0

Φλl
(0, βl)

)

P2 = (1− p).Φn−1(k, n− 1)

Then, Pread = P1 + P2

Pread = p.

(

1−
l=h
∏

l=0

Φλl
(0, βl)

)

+(1−p).Φn−1(k, n−1) (13)

C. Storage space used

Dused and blocksize represent respectively the size of disk used
to store a data block and the size of one data block.

1) TRAP-FR: The data is replicated in the n− k + 1 nodes.
Each contains the same block which equal to the original data
block.
Therefore,

Dused = (n− k + 1).blocksize (14)

2) TRAP-ERC: In order to store the block bi (1 ≤ i ≤ k)
using this protocol, we need to write {bi , αk+1,i.bi, αk+2,i.bi,
..., αn,i.bi}. The size of bi and αj,i.bi (k + 1 ≤ j ≤ n) are
respectively equal to blocksize and blocksize

k
. Then,

Dused = blocksize+ (n− k).
blocksize

k

= (1 +
n− k

k
).blocksize

=
n

k
.blocksize

Dused =
n

k
.blocksize (15)

D. Simulations

In the following figures, w parameter (1 ≤ w ≤ s1) refers to:

wl =

{

⌊ b
2
⌋+ 1 for l = 0

w for 1 ≤ l ≤ h
(16)

This parameter is compliant with the condition imposed by write
quorum in page 3 (1 ≤ wl ≤ sl for 1 ≤ l ≤ h).

The first noticeable point is that the write availability is the same
in the case of full replication and ERC schemes (see equations 8
and 9). In fact, the use of Erasure Resilient Codes do not alter
the number of nodes required to successfully write a block on the
system. Fig. 2 shows various cases for n = 15. It should be noted
that like on the full replication case, the write availability is not
significantly impacted by the number of replicas for usual values
of p (i.e. for p > 0.9).

Figure 2. Write availability of TRAP-ERC as a function of the node
availability p

Conversely, using ERC scheme impacts the read availability, as
shown on fig. 3. For exemple, when p = 0.5, the write availability
of the full replication scheme is about 75% while it is just 63%
when an ERC scheme is used. However, there is no difference
when p ≥ 0.8, i.e. for usual values of nodes availability.

Figure 3. Read availability of TRAP-ERC and TRAP-FR as a function
of the node availability p

Read availability is also impacted by both the parameters used
to construct the trapezoid (the parameter w), and the number of
redundant blocks (the difference n−k). The greater this difference
is, i.e. the higher is the number of redundant blocks, the better is
the read availability (see fig. 4).

Figure 4. Read availability of TRAP-ERC as a function of the node
availability p

The figure (fig. 5) outline the interest of ERC based schemes.
It compares the storage space used (total space used divided by
the block size) in the case of an ERC based system and a full
replication system, for various values of k. For example, when
n = 15 and k = 8, a full replication system uses 8 blocks while an
ERC based system uses only 4 block. Thus, with these parameters,
the use of Erasure Resilient Codes allows the storage space to be
reduced by 50% compared that of a full replication system

Figure 5. Storage space used by TRAP-ERC and TRAP-FR divided by
blocksize as a function of the node availability k

V. CONCLUSION

Erasure Resilient Codes are being used in the context of dis-
tributed systems to overcome the data explosion. In fact, while
more and more data are produced every day (and thus have to
be stored) the use of a classical replication system is no longer a
solution.

Most of the works published as of now focus on the optimisation
of the code itself: the objectives are to reduce the network and
IO bandwidth used on the recovery process. And most of the
works published as of now are based on the same assumptions:
data is globally immutable (i.e. read only or append only) and no
consistency is necessary. If these assumptions are true for some
cloud storage applications, it misses a large part of storage needs...

In this paper, we have studied an adaptation of the trapezoidal
protocol in the context of ERC based distributed storage systems.
Our goal is to implement a strong consistency mechanism even
when some nodes fail. Using such a protocol allows to enlarge
the use of ERC based storage systems to a number of applications
such as virtual machines data storage. We have shown that write
availability is not impacted by these codes, whereas read availabil-
ity is slightly decreased. However, we have outlined the difference
of storage space used in both cases, which confirms the interest of
Erasure Resilient Codes.

REFERENCES

[1] Divyakant Agrawal and Amr El Abbadi. An efficient and
fault-tolerant solution for distributed mutual exclusion. ACM
Trans. Comput. Syst., 9(1):1–20, February 1991.

[2] Marcos K. Aguilera, Ramaprabhu Janakiraman, and Lixao
Xu. Using erasure codes efficiently for storage in a distributed
system. In Proceedings of the 2005 International Conference
onDependable Systems and Networks, DSN’05, pages 336–
345. IEEE, 2005.

[3] Brad Calder, Ju Wang, Aaron Ogus, Niranjan Nilakantan,
Arild Skjolsvold, Sam McKelvie, Yikang Xu, Shashwat
Srivastav, Jiesheng Wu, Huseyin Simitci, Jaidev Haridas,
Chakravarthy Uddaraju, Hemal Khatri, Andrew Edwards, Va-
man Bedekar, Shane Mainali, Rafay Abbasi, Arpit Agarwal,
Mian Fahim ul Haq, Muhammad Ikram ul Haq, Deepali
Bhardwaj, Sowmya Dayanand, Anitha Adusumilli, Marvin
McNett, Sriram Sankaran, Kavitha Manivannan, and Leonidas
Rigas. Windows azure storage: A highly available cloud
storage service with strong consistency. In Proceedings of
the Twenty-Third ACM Symposium on Operating Systems
Principles, SOSP ’11, pages 143–157, New York, NY, USA,
2011. ACM.

[4] Shun Yan Cheung, Mostafa H. Ammar, and Mustaque
Ahamad. The grid protocol: A high performance scheme
for maintaining replicated data. In Proceedings of the Sixth
International Conference on Data Engineering, pages 438–
445, Washington, DC, USA, 1990. IEEE Computer Society.

[5] Alexandros G. Dimakis, P. Brighten Godfrey, Yunnan Wu,
Martin J. Wainwright, and Kannan Ramchandran. Network
coding for distributed storage systems. IEEE Trans. Inf.
Theor., 56(9):4539–4551, September 2010.

[6] Alexandros G. Dimakis, Kannan Ramchandran, Yunnan Wu,
and Changho Suh. A survey on network codes for distributed
storage. Proceedings of the IEEE, 99(3):476–489, 2011.

[7] Ada Wai-Chee Fu, Yat Sheung Wong, and Man Hon Wong.
Diamond quorum consensus for high capacity and efficiency
in a replicated database system. Distrib. Parallel Databases,
8(4):471–492, October 2000.

[8] Ada Waichee Fu, Fu Wai, Kwong Lau, Fuk Keung, Ng Man,
and Hon Wong. Hypercube quorum consensus for mutual
exclusion and replicated data management. Computers and
Mathematics with Applications, An International Journal,
36(5):45–59, 1998.

[9] Cheng Huang, Minghua Chen, and Jin Li. Pyramid codes:
Flexible schemes to trade space for access efficiency in
reliable data storage systems. Trans. Storage, 9(1):3:1–3:28,
March 2013.

[10] K.V. Rashmi, Nihar B. Shah, Dikang Gu, Hairong Kuang,
Dhruba Borthakur, and Kannan Ramchandran. A ”hitch-
hiker’s” guide to fast and efficient data reconstruction in
erasure-coded data centers. In Proceedings of the 2014 ACM
Conference on SIGCOMM, SIGCOMM ’14, pages 331–342,
New York, NY, USA, 2014. ACM.

[11] Maheswaran Sathiamoorthy, Megasthenis Asteris, Dimitris
Papailiopoulos, Alexandros G. Dimakis, Ramkumar Vadali,
Scott Chen, and Dhruba Borthakur. Xoring elephants: novel
erasure codes for big data. In Proceedings of the 39th inter-
national conference on Very Large Data Bases, PVLDB’13,
pages 325–336. VLDB Endowment, 2013.

[12] Tabito Suzuki and Mamoru Ohara. Analysis of probabilistic
trapezoid protocol for data replication. Proceeding of the
2005 International Conference on Dependable Systems and
Networks (DSN’05), 2005.

[13] Robert H. Thomas. A majority consensus approach to
concurrency control for multiple copy databases. ACM Trans.
Database Syst., 4(2):180–209, June 1979.

[14] Hakim Weatherspoon and John Kubiatowicz. Erasure coding
vs. replication: A quantitative comparison. In Revised Papers
from the First International Workshop on Peer-to-Peer Sys-
tems, IPTPS ’01, pages 328–338, London, UK, UK, 2002.
Springer-Verlag.

