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KAPUER: A Decision Support System for Privacy

Policies Specification

Arnaud Oglaza · Pascale Zarate ·

Romain Laborde

Abstract We are using more and more devices connected to the Internet. Our smart-

phones, tablets and now everyday items can share data to make our life easier. Sharing

data may harm our privacy and there is a need to control them. However, this task is

complex especially for non technical users. To facilitate this task, we present a deci-

sion support system, named KAPUER, that proposes high level authorization policies

by learning users’ privacy preferences. KAPUER has been integrated into XACML

and three learning algorithms have been evaluated.

Keywords Decision support · Access control · Privacy

1 Introduction

Nowadays, our relation with computers is no more limited to the use of a personal

computer that can access the Internet with a wire connection. A study realised by

GFK/Mediametrie published in November 2013 [1] shows that the number of houses

equipped with more than one device (personal computer + smartphone + tablet) has

more than doubled and reached 4.7 millions houses in France. In addition, smart-

phones and tablets have now enough processing and storage capabilities to host many

applications. For example, french people have an average of 32 applications installed
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in their Android smartphones according to a survey made by Google in 2013.1 This

number grows to 40 in countries like Korea or Switzerland. Furthermore, the number

of devices connected to networks is going to increase with the Internet of Things.

Various studies show that there are between 15 and 20 billions “things” connected to

the Internet and this number is expected to reach between 50 and 80 billions in 2020

[2,3]. All these connected things and applications can process and share data related

to their owners. Thus, every owner of these things will have to control them to protect

their privacy.

It is now a priority to provide people with tools allowing them to understand issues

of privacy and the complexity of protecting their personal data. Various initiatives

have emerged from this perspective [4]. Some works have proposed to help people to

understand the risks attached to the disclosure of data through serious games like 2025

ex-machina [5]. Project Platform for Privacy Preferences [6] has standardized websites

privacy policies to allow people understand how websites process their data. These

policies are then evaluated with users preferences by an ad hoc mecanism. The same

objective is pursued by Kelley et al. [7]. They noticed that people understand nutrition

labels found on food package. So they proposed a similar solution to display privacy

policies. Inglesant et al. [8] have presented a constrained natural language to ease the

understanding of authorization policies. Stiepen et al. [9] worked on a non technical

notation to facilitate the understanding of XACML authorization policies. All these

works are important to help people to understand the risks they face and to let technical

documents like privacy policies or authorization policies understandable to everyone.

However, few works focus on helping people to design and write authorization policies

to protect their privacy.

A first approach to assist in the design and the writing of authorization policies

consists in a graphical interface where users can modify their authorization rules. An

example of this approach is Privacy Guard Manager, which is a component of an

alternative Android distribution called CyanogenMod [10]. This interface provides a

dashboard with all information about permissions given to each application. It allows

users to set granted and denied permissions to each applications. The benefits of this

approach are (1) the use of the graphical interface doesn’t require any technical skills

to define the authorization policies and (2) the possibility to manage permissions at a

fine grained level. But this approach is grabbling with the issue of scalability. Indeed,

Privacy Guard Manager can only express low level rules. To quantify this problem, we

have analyzed the average number of permissions to handle on an Android smartphone.

Given that there are an average of 32 applications on an Android smartphone owned

by french people and an application requests in average of 11.4 permissions where

5.72 have an impact for privacy (we have obtained these values by analyzing the

permissions of the 50 most downloaded free applications in the Android market), a

user has to manage 364 permissions where 183 have an impact on his privacy.

This problem of scalability has already been studied in various research works

on access control models. Indeed, administrators have already had this problem. For

example, the RBAC model [11] ease the management of permissions by grouping them

1 http://think.withgoogle.com/mobileplanet/fr/.



depending on the role that users have in an organization. The abstraction of roles limits

the number of rules. Other notions and abstractions have been introduced in access

control models to facilitate the definition and management of authorization policies

especially for privacy like the concept of purpose [12], sensitivity of a resource [13],

trust [14], accuracy or consent [15]. These access control models offer the possibility

to write high level rules that are suited to complex environment. However, manipulat-

ing these abstractions is a complex task that requires an analysis step before writing

authorization rules. As consequence, it isn’t possible for non technical users to write

policies according to these models. Furthermore, defining a generic user interface

for easily writing policies with abstract notions is a difficult task [16]. How to avoid

beginner mode (simple but limited) versus expert mode (complete but complex)?

Based on this observation, we present a new approach that allows a non tech-

nical user to write high level policies while limiting the required cognitive load (i.e.

design phase and interface specification). Our proposition is a system named KAPUER

(KAPUER is an Assistant for Protection of Users pErsonnal infoRmation) who uses

techniques from decision support to help users to write abstract authorization rules.

KAPUER analyzes low level permissions granted by a user to learn his privacy pref-

erences and proposes to him high level rules corresponding to these preferences. The

user can (1) accept a proposed rule that will be implemented by the authorization

system, (2) deny or modify it if the rule doesn’t fit his behavior. We have integrated

KAPUER in the architecture of the XACML authorization management system that

offers a high degree of flexibility both in terms of integration and expression of poli-

cies. This work extends the proposition made in Oglaza et al. [17] that was limited

to the integration of a desicion support system for protecting privacy in an Android

environment.

The rest of the article is structured as follows. In Sect. 2, we introduce decision

support systems. In Sect. 3, we defined our problem solving model to learn users

preferences in terms of privacy. In Sect. 4, we present the integration of KAPUER in

XACML. We conclude and discuss future improvements in Sect. 5.

2 Introduction to Decision Support System

Decision support systems (DSS) have been introduced in the seventies. Gorry and

Morton were the first researchers to employ this term in 1971 [18].This approach

combines mathematical models to analyze the behavior of decision makers and com-

puters for their interactivity and visualization techniques. With the actual power of

hardwares and softwares, decision support systems can help users to make more and

more complex decisions based on more information than a person can do.

In order to help users, a DSS has to understand him. Thus the DSS and the user

interact with each other. Through these interactions, the DSS can analyze decisions

made by the user with learning algorithms. The main goal of a DSS is to assist users

in their decisions making. It does never make decisions in their stead. The system is

here to aid users, it does not replace them.

There are many ways to help a user. This can be done by explaining to him the

problem he faces, giving him the causes of the problem or by decomposing a com-



plex problem into multiple subproblems easier to deal with. For example, there exist

dashboards in stock market that aggregate financial parameters into indicators. These

indicators ease the decision making process. Another way to help a decision maker is

to propose different solutions or items to him. This kind of system is called a recom-

mender system. For instance, Amazon uses a recommender system to suggest their

clients items that might interests them based on their previous shopping, navigation

history and also products bought by other clients.

Building a efficient recommender system requires to consider several aspects. It

needs to present satisfying solutions as fast as possible. If the system takes too much

time to return a proposition, or propositions are ludicrous, users will forsake it. To

understand the user and propose him solutions, it needs to interact with him. These

interactions are mandatory but need to be minimised. The difficulty in building a good

recommender system is finding the good balance between accurately learning users

preferences and limiting as much as possible interactions.

Three different approaches exist to build a recommender system [19]. Collaborative

filtering uses information about other users to find the best propositions to make. The

main advantage of this approach is that it can propose solutions quickly to users with

few information on their preferences. Since proposed solutions are based on other

users’ preferences, they aren’t very accurate. Similarities and differences between

users are calculated using algorithms like the k-nearest neighbors [20].

The second approach, called content based, is strictly about preferences of each

user and describes items as a set of attributes. For example, a movie can be described

by its title, its release date, its producer and its actors and actresses. Each movie can be

represented by these attributes and knowing preferences of the users allows the DSS

to make recommendations based on these attributes [21].

The last approach is a combination of the first two. This hybrid approach uses at

the same time collaborative filtering to find habits of other users and the content based

technique to identify items appreciated by the target user.

We think that the content based filtering is the most appropriate approach for our

system because we strongly believe in the personal meaning of privacy. Similarities

of privacy preferences between two different users for a specific personal information

doesn’t imply same behavior for another one. As consequences, propositions made for

one won’t be necessarily relevant for another. Furthermore, keeping preferences locally

was a strong requirement. Several works emphasize confidentiality problems following

the use of a collaborative recommender system [22,23]. In Calandrino et al. [24], the

authors explain that it is possible, using information acquired by someone’s actions, to

infer others information about his behavior. Content based recommandations allow to

avoid these confidentiality problems since users preferences aren’t shared. In addition,

privacy decisions are complex. We propose to assess authorization policies through

multiple criteria. Indeed, a mono-criterion approach isn’t possible since users privacy

preferences are always based on several criteria.

A decision support system has practical goals. No strong hypotheses on the environ-

ment are made. Simon proposed a base for decision making called bounded rationality

[25]. Rational decisions are often impossible to make because sometimes some criteria

used to find the optimal choice are contradictory. For instance, someone wants to go

from Toulouse to Paris as fast as possible but also wants to minimize the pollution of
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Fig. 1 Generic process of a recommender system

his trip. Although flying is the fastest way to travel, it is also one of the most pollutant

(600–900 km/h for 145 g/CO2/km). Train is not as fast as plane but is more ecological

(90–250 km/h for 13 g/CO2/km).2 There is not one solution where speed is maximal

and pollution minimal. Thus, the most satisfying solution has to be chosen instead of

the optimal one.

A recommender system is a cyclic process (Fig. 1). It starts with an action of the user

who can rank or mark items or choose one item directly. This action allows the system

to decompose the item into criteria. A criterion is the combination of an identifier and

a value. Criteria gathered by the system are the attributes of the item and the value will

depend on the action of the user. This step is done using a decomposition operator,

part of a method used in DSS based on multiple-criteria decision making approach

(MCDM). Then the criteria list of the item is associated to the user’s preferences. The

user’s preferences are represented by a list of criteria defining his behavior. The whole

user’s preferences compose the profile of the user. The user’s preferences are used by

the system to ponder each criterion of the item. Then, the system is able to calculate

the score of the item by aggregating all the criteria. An aggregation operator is used to

2 http://www.consoglobe.com/les-14-modes-de-transport-les-moins-polluants-cg.
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obtain the item’s score. The last step of the learning part is to capitalize the knowledge

acquired from this new item. In the update step, the user’s preferences are calculated

according to the item’s score. All those steps put together form the learning phase of

the process, the next phase determines the recommendations the system presents to

the user.

Once the preferences have been updated, the system can, with the same method as

during the learning, calculate the score of items. It decomposes items in criteria and

aggregates them with user’s preferences. When the scores of all items are available,

the system displays the recommendation to the user and the process starts again.

3 Privacy Problem Solving Model

In this section, we present the problem solving model we use to allow the authorization

system and the decision support system to communicate with each other.

3.1 Criteria

A criterion represents the basic element of an access request to a protected resource.

The criterion can described the name of the user, his age, the name of the resource,

the name of the action, etc. Then the request “John wants to read the calendar” is

composed by three criteria: John, read and calendar. The system’s set of criteria is

noted CR. A criterion is composed by an identifier and two values corresponding to

the user’s preferences, one for accept, one for deny. Indeed, if users’ preferences were

modelised only by one value, it would be difficult to analyze the meaning of a low

value. Does this low value mean that this criterion isn’t favorable for disclosure or

does it mean that this criterion hasn’t been updated often and the system has nearly

no information about it? It isn’t possible to answer this question. We use two values

for each criterion to resolve this problem:

• The first one, gt : CR → [0,∞] represents the user’s preference for this criterion

in favor of disclosure at time t .

• The second one, f t : CR → [0,∞] represents the user’s preference for this

criterion in detriment of disclosure at time t .

We have chosen to have an incremental score calculation method. So during their

update, gt (x) and f t (x) can only increase. The preferences learning is a continuous

phase so if the value of gt (x) is high, it doesn’t necessarily mean that the presence of

criterion x is a strong reason for the user to allow disclosure. This can also mean that

criterion x has been often updated. To identify a criterion’s score, the system has to

calculate either:

• st
D(x) corresponding to the score of criterion x at time t in favor of disclosure.

This score comes from the difference between the value gt (x) and f t (x):

st
D(x) = f t (x) − gt (x) (1)



• st
nD(x) corresponding to the score of criterion x at time t in detriment of disclosure.

This score comes from the difference between the value f t (x) and gt (x):

st
nD(x) = gt (x) − f t (x) (2)

With this calculation method, st
D(x) and st

nD(x) give the position of the criterion x

about disclosure for the user. A low value of st
D(x) or st

nD(x) indicates that there is

no reason that justify preferences for disclosure or non-disclosure. On the contrary,

a high value of st
D(x) or st

nD(x) indicates clear reason of a preference for one or the

other action.

3.2 Classes of Criteria

Access control models propose key elements to take into account into policies like:

• the visibility: who wants to access the resource (a friend, a colleague, a stranger,

etc.)

• the temporal aspect: when is the request made (hour of the day, day of the week,

work time, etc.)

• the spatial aspect: where is the user (at home, at work, etc.)

• the retention: how the resource will be stored (how many time, who will have

access to it, etc.)

• the purpose: how the resource will be used (for statistics, to be sold, etc.)

To express these elements, we introduce the notion of class. Each criterion is part of

a class of criteria with the relation ACC ⊆ CR × C where the set of class of criteria is

noted C . Because the system is generic, classes of criteria aren’t fixed and all possible

classes can be created. To simplify our notation, we define the function class that

returns the set of criteria associated to one class:

class : C → P
CR

x 7→ {y ∈ CR|(y, C) ∈ ACC} (3)

3.3 Meta-criteria

We defined the notion of meta-criterion to represent abstractions of access control

models like the role in RBAC [11], views and activities in OrBAC [15], purposes

hierarchies in PRBAC [12], etc. The prefix meta in the scientific vocabulary allows

to designate a higher level of abstraction. Here, the level 0 corresponds to criterion

and all levels higher than 0 are for meta-criteria. A meta-criterion is a criterion with

a higher level of abstraction than one or many criteria of the same class. The set of

meta-criteria is noted MCR, MCR ⊂ CR. The two sets can’t be equal because we

consider that the system can at least have one criterion at level 0, so it can’t belong to

MCR. A meta-criterion allows to group many criteria having a common feature. For

example, criteria “John” and “Jane”. These two persons have something in common:

they are parents. So we can define the meta-criterion “Parent” that regroups “John”
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Fig. 2 Example of a hierarchy of criteria

and “Jane”. At the same time, we can define another meta-criterion, “Family” who has

a higher level of abstraction than “Parent”. Values gt (x) and f t (x) of a meta-criterion

are specific to this meta-criterion.

A meta-criterion is also a criterion, then it is possible for each class of criteria cl

to create a hierarchy Hcl ⊆ CR × MCR between these criteria such as ∀(c1, c2) ∈

Hcl , class(c1) = class(c2) (Fig. 2). There are two cases when a criterion hasn’t a

meta-criterion in its description:

• the criterion is at the top of the hierarchy (for instance, the criterion “Family” in

Fig. 2).

• the criterion is independant and can’t be associated to a meta-criterion.

3.4 Groups of Criteria

In order to analyze relations between criteria to understand users preferences in details,

we define groups of criteria. A group of criteria is an association of n criteria. A group

of criteria has his own preferences values, they are not depending on the values of

the criteria composing the group. Each criterion or meta-criterion composing a group

of criteria must belong to a different class of criteria. For instance, criteria “Parent”

and “Calendar” are from two different classes so we can create the group of criteria

{Parent, Calendar}. The set of groups of criteria G is defined by:

G ⊆ P(CR)

A group of criteria is composed by at least two criteria.

∀g ∈ G, |g| ≥ 2

Two criteria of a same group can’t belong to the same class.

∀g ∈ G, ∀(c1, c2) ∈ g × g, c1 6= c2 ⇒ class(c1) 6= class(c2)



Ann. Data. Sci. (2014) 1(3–4):369–391 377

Fig. 3 Notions about criteria

3.5 Example of Formalization

Figure 3 illustrates the different notions we have previously defined.

The set of meta-criteria MCR and the set of criteria CR:

MCR = {Son, Parent, Family, Data, Resource, T oulouse, France}. (4)

CR = MCR ∪ {Max, Pierre, Email, Campus} (5)

The relation of hierarchy between a criterion and a meta-criterion Hcl :

Hcl = {(Max, Son), (Pierre, Parent), (Email, Data),

(Campus, T oulouse), (Parent, Family),

(Data, Resource), (T oulouse, France)}.

The set of classes of criteria C :

C = {W ho, W hat, W here}. (6)

The relation between a criterion and a class of criteria ACC:

ACC = {(Max, W ho), (Pierre, W ho), (Email, W hat), (Campus, W here),

(Son, W ho), (Parent, W ho), (Data, W hat), (T oulouse, W here),

(Family, W ho), (Resource, W hat), (France, W here)}.
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The set of groups of criteria G:

G = {(Parent, Email, T oulouse), (Max, Data, T oulouse)}.

A time t , the disclosure value g and non-disclosure value f of each criterion:

gt (Max) = 1.7 et f t (Max) = 1.7

gt (Pierre) = 2.3 et f t (Pierre) = 1.1

gt (Email) = 3.5 et f t (Email) = 3.4

gt (Campus) = 1.0 et f t (Campus) = 5.1

gt (Parent) = 2. et f t (Parent) = 0.6

gt (Data) = 3.1 et f t (Data) = 1.4

gt (T oulouse) = 1.9 et f t (T oulouse) = 4.8

4 KAPUER Integration in XACML

The XACML standard [26] is an XML specification defined by OASIS for the expres-

sion of access control policies. XACML provides an universal language for description

of policies with the form: who can do what and when? The access control policy allows

to define permission to entities (users or applications) on resources (data, services,

etc.). XACML is a powerful expression language where all security information can

be considered as an attribute of the subject, the resource, the action or the environment.

Furthermore, this language uses a policy decision point/policy enforcement point type

of architecture to enforce the access control: a request/answer type of protocol gives

the possibility to express requests and appropriate answers. The grey elements on

Fig. 4 show the key elements defined in XACML:

• the policy decision point (PDP) is a logical entity that takes authorization decisions.

Requests for protected resources are evaluated according to policies written in

XACML.

• the policy enforcement point (PEP) is a logical entity what applies the authorization

decisions taken by the PDP. The PEP is the guardian of the resource and is the

one that technically realizes the access control. It receives requests, translates it

in XACML and sends it to the PDP. Then, it waits for the answer of the PDP to

apply the decision.

• a policy database, a simple database where XACML policies are stored.

The last component of this architecture (the white one) isn’t part of XACML. It

is the one from our proposition, the DSS for protecting privacy. The next subsection

describes the different steps of the process by following the number in the figure.

4.1 Step 1: Interception and Translation of a Request in XACML

A request occurs when an entity asks to have access to one or more protected resources.

These resources can be either data related to the user (name, email, etc.) or services
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Fig. 4 KAPUER’s architecture integrated in XACML

Fig. 5 Example of a XACML request

that provide data about the user (for instance the gps gives users coordinates). When

a request is made, it is intercepted by the PEP. It has to translate it in XACML, send it

to the PDP, wait for a decision and then apply it. KAPUER is generic so it is possible

to use any available information in a request and translate it as attributes. But all

possible attributes don’t have to be present in a request. The result of a translated

request is a XML file containing attributes under the tags subject, resource, action and

environment.

Figure 5 shows an example of a request translated by a PEP. It has four different

parts:

• the subject, the entity who ask for an access to a resource. Here it’s an application,

the attribute’s value is the name of the application “fr.irit.siera.testing”.
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• the resource, the data requested. Here the value of the attribute is the required

permission to have access to the data. “android.permission.READ_SMS” is the

required permission to read the user’s SMS.

• the action is the type of action the entity wants to have with the resource. Here the

application wants to access the ressource so the value of the attribute is ”access”.

• the environment is all other contextual information available at the time of the

request. Here the only available information are the day and the hour of the request

with the value ”2” and ”10” corresponding to the second day of the week and the

tenth hour (tuesday between 10 a.m. and 11 a.m.).

This request is then sent to the PDP who continues the authorization process.

4.2 Step 2: Evaluating the Request According to the Policy Database

The second step of the access control process starts when the PDP receives a XACML

request from the PEP. Its goal is to determine if an existing rule in the policy base can

be used to make a decision for that request and if it’s the case, to give the decision. A

policy is a set of logical expressions, called rules, where the free variables are attributes

identifier. When the PDP receives a request formed by a set of couples {attributes

identifier, value}, it can make the substitution and evaluate some rules of this policy.

When all the attributes and values of a request correspond to those of a rule, the decision

associated to the rule is given to the PEP. This decision can either be “PERMIT” if

the request is accepted of “DENY” if it is refused. In the case where all attributes and

values don’t correpond to any rules of the policy, the decision “NOT APPLICABLE”

is sent to the PEP. This situation is a problem in a classic authorization system because

it answer to an undefined case. Theoretically, a PEP without a decision needs to ask

another PDP but usually, developpers implements the decision “NOT APPLICABLE”

as the “DENY” one.

4.3 Steps 3 and 4: Interactions with the User to Learn his Preferences

Starting this step, the DSS takes place in the process. The decision “NOT APPLICA-

BLE” is used when there is no authorization rule fitting the request. In this case, it

could be possible to ask the user to write a rule in an editor. But it would need a design

phase from the user to write a rule with abstract notions: he will have to take a complex

decision.

We prefer to ask him to take a simpler decision limited to this request by interacting

with him. Figure 6 is a screenshot showing an example of an interaction with the

user. KAPUER informs the user that an entity (here application “fr.irit.tests”) wants

to access a resource (his contact list) and asks him if he accepts or refuses to share

this resource. The system uses the decision of this interaction to understand the user’s

behavior. Two actions are presented to the user, the disclosure D and the non-disclosure

nD. Once the user has taken his decision, the couple {request, action} is sent back to

the DSS that analyzes and uses it to update the user’s preferences. These preferences

are a representation, by a set of criteria, of the user’s prefered authorization policy.



Fig. 6 Example of an

interaction with the user

The notion of attribute in XACML being very close of criterion (described in Sect. 3),

it is possible to transform a request into a list of criteria.

This way, the DSS makes a continuous learning of the preferences to be as close

as posssible to the inkling of authorization policy wanted by the user. Then in our

case, decision “NOT APPLICABLE” means that the DSS needs to keep learning

user’s preferences and keep interacting with the user to inform him and obtain new

information about his behavior. This information will allow to update values of the

criteria used in the request but also values of their meta-criteria and then have a better

view of the user’s preferences. When the DSS has learned enough the user’s behavior,

he is able to propose a new authorization rule to the user (Sect. 4.4).

4.4 Step 5: Abtract Rules Proposition to the User

The main objective of KAPUER is to make high level rules propositions to the user.

However, the system must not propose random rules. First of all, a rule needs to

have a high level of abstraction to cover a large number of requests. It limits the

number of rules manage for the user, avoiding scalability issues like in CyanogenMod

(see Sect. 1). Moreover proposing high level rules limits interactions with the user.

However, the level of abstraction must fit with the user privacy preferences.

KAPUER makes propositions when the the proposed action is stricly prefered to

its contrary. If there is no preference between the two actions, the system will not

propose any rule. Two cases bring KAPUER to this situation:

• when the representation of the user’s preferences is not accurate enough. Here the

system lacks information and needs to interact more with the user.

• when the user doesn’t have a fixed behavior and doesn’t react in the same way to

identical situations. In this case, it’s not possible for the system to infer the user’s

behavior neither to propose any rule.

To manage preferences, we use a perfect relational system of preferences [27]. It

is composed by the two following binary and transitive relations:



Fig. 7 Multi-criteria decision

analysis

• the indifference ∼ or non-preference is a lack of reason to justify a preference for

one action or the other:

∼: a ∼ a′ ⇔ aI a′ (7)

Relation I is reflexive and symmetric.

• the strict preference ≻ is when there are reasons to justify the preference of an

action instead of the other:

≻: a ≻ a′ ⇔ a Pa′ (8)

Relation P is irreflexive and asymmetric.

A proposition of a high level rule is built within an analysis of the request and the

decision taken by the user. To do this analysis, we use a method called multi-criteria

decision analysis [28] (Fig. 7).

Each request is decomposed into criteria which are then aggregated by an aggre-

gation operator. The user’s preferences are used in the step to ponder criteria. The

result of the aggregation provides a score St
R of request R which reflects the degree of

understanding of user’s preferences upon the request. With this score and the user’s

decision, KAPUER can update the values of all criteria and meta-criteria linked to R.

In order to know if an action has a stric preference for the user, KAPUER calculates

score St+1
R of request R with the updated values of criteria and meta-criteria f t+1(x)

et gt+1(x). This new score is then compared to λ, a parameter corresponding to the

threshold between indifference and strict preference. If St+1
R is lower than λ, KAPUER

identify a situation of indifference and no proposition is made to the user. If St+1
R is

above λ, this situation is strict preference and a proposition can be made to the user.

λ is a parameter that impacts the proposition making speed. The lower is its value,

the faster propositions are made. On the contrary, the higher its value is, the slower

propositions are made. The value of λ has been determined after simulation (view

Sect. 6). We are actually working on a dynamic tuning of λ to be specific to each

user’s behavior.

In the case where St+1
R is above λ, the system proposes a new rule to the user. This

is done through a new interaction with the user. During this interaction, KAPUER

asks the user if he wants to add a new rule to the policy database. The attributes of the

rules are the criteria or meta-criteria of the proposition. A decision is also linked to

the rule and the user can accept, decline or modify it.

Even if attributes of a proposition presented to a user should be relevant, we still

let the possibility to modify one or many of these attributes. Either the attribute is a
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Fig. 8 Example of a proposed

rule

criterion and the user can choose its meta-criterion instead to have a higher level rule or

the attribute is a meta-criterion and the user can choose the associated criterion instead

when he doesn’t want an abstraction. Figure 8 shows an example of an interaction for

a proposition. Here the proposed rule asks if the user agrees to share his data with

the application “fr.irit.tests” every thursday. This rule has one abstract attribute: the

resource. The user can make the rule more abstract to all applications or all day of

the week. This way, if the rule doesn’t fit exactly the user’s behavior, he can change it

easily without a specification phase nor a writing phase.

If the user accepts this rule, KAPUER writes the corresponding XACML rule into

the policy database and gives the decision of the user to the PEP. If the rule is denied,

only the decision of the request is given to the PEP. Once the PEP has the decision, he

can send it to the entity who made the request.

5 Initializing the System

Before the beginning of the preferences learning, the system can be initialized to

increase his efficiency. The initialization of preferences is used to have information

about the user to tune some parameters of the calculus and allows it to adapt to each

user. With some questions, it’s possible to know if the global behavior of an user is

simple (disclose all resource without any condition or on the contrary no disclosure

at any cost) or if his behavior is more complex and depends on situations. In the first

case, KAPUER can increase values in the criteria’s update phase to propose rules

faster or increase update’s values of meta-criteria to work with higher level rules. On

the contrary, if the user has a complex behavior, it’s necessary to have a finer learning

and to lower update’s values of criteria or to propose lower level rules.
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We started working on the initialization and prepared a set of questions (42 in

total) and we have proposed them to three differents groups of people each one with

a different view of privacy. The first one was a group of law and computer science

students. The second group was composed of PhD students in computer science and

the last one was composed of smartphone and tablets users without any technical

skills in computer science. The questions put users in situation and answers were their

reactions in these situations. Results has shown that questions of these kind didn’t

give us relevant information on the user despite the large number of questions. We are

actually working on a new set of questions.

6 Learning of Privacy Based Preferences

The phase of preferences learning has to be as fast as possible. Moreover, the number

of interactions between KAPUER and the user has to be limited not to annoy the user.

Using meta-criteria to create high level rules allow to decrease the number of rules

created. But it’s not enough. The number of interactions depends also on preferences

learned and how fast the DSS learned them. The step of criteria aggregation to calculate

the score of a request and the step of criteria’s values update are the two important step

that impact the learning speed. We have tested three different aggregation operators:

• the weighted mean, an operator used in the majority of DSS for his simplicity.

Each criterion is evaluated independently from the other.

• the Choquet integral [29], an more complex operator which take into account

interaction between criteria and the importance of each criteria to have finer results.

We have used Kappalab [30], a plug-in for R to implement our Choquet integrals.

• our own operator, KAGOP (KAPUER AGgregation OPerator) [31] which is a

between the weighted mean and the Choquet integral. It works not only with

criteria but with groups of criteria (see Sect. 3.4). We use this operator to see if

groups of criteria can help the system to find easily interactions between criteria.

To obtain enough data to compare the different learning approaches in real con-

ditions, a lot of users, devices and times is needed. To overcome these constraints,

we have developped a simulator. This tool allows us to implement a set of criteria

with many classes along with meta-criteria and hierarchies for each class. Thus it is

possible to generate a large number of random requests. This allows the simulator to

simulate access control requests. The simulator can also simulate an user with a set of

predefined behavior’s rules. Then, each time the DSS has to interact with the user, the

simulator is able to answer using these behavior’s rules. The same way, the simulator is

able to accept or decline proposition made by the DSS. We have run ten simulations

of 200 random requests to compare the three different operators. We evaluate four

different metrics. First the number of interactions. It shows the level of abstraction of

each operator (Fig. 9). The more policies are created, the lower-level they are. Then,

it indicates if an operator can adapt itself to a system with more criteria. The second

metric is the number of requests processed by policies. It shows the learning speed.

The more requests are handled by policies, the faster preferences are learned. The third

metric is the level of completeness, i.e. the ratio between the number of requests cov-

ered by the poli- cies created and the number of requests possible with the behavior’s



Ann. Data. Sci. (2014) 1(3–4):369–391 385

(a)

(b)

Fig. 9 Simulations results: number of interactions

rules that simulate the user. It shows, after 200 requests, the percentage of requests

that will be handled by KAPUER. The last metric is the number of interactions made

during the 200 requests. It’s the sum of the number of policies and the number of

requests non-processed by policies. For our first tests, we have implemented a list of

criteria with three classes of criteria:

• What data to protect with six criteria. “Contact list” and “Calendar” with the

same meta-criterion “Data”. “Name” and “E-mail address” with the meta-criterion

“Info”. “GPS” and “Camera” with the meta-criterion “Service”.

• Who wants to have access to data with nine criteria. “Jimmy”, “Lee” and “Billy”

with the meta-criterion “Family”. “Bob”, “Jay” and “Fred” with the criterion

“Friend”. “Pierrick” and “Mick” with the meta-criterion “Colleague” and “John”

with the meta-criterion “Unknown”.

• When is the access requested with fourteen criteria for each half-day and two

meta-criteria (“Morning” and “Afternoon”)

Finally, users are simulated by two different behaviors. The first one, Bcx , is com-

plex. It agrees to share all ressources with members of the family all the time, with

colleagues on morning, with friends on afternoon and doesn’t share anything with

unknowns. The system only needs to know what request he has to accept. If a request

isn’t managed by a rule, the system acts like there is a rule to deny disclosure. Then

the user behavior can be formalized by:

• Rule 1 Share Data, Info and Service with Family on Morning and Afternoon

• Rule 2 Share Data, Info and Service with Colleagues on Morning
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(a)

(b)

Fig. 10 Simulations results: number of created rules

• Rule 3 Share Data, Info and Service with Friends on Afternnon

The second behavior, Bop, is open to all requests. We only have one rule for this

behavior:

• Rule 1 Share Data, Info and Service with Family, Colleagues, Friends and

Unknown on Morning and Afternoon

The goal of each algorithm is to find all those rules as fast as possible with the

requests and decisions of the simulated user. Results are shown in Figs. 10, 11 and

12 (warning, scales are different on each chart).

The results show that there isn’t an operator that outperforms the others. None has

the best results in all four metrics. KAPUER is interesting for users if it handles the

more possible requests. After 200 requests, whatever the behavior, the three operators

are above 80 % of completeness. So more than four out of five further requests will be

handled by the system. The mixed operator even reaches 98.9 % with Bop. This level

has to be confronted with the number of policies created. As we already said, the more

policies are created, the lower- level they are. Then if we strongly increase the number

of criteria in the system, the system needs more time to learn user’s preferences. If

the created policies are low-level, it will lead to a lower level of completeness. Then,

if Choquet and the weighted mean have good results in those cases, our operator will

have better results in a system with more criteria.

The other important point for users is to limit interactions. We can see that a complex

behavior brings more interactions than an open one. The learning speed has an impact

on interactions. Choquet and the weighted mean have more requests processed by
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(a)

(b)

Fig. 11 Simulations results: number of requests handled by the authorization system

policies. It shows that they create policies faster than our mixed operator. But with

Bcx they create much more rules, thus they require more interactions than our operator.

Three times during the simulations, Choquet and the weighted mean have had peaks

in the results. Way more policies are created because of their low-level of abstraction.

As consequences, the level of completeness is also lower and it increases the number

of interactions. On the contrary, whatever the behavior, our operator is more stable

than the two others for the four types of metrics.

7 Conclusion and Future Work

Complexity in today’s personal computing is increasing with the number and the

diversity of connected devices. Now the problem of privacy is present and controling

these systems is harder and harder for non expert people in administration of system

or security. We have proposed in this article a new approach that combines a decision

support system based on multi-criteria analysis named KAPUER with classical access

control tools to help users to write high level authorization rules. We have explained

how we integrated KAPUER into XACML, in particular how and when we interact

with the user. Moreover, we have sudied and compared three aggregation operators for

learning user’s privacy preferences. Our own operator, Kagop, provides good results

123



388 Ann. Data. Sci. (2014) 1(3–4):369–391

(a)

(b)

Fig. 12 Simulations results: Percentage of completness

and his behavior is more homogeneous than the weighted mean and the Choquet

integral. The work on learning speed and efficiency can be improved on two aspects.

First, we have used these algorithms without any initialization. Convergence of

these algorithms will be faster after an initialization of user’s preferences. The study

we performed on differents groups of people gave us experience and we are actually

working on a new way to learn relevant information about the user.

The second aspect to be improved is the criteria values update. Thanks to our

simulator, we are running more tests to determine the best combination between the

function used to update criteria and the value λ of threshold between indifference and

strict preference.

Finally, We are working on new and more complex simulations. We are implement-

ing a realistic Android smartphone scenario involving more applications, more criteria

and meta-criteria and more complex behavior. These simulations will strengthen the

validation of our system.
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